×
20.02.2014
216.012.a280

СПОСОБ ПОЛУЧЕНИЯ БИОСОВМЕСТИМОГО ПОКРЫТИЯ НА СТОМАТОЛОГИЧЕСКИХ ИМПЛАНТАТАХ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к электролитическим методам обработки поверхности металлических материалов и может быть использован в стоматологическом протезировании. Способ заключается в получении биосовместимого покрытия на стоматологических имплантатах, выполненных из титана и его сплавов, включающий помещение изделий в водный раствор электролита, содержащий гидроксид калия и наноструктурный гидроксиаиатит в виде водного коллоидного раствора, возбуждение на поверхности изделий микродуговых разрядов, при этом оксидирование обрабатываемых изделий осуществляют в химически стойкой непроводящей ванне; в раствор электролита помещают одновременно две партии обрабатываемых изделий, предварительно закрепив изделия одной партии к клеммам для обрабатываемых деталей, изделия другой партии - к клеммам вспомогательного электрода; а электролит дополнительно содержит гидроксид натрия, гидрофосфат натрия, натриевое жидкое стекло, метасиликат натрия, в следующих соотношениях, из расчета массы сухого вещества в граммах на литр состава: гидроксид калия КОН - 2, гидроксида натрия NaOH - 1, гидрофосфата натрия NaHРО×12HО - 5, жидкое стекло nNaO·mSiO (М=3,2) - 5, метасиликат натрия NaSiO×9HO - 8, нанодисперсный гидроксиапатит - 0,5÷5, причем отклонения от указанных концентраций компонентов электролита не превышают ±10%. 1 табл., 4 ил., 1 пр.
Основные результаты: Способ получения биосовместимого покрытия на стоматологических имплантатах, выполненных из титана и его сплавов, включающий помещение изделий в водный раствор электролита, содержащий гидроксид калия и наноструктурный гидроксиапатит в виде водного коллоидного раствора, возбуждение на поверхности изделий микродуговых разрядов, отличающийся тем, что оксидирование обрабатываемых изделий осуществляют в химически стойкой непроводящей ванне; в раствор электролита помещают одновременно две партии обрабатываемых изделий, предварительно закрепив изделия одной партии к клеммам для обрабатываемых деталей, изделия другой партии - к клеммам вспомогательного электрода; а электролит дополнительно содержит гидроксид натрия, гидрофосфат натрия, натриевое жидкое стекло, метасиликат натрия, в следующих соотношениях, из расчета массы сухого вещества, грамм на литр состава:гидроксид калия KOH 2гидроксида натрия NaOH 1гидрофосфата натрия NaHPO·12HO 5жидкое стекло nNaO·mSiO (М=3,2) 5 нанодисперсный гидроксиапатит 0,5÷5, причем отклонения от указанных концентраций компонентов электролита не превышают ±10%.
Реферат Свернуть Развернуть

Изобретение относится к электролитическим методам обработки поверхности металлических материалов, в частности к технологии получения биосовместимых покрытий на имплантатах, выполненных из титана и его сплавов для стоматологического протезирования.

Биосовместимость и биоактивность имплантатов из титана или титановых сплавов, предназначенных для использования в различных областях медицины: стоматологии, ортопедии, травматологии, достигается за счет формирования на их поверхности биоактивного покрытия, сходного с составом костной ткани и с высокоразвитой структурой поверхности. Перспективным материалом для создания биоактивных кальций-фосфатных покрытий, которые наносят на основу из титана и его сплавов, является гидроксиапатит, применение которого улучшает способность интеграции имплантата в костную ткань живого организма.

Поэтому наибольший интерес представляют способы формирования биосовместимых функциональных покрытий на имплантатах, основанные на электрохимическом оксидировании титановых сплавов в кальций-фосфатных электролитах с кислой средой [1], в кальций-фосфатных электролитах с широким диапазоном значений водородного показателя и импульсным напряжением до 1000 В [2], в стандартных электролитах в присутствии биоактивного вещества - гидроксиапатита или кальций-фосфатных соединений [3].

