×
10.02.2014
216.012.9df1

Результат интеллектуальной деятельности: СПОСОБ РЕГУЛИРОВАНИЯ УРОВНЯ РАСПЛАВА КРИСТАЛЛИЗАТОРА НЕПРЕРЫВНОГО ЛИТЬЯ

Вид РИД

Изобретение

№ охранного документа
0002506141
Дата охранного документа
10.02.2014
Аннотация: Изобретение относится к области непрерывной разливки металлов. Подвод жидкого металла (3) в кристаллизатор (1) непрерывного литья регулируют с помощью закрывающего устройства (4). Частично затвердевшую металлическую заготовку (7) вытягивают из кристаллизатора (1) непрерывного литья с помощью вытягивающего устройства (8). Измеренное фактическое значение (hG) уровня (9) расплава в кристаллизаторе подают в регулятор уровня расплава, который на основании фактического значения (hG) и соответствующего заданного значения (hG*) определяет заданное положение (р*) для закрывающего устройства (4). С помощью компенсатора помеховых величин определяют значение (z) компенсации помеховых величин. В закрывающее устройство (4) подают исправленное заданное положение. Компенсатор номеховых величин содержит модель кристаллизатора (1) непрерывного литья, с помощью которой компенсатор на основании входного значения (i) модели определяет ожидаемое значение (hE) уровня (9) расплава. Технический результат - повышение точности регулирования уровня расплава в кристаллизаторе, обеспечивающее повышение качества затвердевшей металлической заготовки. 4 н. и 9 з.п. ф-лы, 6 ил.

Изобретение относится к способу регулирования уровня расплава кристаллизатора непрерывного литья, в котором

- подвод жидкого металла в кристаллизатор непрерывного литья регулируют с помощью закрывающего устройства, и частично затвердевшую металлическую заготовку вытягивают из кристаллизатора непрерывного литья с помощью вытягивающего устройства,

- измеренное фактическое значение уровня расплава подают в регулятор уровня расплава, который на основании фактического значения и соответствующего заданного значения определяет заданное положение для закрывающего устройства,

- измеренное фактическое значение уровня расплава подают в компенсатор помеховых величин,

- в компенсатор помеховых величин подают дополнительно заданное положение закрывающего устройства, исправленное на значение компенсации помеховых величин заданное положение для закрывающего устройства, фактическое положение закрывающего устройства или исправленное на значение компенсации помеховых величин фактическое положение закрывающего устройства,

- компенсатор помеховых величин определяет на основании введенных в него значений значение компенсации помеховых величин,

- в закрывающее устройство подают исправленное на значение компенсации помеховых величин заданное положение,

- компенсатор помеховых величин содержит модель кристаллизатора непрерывного литья, с помощью которой компенсатор помеховых величин на основании входного значения модели определяет ожидаемое значение уровня расплава,

- компенсатор помеховых величин содержит несколько компенсаторов колебаний, с помощью которых компенсатор помеховых величин на основании разницы фактического значения и ожидаемого значения определяет долю частотной помехи относительно соответствующей помеховой частоты,

- сумма долей частотных помех соответствует значению компенсации помеховых величин.

Такой способ регулирования известен, например, из US 5921313 А. В известном способе регулирования имеется лишь один единственный компенсатор колебаний. В этом случае сумма долей частотных помех идентична с одной единственной определяемой долей частотных помех.

Кроме того, данное изобретение относится к компьютерной программе, которая содержит машинный код, который предназначен для непосредственного выполнения управляющим устройством для установки непрерывного литья и выполнение которого управляющим устройством приводит к тому, что управляющее устройство регулирует уровня расплава кристаллизатора непрерывного литья в соответствии с указанным способом регулирования.

Кроме того, данное изобретение относится к управляющему устройству для установки непрерывного литья, которое выполнено так, что оно во время работы выполняет указанный способ регулирования.

Наконец, данное изобретение относится к установке непрерывного литья, управление которой осуществляется с помощью указанного управляющего устройства.

При непрерывном литье отливаемую заготовку вытягивают из кристаллизатора непрерывного литья, в то время как сердечник заготовки еще жидкий. После выхода заготовки из кристаллизатора непрерывного литья, заготовку для опоры оболочки от металлостатического давления сердечника направляют по роликовым парам и поддерживают. Опора предотвращает, среди прочего, распучивание заготовки на широкой стороне заготовки. Расстояние между роликами, на которые опирается в одном и том же месте на обеих сторонах заготовка, должно соответствовать желаемой толщине заготовки.

