×
10.02.2014
216.012.9f90

Результат интеллектуальной деятельности: УСТРОЙСТВО ДЛЯ УПРАВЛЕНИЯ ГИБКИМИ СТЕНКАМИ СОПЛА АЭРОДИНАМИЧЕСКОЙ ТРУБЫ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области экспериментальной аэродинамики, в частности к аэродинамическим трубам с регулируемыми соплами. Устройство состоит из силового механизма, изменяющего его контур по заданной программе, и командного устройства, управляющего этой программой. В контур управления введены последовательно включенные блок определения конечного положения ведущего ряда в функции заданного числа М, блок задания интенсивности движения ведущего ряда в функции времени управления и блок задания ординат ведомых рядов в функции заданной ординаты ведущего ряда, что позволяет с высокой точностью и скоростью изменять контур сопла. Технический результат заключается в повышении точности установки гибких стенок сопла аэродинамической трубы, а также надежности и простоты эксплуатации сопла. 1 ил.
Основные результаты: Устройство для управления гибкими стенками сопла аэродинамической трубы, содержащее ЭВМ, контроллер управления приводами ведомых рядов гибких стенок сопла, приводы управления гибкими стенками сопла, датчики обратной связи, а также командное устройство, отличающееся тем, что командное устройство содержит цифровой блок определения конечного положения ведущего ряда гибких стенок сопла в функции заданного числа М, вход которого подключен к ЭВМ, а выход подключен к входу цифрового блока задания интенсивности движения ведущего ряда, определяющему заданное значение ординаты ведущего ряда на каждый такт управления, выход блока задания интенсивности подключен к входу цифрового блока задания ординат всех ведомых рядов в функции заданной ординаты ведущего ряда, а выход последнего подключен к контроллеру управления приводами ведомых рядов гибких стенок сопла.

Изобретение относится к области аэродинамики, в частности к автоматическим системам управления воздушным потоком в аэродинамических трубах.

При применении регулируемых сопл значительную трудность представляет высокая точность задания их контуров при испытаниях в потоке для получения заданных чисел Маха (М) и требуемой равномерности рабочего потока. В случае, когда контур задается с помощью нескольких приводных рядов управления подвижными гибкими стенками сопла, установка его требуемого профиля в функции числа М становится особенно сложной и при рассогласовании ординат приводных рядов ведет к срыву эксперимента, и, как следствие, к дополнительным временным и энергетическим затратам, удорожая эксперимент.

Известно устройство автоматического регулирования контура сопла с аналоговым командным устройством управления (Авторское свидетельство СССР №280944, МПК G01М 9/00, 1969). Устройство содержит гидроцилиндры, связанные с выходами электрогидравлических преобразователей, управляющие обмотки которых подключены к соответствующим сельсинам-приемникам, соединенным через дифференциальные сельсины с сельсинами-датчиками, кинематически связанными с кулачками узла задания.

Однако это устройство имеет ручной ввод поправки контура сопла при его доводке, осуществляемый путем поворота статоров сельсинов-датчиков, что усложняет наладку сопла и снижает его точность.

За прототип принято устройство управления гибкими стенками сопла аэродинамической трубы, содержащее гидроцилиндры, соединенные с гибкими стенками сопла и сельсинами-приемниками, выполняющие функцию силового механизма-изменения контура сопла, и кулачковый механизм с сельсинами-датчиками и блоком коррекции, выполняющий функцию командного устройства задания контура сопла (Авторское свидетельство СССР №587448, МПК G01М 9/00, 1978).

Однако это устройство имеет ряд недостатков, влияющих на качество контура сопла: неравномерный износ кулачкового механизма аналогового командного устройства, сравнительно невысокая точность следящей системы, необходимость ввода дополнительного блока коррекции контура гибких стенок сопла создает значительные трудности в подготовке эксперимента, снижает надежность эксплуатации сопла и точность установки гибких стенок.

Задачей и техническим результатом изобретения является создание устройства для управления гибкими стенками сопла аэродинамической трубы, позволяющего увеличить точность установки гибких стенок сопла в функции числа М без последующей коррекции, а также обеспечить надежность и простоту эксплуатации сопла.

Решение поставленной задачи и технический результат достигаются тем, что в устройстве для управления гибкими стенками сопла аэродинамической трубы, содержащем ЭВМ, контроллер управления приводами рядов гибких стенок сопла, приводы управления гибкими стенками сопла, датчики обратной связи, а также командное устройство, командное устройство выполнено в виде последовательно включенных цифрового блока определения конечного положения ведущего ряда в функции заданного числа М, цифрового блока задания интенсивности движения ведущего ряда, определяющему заданное значение ординаты ведущего ряда на каждый такт управления и цифрового блока задания ординат ведомых рядов в функции заданной ординаты ведущего ряда.