Наиболее близким по своим признакам, принятым за прототип, является способ получения покрытий на изделиях, выполненных из титана и его сплавов. [4] Способ включает помещение изделий в водный раствор электролита, содержащего 2 мас.% гидроксида калия и 0,5 мас.% наноструктурного гидроксиапатита в виде водного коллоидного раствора, возбуждение на поверхности изделий микродуговых разрядов. Способ позволяет получить развитую поверхностную структуру покрытия с высокими механическими свойствами и заданным элементным составом, близким к составу костной ткани. Недостатком указанного способа является недостаточная химическая чистота покрытия, что обусловлено возможностью попадания в состав покрытия продуктов коррозии металлического вспомогательного электрода, в качестве которого может выступать электролитическая ванна.

Из уровня техники известно, что нержавеющие стали, используемые для изготовления электролитических ванн и вспомогательных электродов, подвержены влиянию химической и электрохимической коррозии [5] так же, как и углеродистые стали, только в меньшей степени. Следствием коррозии оборудования является попадание ионов металла и нерастворимых соединений в электролит. При формировании функциональных покрытий методом микродугового оксидирования, содержащиеся в электролите растворенные вещества и дисперсные частицы внедряются в покрытие, полностью или частично вступая в химические реакции и изменяя его фазовый и элементный состав [6]. В большинстве областей применения не является критичным наличие остаточных примесей в составе покрытия. Напротив, химический состав поверхности изделий для имплантации в медицине имеет решающее значение для последующих процессов восстановления поврежденных тканей, приживления имплантата и комплексной реакций организма на инородный объект [7, 8]

В основу изобретения положена задача повышения химической чистоты и биоактивности биосовместимого покрытия, имеющего состав, близкий к составу натуральной кости по соотношению кальций/фосфор.

Технический результат:

- предотвращение попадания в состав покрытия примесей металлов от вспомогательного электрода, в качестве которого может быть использована электролитическая ванна, что обеспечивает химическую чистоту биосовместимого покрытия на имплантатах, выполненных из титана и его сплавов;

- формирование покрытия, содержащего ионы кремния, что способствует улучшенной пролиферации остеобластов и росту внеклеточного матрикса, ускоренной минерализации костной ткани [9, 10].

Задачу решает предложенный способ получения покрытий на изделиях, выполненных из титана и его сплавов, включающий помещение изделий в водный раствор электролита, содержащий гидроксид калия и наноструктурный гидроксиапатит в виде водного коллоидного раствора, возбуждение на поверхности изделий микродуговых разрядов, в который внесены следующие новые признаки:

- оксидирование обрабатываемых изделий осуществляют в химически стойкой непроводящей ванне без участия вспомогательного электрода;

в раствор электролита помещают одновременно две партии обрабатываемых изделий, предварительно закрепив изделия одной партии к клеммам для обрабатываемой детали, изделия другой партии- к клеммам вспомогательного электрода;

- электролит дополнительно содержит гидроксид натрия, гидрофосфат натрия, натриевое жидкое стекло, метасиликат натрия, в следующих соотношениях, из расчета массы сухого вещества в граммах на литр состава:

гидроксид калия КОН - 2,

гидроксида натрия NaOH - 1,

гидрофосфата натрия Na2HPO4×12H2O - 5,

жидкое стекло nNa2O·mSiO2 (М=3,2) - 5,

метасиликат натрия Na2SiO3×9H2O - 8,

наноструктурный гидроксиапатит - 0,5-5, причем отклонения от указанных концентраций компонентов электролита не должны превышать ±10%.