Отлитую заготовку после выхода из кристаллизатора непрерывного литья активно и/или пассивно охлаждают. На основании охлаждения уменьшается толщина заготовки. Поэтому расстояние между роликами, которые поддерживают отлитую заготовку в одном и том же месте с обеих сторон, должно иметь правильное значение. До точки сквозного затвердевания, называемой также нижним концом жидкой фазы в заготовке, отлитая заготовка не полностью затвердела. Таким образом, еще имеется жидкий сердечник. Поэтому неравномерное воздействие на заготовку при прохождении через роликовые пары сказывается на уровне расплава. Однако, колебания уровня расплава по различным причинам, например, из-за опасности втягивания порошкообразного флюса в поверхность заготовки, следует по возможности предотвращать.

За счет возникающих в кристаллизаторе непрерывного литья колебаний толщины оболочки может возникать при прохождении роликовых пар так называемое не стационарное вспучивание. Причиной вспучивания является прохождение места с искаженной толщиной оболочки последовательно через различные роликовые пары и циклические изменения вследствие этого уровня расплава. Поскольку роликовые пары, при рассматривании в направлении транспортировки заготовки, как правило, имеют постоянное расстояние друг от друга, и скорость вытягивания, с которой заготовку вытягивают из кристаллизатора непрерывного литья, является постоянной, то не стационарное вспучивание приводит к периодическим изменениям уровня расплава. Таким образом, в уровне расплава образуются колебания постоянной частоты.

Известный из US 5921313 А способ регулирования служит цели устранения таких колебаний уровня расплава. Известный способ регулирования уже работает достаточно хорошо. В частности, можно регулировать уровень расплава с точностью до нескольких миллиметров.

Из статьи ”Suppression of Periodic Disturbances in Continuous Casting using Internal Model Predictor” (Подавление периодических помех при непрерывном литье с использованием внутренней модели предсказания), C. Furtmueller and E. Gruenbacher, IEEE International Conference on Control Application, Мюнхен, Германия, 4-6 октября 2006, стр.1764-1769, известен способ регулирования уровня расплава кристаллизатора непрерывного литья, в котором подачу жидкого металла в кристаллизатор непрерывного литья регулируют с помощью закрывающего устройства, и частично затвердевшую металлическую заготовку вытягивают из кристаллизатора непрерывного литья с помощью вытягивающего устройства. Измеренное фактическое значение уровня расплава подают в регулятор уровня расплава, который на основании фактического значения и соответствующего заданного значения определяет заданное положение для закрывающего устройства. Токи электродвигателей приводов вытягивающего устройства подвергают частотному анализу. На основании доли основной частоты и ее гармонических частот определяют значение компенсации помеховых величин, которое накладывается на выходной сигнал регулятора уровня расплава. Управление закрывающим устройством осуществляется в соответствии с исправленным так выходным сигналом регулятора уровня расплава.

Задачей данного изобретения является создание возможностей достижения еще более точного регулирования.

Задача решена с помощью способа регулирования с признаками пункта 1 формулы изобретения. Предпочтительные варианты выполнения способа регулирования, согласно изобретению, являются предметом зависимых пунктов 2-9 формулы изобретения.

Согласно изобретению, предусмотрено выполнение способа регулирования указанного в начале вида тем, что

- входное значение модели определяют из соотношения

i=p'+z',

где p' является не исправленным заданным или фактическим положением закрывающего устройства, и z' является значением компенсации скачков, и

- компенсатор помеховых величин содержит определитель скачков, с помощью которого компенсатор помеховых величин определяет значение компенсации скачков посредством интеграции разницы фактического значения и ожидаемого значения.

В одном предпочтительном варианте выполнения данного изобретения предусмотрено, что

- модель кристаллизатора непрерывного литья состоит из последовательного включения интегратора модели со звеном задержки модели, каждый компенсатор колебаний состоит из последовательного включения двух интеграторов колебаний и определитель скачков состоит из интегратора скачков,

- в качестве соответствующей входной величины подают

- в интегратор модели значение m=Vi+h1e,

- в звено задержки модели значение m'=I+h2e,

- в передний интегратор колебаний соответствующего компенсатора колебаний значение s1=h3e-S2,

- в задний интегратор колебаний соответствующего компенсатора колебаний значение s2=h4e+S1 и

- в интегратор скачков значение s3=h5e,

при этом

- V является коэффициентом усиления,

- i - входным значением модели,

- e - разницей фактического значения и ожидаемого значения,

- I - выходным сигналом интегратора модели,

- S1 - выходным сигналом соответствующего переднего интегратора колебаний,

S2 - выходным сигналом соответствующего заднего интегратора колебаний,

h1 и h2 - коэффициентами согласования модели,

h3 и h4 - специфичными для соответствующего компенсатора колебаний коэффициентами согласования колебаний и

h5 - коэффициент согласования скачков.