Вход цифрового блока определения конечного положения ведущего ряда гибких стенок сопла в функции заданного числа М подключен к ЭВМ, а выход подключен к входу цифрового блока задания интенсивности движения ведущего ряда, определяющему заданное значение ординаты ведущего ряда на каждый такт управления, выход блока задания интенсивности подключен к входу цифрового блока задания ординат всех ведомых рядов в функции заданной ординаты ведущего ряда, а выход последнего подключен к контроллеру управления приводами ведомых рядов гибких стенок сопла.

На фиг.1 приведена структурная схема системы автоматического управления регулируемым соплом для одного приводного ряда гибких стенок сопла.. Другие приводные ряды управляются по аналогичной схеме.

Регулируемое сопло 1 имеет две гибкие стенки 2 и 3. Изменение профиля сопла осуществляют с помощью механических силовых редукторов 4, по 4 единицы на каждый приводной ряд гибких стенок сопла. Редукторы 4 объединены одним валом с электродвигателем 5. Управление электродвигателем осуществляет контроллер 7 управления приводом ряда гибких стенок сопла через тиристорный преобразователь 6. Контроль текущего положения ряда стенки сопла осуществляет цифровой датчик положения 9. Общее задание на изменение контура сопла выдает управляющая ЭВМ 10 на командное цифровое устройство управления приводом сопла 13, состоящее из последовательно включенных цифрового блока 12 определения конечного положения ведущего ряда в функции заданного числа М, цифрового блока 11 задания интенсивности движения ведущего ряда, определяющему заданное значение ординаты ведущего ряда на каждый такт управления и цифрового блока 8 задания ординат ведомых рядов в функции заданной ординаты ведущего ряда.

Задание от управляющей ЭВМ 10 поступает в виде заданного на эксперимент числа М3 в блок 12 определения конечного положения ведущего ряда, который преобразует его в конечную ординату ряда в функции числа М Н(М3). В качестве ведущего выбирают ряд, определяющий эффективную площадь критического сечения сопла (ряд 1). Значение конечной ординаты ряда Hi к поступает в блок 11 задания интенсивности движения ведущего ряда, который с темпом Ткв выдает порцию (квант) задания Н1кв на изменение ординаты ведущего ряда в блок 8 задания ординат ведомых рядов. Блок 8 рассчитывает задание на изменение ординаты ведомого ряда в функции задания ведущему Н1кв1кв), где i=2,3,…,n, a n - число ведомых рядов, с заданной точностью. Это задание в цифровом виде поступает в соответствующий контроллер 7 управления приводами ведомых рядов гибких стенок сопла. Контроллер 7 управления приводами ведомых рядов гибких стенок сопла сравнивает заданную ординату Нiкв с текущей измеренной, полученной от цифрового датчика 9, и, в случае их рассогласования, регулятор положения контроллера 7 управления приводами ведомых рядов гибких стенок сопла вырабатывает сигнал управления электроприводом ряда Ui, принимаемый тиристорным преобразователем 6. Тиристорный преобразователь 6 формирует и подает на ротор двигателя 5 сигналы управления двигателем, который вращаясь с заданной скоростью перемещает ряды стенок сопла 2 и 3 через силовые редукторы 4.

Управление ведут синхронно по всем приводным рядам до тех пор, пока значения их ординат не достигнут заданных конечных с заданной точностью.

Результаты использования устройства подтверждены математическим моделированием.

Устройство для управления гибкими стенками сопла аэродинамической трубы, содержащее ЭВМ, контроллер управления приводами ведомых рядов гибких стенок сопла, приводы управления гибкими стенками сопла, датчики обратной связи, а также командное устройство, отличающееся тем, что командное устройство содержит цифровой блок определения конечного положения ведущего ряда гибких стенок сопла в функции заданного числа М, вход которого подключен к ЭВМ, а выход подключен к входу цифрового блока задания интенсивности движения ведущего ряда, определяющему заданное значение ординаты ведущего ряда на каждый такт управления, выход блока задания интенсивности подключен к входу цифрового блока задания ординат всех ведомых рядов в функции заданной ординаты ведущего ряда, а выход последнего подключен к контроллеру управления приводами ведомых рядов гибких стенок сопла.
УСТРОЙСТВО ДЛЯ УПРАВЛЕНИЯ ГИБКИМИ СТЕНКАМИ СОПЛА АЭРОДИНАМИЧЕСКОЙ ТРУБЫ
Источник поступления информации: Роспатент

Showing 171-180 of 257 items.
20.02.2019
№219.016.c077

Способ контроля характеристик конструкции из композиционного материала

Изобретение относится к измерительной технике. Сущность: после изготовления летательного аппарата перед эксплуатацией в конструкции из композиционного материала в контрольном сечении с тензорезисторами выбирают участок площади диаметром 250-300 мм, нагревают его 3-4 раза без перепадов...
Тип: Изобретение
Номер охранного документа: 0002309392
Дата охранного документа: 27.10.2007
20.02.2019
№219.016.c162