Указанные признаки, обеспечивающие возможность оксидирования одновременно двух партий изделий, когда каждая партия во время ее обработки одновременно выступает в роли вспомогательного электрода для другой партии, позволяют исключить из электрохимической системы процесса оксидирования вспомогательный электрод, роль которого может играть металлическая ванна. Что предотвращает попадание в электролит, а далее и в покрытие, продуктов химической и электрохимической коррозии - таких ионов металлов из состава легированных сталей, как никель, хром и другие, относящихся к токсичным веществам.

Кроме того, обеспечивается равномерное формирование биосовместимого покрытия на всей поверхности изделий обеих партий.

При проведении микродугового оксидирования в мягком анодно-катодном режиме, который используется в предлагаемом способе, выполняется равенство средних значений анодного и катодного токов, проходящих через цепь «обрабатываемая деталь - вспомогательный электрод», в результате чего существует эквивалентность ролей образца и вспомогательного электрода, которые поочередно выступают то анодом, то катодом при смене полярности напряжения. Это позволяет исключить вспомогательный электрод, заменив его на партию изделий, аналогичную обрабатываемой. Форма падения напряжения на обрабатываемых изделиях в этом случае будет являться суперпозицией напряжений на «анодно-включенных» и «катодно-включенных» деталях. Средняя плотность тока рекомендуется в пределах от 8 до 12 А/дм2.

Использование дополнительных веществ в составе электролита преследует несколько целей. Так, добавление гидроксида натрия способствует стабилизации процесса формирования оксидного слоя на титане, позволяет расширить диапазон электрических параметров процесса и времени обработки. Кремний-содержащие, силикат натрия и жидкое стекло, способствуют введению в состав покрытия оксида кремния, который в силу его низкой температуры плавления выступает связующим компонентом в покрытии по аналогии с керамическими материалами. Помимо этого, соединения кремния являются активаторами регенерации соединительной ткани в организме, показаны при лечении остеохондроза, артрита и артроза. С учетом частичной резорбции поверхностных слоев покрытия в процессе функционирования имплантата, выход кремния в окружающую ткань будет способствовать скорейшему заживлению раны и интеграции имплантата в организме. Гидрофосфат натрия способствует образованию крупных пор в покрытии, увеличивает его толщину. Кроме того, предлагаемое сочетание компонентов электролита позволяет снизить концентрацию наноструктурного гидроксиапатита, являющегося дорогостоящим компонентом.

Концентрации компонентов электролита играют решающую роль в обеспечении качества получаемого покрытия. На основании экспериментальных исследований отклонения от указанных значений концентрации компонентов электролита были ограничены значением±10%. Так, например, уменьшение содержания силиката натрия на 1/3 приводит к ухудшению износоустойчивости покрытия в четыре раза, а аналогичное уменьшение концентрации гидроксида калия снижает износоустойчивость в семь раз. Уменьшение концентрации фосфата натрия и гидроксида натрия приводит к увеличению содержания титана в покрытии, прирост веса покрытия в процентах снижается, практически, эквивалентно. Также эквивилентно с увеличением концентрации ГАП увеличивается содержание кальций-фосфатных соединений в покрытии, но износоустойчивость покрытия падает с двойной скоростью. Таким образом, отклонения концентраций компонентов электролита не позволяют достичь заявленный результат - получение биосовместимого покрытия, имеющего состав, близкий к составу натуральной кости по соотношению кальций/фосфор.

Предлагаемое изобретение иллюстрируется чертежами, приведенными на фигурах:

Фиг.1а. Электрическая схема подключения оксидируемых заготовок к источнику тока в предложенном режиме.

Фиг.1б. Вариант расположения заготовок в химической ванне.

Фиг.2а. Осциллограмма зависимости величины напряжения от времени при использовании предложенного способа и способа с применением вспомогательного электрода, зафиксированная на 10-й минуте обработки.

Фиг.2б. Осциллограмма зависимости величины тока от времени при использовании предложенного способа и способа с применением вспомогательного электрода, зафиксированная на 10-й минуте обработки Пример.