Различные коэффициенты согласования можно определять по потребности. В испытаниях были достигнуты хорошие результаты за счет того, что коэффициенты согласования определяли так, что полюса определяемой с помощью модели кристаллизатора непрерывного литья передаточной функции отвечали следующим условиям:

- для каждой помеховой частоты получается пара комплексно-сопряженных полюсов, действительные части которых меньше нуля, а мнимые части которых равны задаваемой соответствующей помеховой частотой круговой помеховой частоте,

- получаются три реальных полюса, которые меньше нуля.

Кроме того, в одном предпочтительном варианте выполнения предусмотрено, что коэффициенты согласования определены так, что действительные части комплексно-сопряженных полюсов лежат относительно соответствующей круговой помеховой частоты между -0,3 и -0,1. В частности, необходимо стремиться к значению примерно -0,2. С такими значениями в испытаниях были достигнуты хорошие свойства демпфирования.

Предпочтительно, коэффициенты согласования определены так, что все реальные полюса меньше -2,0. В этом случае способ регулирования работает надежно и стабильно даже тогда, когда модель кристаллизатора непрерывного литья не очень точно моделирует реальные кристаллизаторы непрерывного литья.

Кроме того, особенно хорошие результаты достигаются, когда коэффициенты согласования определены так, что реальные полюса являются попарно отличными друг от друга.

Обе названные последними меры (реальные полюса меньше -2,0 и попарно отличаются друг от друга) можно, естественно, комбинировать друг с другом. Оптимальные результаты достигались, когда реальные полюса лежат при -3,0, -4,0 и -5,0, каждый раз +/-0,5.

Предпочтительно, количество компенсаторов колебаний больше единицы. За счет этого можно компенсировать больше одного колебания вспучивания.

Кроме того, предпочтительно, что в компенсатор помеховых величин подают заданное положение для закрывающего устройства или исправленное на значение компенсации помеховых величин заданное положение для закрывающего устройства, а не фактическое положение закрывающего устройства или исправленное на значение компенсации помеховых величин фактическое положение закрывающего устройства. Это приводит к лучшим результатам.

Кроме того, задача изобретения решена с помощью компьютерной программы указанного в начале вида, при этом выполнение компьютерной программы приводит к тому, что управляющее устройство регулирует уровень расплава кристаллизатора непрерывного литья в соответствии со способом регулирования, согласно изобретению. Компьютерная программа может быть записана, например, на носителе данных в читаемом машиной виде.

Кроме того, задача решена с помощью управляющего устройства для установки непрерывного литья, которое выполнено так, что оно выполняет при работе способ регулирования, согласно изобретению. Наконец, задача решена с помощью установки непрерывного литья, управление которой осуществляется с помощью управляющего устройства, согласно изобретению.

Другие преимущества и подробности следуют из приведенного ниже описания примеров выполнения со ссылками на прилагаемые чертежи, на которых схематично изображено:

фиг.1 - установка непрерывного литья;

фиг.2 - блок-схема системы регулирования;

фиг.3 - внутренняя структура компенсатора помеховых величин;

фиг.4 - возможное выполнение компенсатора помеховых величин, согласно фиг.3;

фиг.5 - ход изменения во времени фактического значения уровня расплава и положения закрывания при применении способа регулирования, согласно изобретению; и

фиг.6 - соответствующее величины при применении способа регулирования, согласно уровню техники.

Как показано на фиг.1, установка непрерывного литья имеет кристаллизатор 1 непрерывного литья. В кристаллизатор 1 непрерывного литья наливают через погружную трубу 2 жидкий металл 3, например, сталь или алюминий. Подачу жидкого металла 3 в кристаллизатор 1 непрерывного литья регулируют с помощью закрывающего устройства 4. На фиг.1 показано выполнение закрывающего устройства 4 в виде закрывающей пробки. В этом случае положение закрывающего устройства 4 соответствует положению хода закрывающей пробки. В качестве альтернативного решения, закрывающее устройство 4 может быть выполнено в виде заслонки. В этом случае положение закрывания соответствует положению заслонки.