Способ газификации углеводородов для получения электроэнергии и углеродных наноматериалов

Изобретение относится к экологически безопасным технологиям добычи углеводородов и раздельного использования продуктов их подземной газификации, в частности водорода для получения электроэнергии, а углерода для углеродных наноматериалов. Техническим результатом являются повышение эффективности...
Тип: Изобретение
Номер охранного документа: 0002415262
Дата охранного документа: 27.03.2011
20.02.2019
№219.016.c1b8

Способ газификации углеводородов для получения водорода и синтез-газа

Изобретение относится к экологически безопасным технологиям разработки месторождений и добычи углеводородов, в частности трудноизвлекаемых и нерентабельных залежей угля, сланцев, нефти и газового конденсата. Техническим результатом является повышение эффективности проведения подземной...
Тип: Изобретение
Номер охранного документа: 0002423608
Дата охранного документа: 10.07.2011
20.02.2019
№219.016.c228

Способ стабилизации процесса горения топлива в камере сгорания и камера сгорания прямоточного воздушно-реактивного двигателя летательного аппарата

Способ стабилизации процесса горения в камере сгорания прямоточного воздушно-реактивного двигателя, работающей на жидком углеводородном топливе, основан на создании вихревых зон с помощью стабилизаторов пламени в виде плохо обтекаемых тел. В вихревую зону за стабилизаторного пространства...
Тип: Изобретение
Номер охранного документа: 0002454607
Дата охранного документа: 27.06.2012
20.02.2019
№219.016.c230

Универсальная упругоподобная аэродинамическая модель и способ ее изготовления

Изобретения относятся к области экспериментальной аэродинамики, в частности исследований проблем аэроупругости летательных аппаратов. Модель содержит силовой сердечник и одну съемную крышку, сердечник выполнен в виде части профиля, включающей всю верхнюю поверхность, например, крыла, а также...
Тип: Изобретение
Номер охранного документа: 0002454646
Дата охранного документа: 27.06.2012
08.03.2019
№219.016.d34f

Устройство измерения шарнирного момента отклоняемой поверхности

Изобретение относится к области аэромеханических измерений и может быть использовано для измерения шарнирных моментов, действующих на органы управления и взлетно-посадочную механизацию аэродинамических моделей летательных аппаратов в потоке аэродинамической трубы. Устройство содержит механизм...
Тип: Изобретение
Номер охранного документа: 0002681251
Дата охранного документа: 05.03.2019
08.03.2019
№219.016.d51c

Способ определения характеристик штопора модели летательного аппарата и устройство для его осуществления

Изобретения относятся к экспериментальной аэродинамике, в частности к определению характеристик штопора геометрически и динамически подобной свободно летающей модели летательного аппарата (ЛА) в воздушном потоке вертикальной аэродинамической трубы. Способ заключается в запуске в поток...
Тип: Изобретение
Номер охранного документа: 0002410659
Дата охранного документа: 27.01.2011
11.03.2019
№219.016.d862

Рабочая часть трансзвуковой аэродинамической трубы (варианты)

Изобретение относится к области экспериментальной аэродинамики и может быть использовано при проведении испытаний в трансзвуковых аэродинамических трубах. В рабочей части трансзвуковой аэродинамической трубы, содержащей перфорированные стенки, камеру давления и узел подвески в потоке...
Тип: Изобретение
Номер охранного документа: 0002393449
Дата охранного документа: 27.06.2010
20.03.2019
№219.016.e423

Устройство для получения твердофазных наноструктурированных материалов

Изобретение относится к нанотехнологиям и может быть использовано при получении углеродных нанотрубок. В парогазогенераторе 4 готовят многофазную смесь исходного вещества и направляют ее под давлением в газодинамический резонатор 9, где смесь детонирует. Продукты детонационного горения через...
Тип: Изобретение
Номер охранного документа: 0002299849
Дата охранного документа: 27.05.2007
20.03.2019
№219.016.e50a

Способы получения нанодисперсного углерода (варианты) и устройство для их реализации

Изобретение относится к нанотехнологиям и может быть использовано при получении твердофазных наноструктурированных материалов, в частности ультрадисперсных алмазов, фуллеренов и углеродных нанотрубок. Готовят смесь с отрицательным кислородным балансом, состоящую из углеродсодержащего вещества и...
Тип: Изобретение
Номер охранного документа: 0002344074
Дата охранного документа: 20.01.2009
Showing 141-141 of 141 items.
07.06.2020
№220.018.24f4

Способ управления положением модели в аэродинамической трубе

Изобретение относится к области экспериментальной аэродинамики, в частности к автоматическим системам управления положением модели в аэродинамических трубах. Способ включает размещение модели на державке с возможностью изменения положения модели в набегающем потоке в одной плоскости по заданной...
Тип: Изобретение
Номер охранного документа: 0002722854
Дата охранного документа: 04.06.2020
+ добавить свой РИД