В качестве модели имплантата были взяты образцы титанового сплава ВТ 1-0 в ультрамелкозернистом состоянии в виде таблеток о20 мм с площадью поверхности каждого образца 7,3 см2, которые проходили предварительную механическую очистку поверхности и отмывку в органическом растворителе и дистиллированной воде.

Химически стойкую непроводящую ванну заполняли электролитом следующего состава: 2 г/л гидроксида калия КОН, 1 г/л гидроксида натрия NaOH; 5 г/л гидрофосфата натрия Na2HPO4×12H2O; 5 г/л жидкого стекла nNa2O·mSiO2 (М=3,2); 8 г/л метасиликата натрия Na2SiO3×9H2O; коллоидный раствор наноструктурного гидроксиапатита - 1,5 г/л из расчета сухого вещества и дистиллированная вода - остальное.

Закрепляли один образец к клемме для обрабатываемой детали, другой - к клемме вспомогательного электрода и помещали в электролит.

Микродуговое оксидирование по предложенному способу проводили для трех различных плотностей тока, а также проводили обработку по стандартному способу, где в роли вспомогательного электрода использовали ванну из нержавеющей стали. Процесс проводили в течении 30 минут. Затем образцы извлекали из ванны и отмывали в дистиллированной воде при 60°С от остатков электролита с применением ультразвуковой ванны.

Покрытие всей поверхности каждого образца, обработанного по предложенному способу, было идентичным по толщине, внешнему виду и элементному составу.

В таблице 1 приведены некоторые параметры процесса и характеристики полученного покрытия.

Таблица 1
Сравнительные параметры процессов оксидирования и некоторые характеристики полученных покрытий.
Режим (Время обработки 30 минут) Амплитуда напряжения к окончанию процесса Uамп, В Средний ток процесса Iср, А/образец (расчет по осциллограмме) Содержание основных элементов на поверхности покрытия, %Ат (EDS-анализ) Соотношение Са:Р в покрытии
Si Са Р Ti
№1 470 0,3 17,3 4,9 2,4 16,9 2,1
№2 510 0,5 16,8 5,8 3,5 15,5 1,7
№3 530 0,8 17,2 8,8 5,5 10,8 1,6
Исходный 480* 0,5* 17,6 7,7 5,1 11,5 1,5
*В качестве амплитудного напряжения и среднего тока для стандартного

режима взято значение для анодной полуволны Ua амп и Iа ср.

Как видно из приведенной таблицы, наилучшее сочетание свойств покрытия получено при проведении предложенного способа по режиму №3, где соотношение Са:Р в покрытии близко к требуемому, и при этом содержится достаточное количество кремния и наименьшее количество титана.

При нанесении покрытия на партии образцов, состоящие из двух и более штук, образцы в пределах партии соединяются параллельно, как и в способах с применением вспомогательного электрода. Электрическая схема электролитической ячейки для такого случая показана на Фиг.1-а: отдельные образцы обозначены как сопротивление с номиналом R, имеющим нелинейную вольт-амперную характеристику. При расположении партий с большим количеством образцов в электролитической ванне желательно соблюдать чередование образцов от разных партий, как это показано на Фиг.1-б.

Таким образом, при реализации предложенного способа, поставленная задача получения биосовместимого покрытия повышенной химической чистоты и биоактивности достигнута. Полученное покрытие имеет состав, близкий к составу натуральной кости по соотношению кальций/фосфор и достаточное количество кремния, способствующего активации процессов интеграции имплантата в кость, при этом исключена возможность попадания в покрытие продуктов химической и электрохимической коррозии, относящихся к токсичным веществам, за счет исключения из процесса вспомогательного электрода.

СПИСОК ЛИТЕРАТУРЫ

1. Патент РФ №2159094 (С1) Опубл. 20.11.2000 / Способ нанесения покрытия на имплантат из титана и его сплавов // Карлов А.В., Шахов В.П., Игнатов В.П., Верещагин В.И.

2. Патент РФ №2206642 (С2) Опубл. 31.01.2000 / Способ модифицирования поверхности медицинских изделий (варианты) // Мамаев А.И., Мамаева В.А., Выборнова С.Н.

3. Патент РФ №2194536 (С2). Опубл. 20.12.2002 / Способ формирования биоактивного покрытия на имплантат // Клименов В.А., Шепель В.М., Ботаева Л.Б., Трофимов В.В., Федчишин О.В.

4. Патент РФ №2363775 (С1). Опубл. 10.08.2009 / Способ получения покрытий на изделиях, выполненных из титана и его сплавов // Ковалева М.Г., Колобов Ю.Р., Сирота В.В., Храмов Г.В.

5. Туфанов Д.Г. Коррозионная стойкость нержавеющих сталей, сплавов и чистых металлов. - М.: Металлургия, 1990. - 319 с.

6. Иванов М.Б. Исследование коррозионной стойкости микродуговых кальций-фосфатных покрытий на титане ВТ1-0 в биологических средах. / Иванов М.Б., Лазебная М.А., Колобов Ю.Р., Храмов Г.В., Волковняк Н.Н., Колобова Е.Г. // Нано- и микросистемная техника. - 2011. - №4. - С.31-37.

7. Р.Х.Камалов. Сравнительный анализ структуры поверхности и ее химического состава у разных систем дентальных имплантатов и их влияние на уровень сенсибилизации организма. / Р.Х. Камалов, А.Н. Лихота, В.В. Коваленко, Е.В. Горобец, Н.И. Кинчур, В.А. Тиньков, Е.В. Розова. // Клиническая стоматология. - 2011. - №2.

8. Immunologic mechanisms in hypersensitivity reactions to metal ions: an overview. / L. Budinger, M. Hertl // Allergy. - 2000. - №55. - C.108-115.

9. N. Patel, S.M. Best, W. Bonfield et al. A comparative study on the in vivo behavior of hydroxyapatite and silicon substituted hydroxyapatite granules. Journal of materials science: Materials in medicine 13 (2002), p.1199-1206.

10. N. Patel et al. In vivo assessment of hydroxyapatite and silicate-substituted hydroxyapatite granules using an ovine defect model. Journal of materials science: Materials in medicine 16 (2005), p.429-440.

Способ получения биосовместимого покрытия на стоматологических имплантатах, выполненных из титана и его сплавов, включающий помещение изделий в водный раствор электролита, содержащий гидроксид калия и наноструктурный гидроксиапатит в виде водного коллоидного раствора, возбуждение на поверхности изделий микродуговых разрядов, отличающийся тем, что оксидирование обрабатываемых изделий осуществляют в химически стойкой непроводящей ванне; в раствор электролита помещают одновременно две партии обрабатываемых изделий, предварительно закрепив изделия одной партии к клеммам для обрабатываемых деталей, изделия другой партии - к клеммам вспомогательного электрода; а электролит дополнительно содержит гидроксид натрия, гидрофосфат натрия, натриевое жидкое стекло, метасиликат натрия, в следующих соотношениях, из расчета массы сухого вещества, грамм на литр состава:гидроксид калия KOH 2гидроксида натрия NaOH 1гидрофосфата натрия NaHPO·12HO 5жидкое стекло nNaO·mSiO (М=3,2) 5 нанодисперсный гидроксиапатит 0,5÷5, причем отклонения от указанных концентраций компонентов электролита не превышают ±10%.
СПОСОБ ПОЛУЧЕНИЯ БИОСОВМЕСТИМОГО ПОКРЫТИЯ НА СТОМАТОЛОГИЧЕСКИХ ИМПЛАНТАТАХ
СПОСОБ ПОЛУЧЕНИЯ БИОСОВМЕСТИМОГО ПОКРЫТИЯ НА СТОМАТОЛОГИЧЕСКИХ ИМПЛАНТАТАХ
СПОСОБ ПОЛУЧЕНИЯ БИОСОВМЕСТИМОГО ПОКРЫТИЯ НА СТОМАТОЛОГИЧЕСКИХ ИМПЛАНТАТАХ
СПОСОБ ПОЛУЧЕНИЯ БИОСОВМЕСТИМОГО ПОКРЫТИЯ НА СТОМАТОЛОГИЧЕСКИХ ИМПЛАНТАТАХ
Источник поступления информации: Роспатент

Showing 41-50 of 51 items.
01.03.2019
№219.016.d064

Производное 3-(2,2,2-триметилгидразиний) пропионата - 5-бромникотинат 3-(2,2,2-триметилгидразиний) пропионат калия, обладающее эндотелиопротекторной активностью

Изобретение относится к области фармацевтики и медицины, конкретно к новому производному 3-(2,2,2-триметилгидразиний) пропионата - 5-бромникотинат 3-(2,2,2-триметилгидразиний) пропионату калия, (CH3)3NHCH2CH2COOKRCOO где , обладающему повышенной эндотелиопротекторной активностью. 1 табл., 2...
Тип: Изобретение
Номер охранного документа: 0002467745
Дата охранного документа: 27.11.2012
01.03.2019
№219.016.d06b

Производное 3-(2,2,2-триметилгидразиний)пропионата - глицинат 3-(2,2,2-триметилгидразиний)пропионат калия, обладающее эндотелиопротекторной активностью

Предложено новое химическое соединение, производное 3-(2,2,2-три-метилгидразиний)пропионата - глицинат 3-(2,2,2-триметилгидразиний)пропионат калия, (CH3)3NNHCH2CH2COOKRCOO, где , обладающее эндотелиопротекторной активностью. Показано усиление протекторных свойств эндотелия по сравнению с ранее...
Тип: Изобретение
Номер охранного документа: 0002467748
Дата охранного документа: 27.11.2012
01.03.2019
№219.016.d06f

Производное 3-(2,2,2-триметилгидразиний) пропионата - 5-гидрокисиникотинат 3-(2,2,2-триметилгидразиний) пропионат калия, обладающее эндотелиопротекторной активностью

Изобретение относится к области фармацевтики и медицины, конкретно к новому химическому соединению - производному 3-(2,2,2-триметилгидразиний) пропионата, а именно 5-гидрокисиникотинат 3-(2,2,2-триметилгидразиний) пропионату калия, обладающему повышенной эндотелиопротекторной активностью,...
Тип: Изобретение
Номер охранного документа: 0002467744
Дата охранного документа: 27.11.2012
01.03.2019
№219.016.d094

Производное 3-(2,2,2-триметилгидразиний)пропионата - никотинат 3-(2,2,2-триметилгидразиний)пропионат калия, обладающее эндотелиопротекторной активностью

Изобретение относится к области органической хомии, конкретно к новому химическому соединению, производному 3-(2,2,2-триметилгидразиний)пропионата-никотинат 3-(2,2,2-триметилгидразиний)пропионат калия (CH3)3NNHCH2CH2COOKRCOO где R=, обладающему эндотелиопротекторной активностью. Предлагаемое...
Тип: Изобретение
Номер охранного документа: 0002465268
Дата охранного документа: 27.10.2012
19.04.2019
№219.017.31f7

Производное 3-(2,2,2-триметилгидразиний) пропионата - 5-бромникотинат 3-(2,2,2-триметилгидразиний) пропионат калия, обладающее противоишемической активностью

Изобретение относится к области фармацевтики и медицины, конкретно к новому химическому соединению, производному 3-(2,2,2-триметилгидразиний) пропионата - бромникотинату 3-(2,2,2-триметилгидразиний) пропионата калия, (СН)NНСНСНСООКRСОО где , обладающему повышенной противоишемической...
Тип: Изобретение
Номер охранного документа: 0002458690
Дата охранного документа: 20.08.2012
19.04.2019
№219.017.31f8

Производное 3-(2,2,2-триметилгидразиний) пропионата - никотинат 3-(2,2,2-триметилгидразиний) пропионат калия, обладающее противоишемической активностью

Изобретение относится к области медицины, конкретно - к новому химическому соединению, производное 3-(2,2,2-триметилгидразиний) пропионата - никотинат 3-(2,2,2-триметилгидразиний) пропионат калия, (CH)NNHCHCHCOOKRCOO, где , обладающее противоишемической активностью. Технический результат:...
Тип: Изобретение
Номер охранного документа: 0002458054
Дата охранного документа: 10.08.2012
19.04.2019
№219.017.3216

Производное 3-(2,2,2-триметилгидразиний)пропионата - глицинат 3-(2,2,2-триметилгидразиний)пропионат калия, обладающее противоишемической активностью

Изобретение относится к области медицины, конкретно к новому химическому соединению, производному 3-(2,2,2-триметилгидразиний)пропионата - глицинату 3-(2,2,2-триметилгидразиний) пропионата калия, (CH3)3NNHCH2CH2COOKRCOO где , обладающему противоишемической активностью. 1 табл.
Тип: Изобретение
Номер охранного документа: 0002457198
Дата охранного документа: 27.07.2012
19.04.2019
№219.017.3217

Производное 3-(2,2,2-триметилгидразиний)пропионата - 5- гидрокисиникотинат 3-(2,2,2-триметилгидразиний)пропионат калия, обладающее противоишемической активностью

Изобретение относится к области медицины, конкретно к новому химическому соединению, производному 3-(2,2,2-триметилгидразиний)пропионата - 5-гидрокисиникотинат 3-(2,2,2-триметилгидразиний)пропионат калия, (CH3)3NHCH2CH2COOKRCOO, где обладающее противоишемической активностью. Технический...
Тип: Изобретение
Номер охранного документа: 0002457202
Дата охранного документа: 27.07.2012
19.04.2019
№219.017.3421

Способ получения сверхпластичных заготовок из алюминиевых сплавов на основе системы алюминий-магний-скандий

Изобретение предназначено для оптимизации технологического процесса сверхпластической формовки изделий сложной формы. Способ включает отливку слитка, получение из него заготовки равноканальным угловым прессованием с противодавлением. Сокращение продолжительности формообразующих операций,...
Тип: Изобретение
Номер охранного документа: 0002465365
Дата охранного документа: 27.10.2012
29.06.2019
№219.017.9fc2

Способ прогнозирования формирования хронического лимфолейкоза и развития сочетанных осложнений в дебюте заболевания

Изобретение относится к медицине и описывает способ прогнозирования формирования хронического лимфолейкоза и развития сочетанных осложнений в дебюте заболевания, включающий выделение ДНК из периферической венозной крови, отличающийся тем, что проводят анализ полиморфизма гена рецептора фактора...
Тип: Изобретение
Номер охранного документа: 0002458349
Дата охранного документа: 10.08.2012
Showing 41-50 of 55 items.
10.08.2015
№216.013.6aa4

Способ получения микрокапсул лозартана калия в альгинате натрия

Способ получения микрокапсул лозартана калия в оболочке из альгината натрия может быть использован в фармакологии, фармацевтике, медицине. Растворяют лозартан калия в хлороформе и диспергируют полученную смесь в присутствии препарата E472c при перемешивании 1000 об/с в суспензию альгината...
Тип: Изобретение
Номер охранного документа: 0002558855
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6aa5

Способ получения микрокапсул аминокислот в конжаковой камеди

Способ получения микрокапсул аминокислот в конжаковой камеди может быть использован в фармакологии, фармацевтике, медицине. Суспензию аминокислоты в диметилсульфоксиде диспергируют в суспензию конжаковой камеди в бутиловом спирте в присутствии препарата E472с при перемешивании 1300 об/сек....
Тип: Изобретение
Номер охранного документа: 0002558856
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6aa7

Способ получения микрокапсул аминокислот в ксантановой камеди

Изобретение относится к способу получения микрокапсул аминокислот в ксантановой камеди. Указанный способ характеризуется тем, что аминокислоту растворяют в диметилсульфоксиде и диспергируют полученную смесь в суспензию ксантановой камеди в бутаноле в присутствии препарата Е472с при...
Тип: Изобретение
Номер охранного документа: 0002558859
Дата охранного документа: 10.08.2015
20.10.2015
№216.013.82d6

Способ определения жевательной эффективности пародонта зубов

Способ относится к медицине, а именно к стоматологии, и предназначен для использования при протезировании для предотвращения осложнений, связанных с перегрузкой опорных тканей пародонта. Проводят рентгенологическое исследование пациента с дефектом целостности зубной дуги. Определяют значение...
Тип: Изобретение
Номер охранного документа: 0002565097
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.840d

Способ получения микрокапсул аминокислот в альгинате натрия

Способ получения микрокапсул аминокислот в оболочке из альгината натрия может быть использован в фармакологии, фармацевтике, медицине. Согласно способу по изобретению аминокислоту растворяют в диметилсульфоксиде и диспергируют полученную смесь в суспензию альгината натрия в бутаноле в...
Тип: Изобретение
Номер охранного документа: 0002565408
Дата охранного документа: 20.10.2015
27.03.2016
№216.014.c5ba

Способ прогнозирования риска развития преэклампсии

Изобретение относится к области медицины, а именно к способу прогнозирования вероятности риска возникновения преэклампсии у женщин русской национальности, являющихся уроженками Центрально-Черноземного региона России. Сущность способа состоит в том, что осуществляют забор венозной крови,...
Тип: Изобретение
Номер охранного документа: 0002578425
Дата охранного документа: 27.03.2016
13.01.2017
№217.015.76af

Способ формирования биоактивного покрытия на поверхности эндопротезов крупных суставов

Изобретение относится к медицине. Описан способ получения покрытий на элементах эндопротезов крупных суставов человека, выполненных из титана и его сплавов, включающий помещение имплантата в ванну с раствором электролита, содержащего ионы Са и Р, подключение имплантата и вспомогательного...
Тип: Изобретение
Номер охранного документа: 0002598626
Дата охранного документа: 27.09.2016
13.01.2017
№217.015.8ec7

Способ получения гранулированного нанокристаллического гидроксилапатита

Изобретение относится к фармацевтической промышленности, а именно к способу получения гранулированного нанокристаллического гидроксилапатита (ГАП). Способ получения гранулированного нанокристаллического гидроксилапатита включает синтез гидроксилапатита в насыщенном растворе гидроксида кальция,...
Тип: Изобретение
Номер охранного документа: 0002605296
Дата охранного документа: 20.12.2016
25.08.2017
№217.015.c8dd

Способ получения композиции для лечения заболеваний пародонта

Изобретение относится к медицине, а именно к стоматологии, и может быть использовано для получения композиции для лечения воспалительных заболеваний пародонта. Для этого проводят измельчение растительного сырья, последовательную экстракцию из сырья 70%-ным и 40%-ным спиртом этиловым и доведение...
Тип: Изобретение
Номер охранного документа: 0002619338
Дата охранного документа: 15.05.2017
19.01.2018
№218.016.0809

Способ получения сортового проката сплавов магния системы mg-al

Изобретение относится к области металлургии, в частности к механико-термической обработке магниевых сплавов, и может быть использовано в прокатном производстве магниевых деформируемых сплавов. Способ получения сортового проката из сплава на основе магния системы Mg-Al включает горячую...
Тип: Изобретение
Номер охранного документа: 0002631574
Дата охранного документа: 25.09.2017
+ добавить свой РИД