Находящийся в кристаллизаторе жидкий металл 3 охлаждается с помощью охлаждающих устройств, так что образуется оболочка 5 заготовки. Однако сердечник 6 металлической заготовки 7 еще жидкий. Он затвердевает лишь позже. Охлаждающие устройства на фиг.1 не изображены. Частично затвердевшая металлическая заготовка 7 (затвердевшая оболочка 5 заготовки, жидкий сердечник 6) вытягивают из кристаллизатора 1 непрерывного литья с помощью вытягивающего устройства 8.

Уровень 9 расплава жидкого металла 3 в кристаллизаторе 1 непрерывного литья необходимо удерживать возможно более постоянным. Скорость v вытягивания, с которой частично затвердевшая металлическая заготовка 7 вытягивается из кристаллизатора 1 непрерывного литья, как правило, постоянна. Поэтому, как в уровне техники, так и в данном изобретении, регулируют положение закрывающего устройства 4, с целью установки подачи жидкого металла 3 в кристаллизатор 1 непрерывного литья так, что уровень 9 расплава удерживается возможно более постоянным.

С помощью соответствующего измерительного устройства 10 (само по себе известного) измеряют фактическое значение hG уровня 9 расплава. Фактическое значение уровня hG расплава подают в управляющее устройство 11 для установки непрерывного литья. Управляющее устройство 11 определяет в соответствии со способом регулирования, подробное пояснение которого будет приведено ниже, заданное положение p*, которое должно принимать закрывающее устройство 4. Затем управляющее устройство 11 выполняет соответствующее управление закрывающим устройством 4. Как правило, управляющее устройство 11 выдает соответствующий управляющий сигнал в перестановочное устройство 12 для закрывающего устройства 4. Перестановочное устройство 12 может быть, например, блоком гидравлического цилиндра.

Кроме того, с помощью соответствующего измерительного устройства 13 (само по себе известного) измеряют фактическое положение р закрывающего устройства 4 и подают в управляющее устройство 11. Обычно, за этим следует регулирование (closed loop control) положения закрывания. В качестве альтернативного решения, возможно также чистое управление (open loop control).

Управляющее устройство 11 выполнено так, что оно при работе выполняет способ регулирования, согласно изобретению. Как правило, принцип действия управляющего устройства 11 определяется компьютерной программой 14, с помощью которой программируется управляющее устройство 11. Для этой цели компьютерная программа 14 записана внутри управляющего устройства 11 на носителе 15 данных, например, флэш-ППЗУ. Запись осуществляется, естественно, в читаемом машиной виде.

Компьютерную программу 14 можно вводить в управляющее устройство 11 с помощью мобильного носителя 16 данных, например, карты памяти USB (изображена) или карты памяти SD (не изображена). На мобильном носителе 16 данных компьютерная программа 14 записана, естественно, в читаемом машиной виде. В качестве альтернативного решения, компьютерную программу 14 можно вводить в управляющее устройство через соединение с вычислительной сетью или с помощью устройства программирования.

Компьютерная программа 14 содержит машинный код 17, который предназначен для непосредственного выполнения управляющим устройством 11. Выполнение машинного кода 17 управляющим устройством приводит к тому, что управляющее устройство 11 регулирует уровень 9 расплава кристаллизатора 1 непрерывного литья в соответствии со способом регулирования, согласно изобретению. Ниже приводится более подробное пояснение этого способа регулирования со ссылками на фиг.2 и 3.

На фиг.2 показан выполняемый управляющим устройством 11 способ регулирования. Работа системы регулирования, согласно фиг.2, обеспечивает выполнение способа регулирования, согласно изобретению, уровня 9 расплава кристаллизатора 1 непрерывного литья.

Как показано на фиг.2, система регулирования имеет регулятор 18 уровня расплава. Регулятор 18 уровня расплава определяет на основании заданного значения hG* уровня 9 расплава и с помощью измеренного с помощью измерительного устройства 10 фактического значения hG уровня 9 расплава в соответствии с характеристикой регулирования заданное положение p* для закрывающего устройства 4. Характеристика регулирования регулятора 18 уровня расплава является, как показано на фиг.2, пропорционально-интегральной. Однако в качестве альтернативного решения возможны другие характеристики регулирования, например, PID, PT1, PT2 и т.д.

Заданное положение p* для закрывающего устройства 4 подается в закрывающее устройство 4. Однако перед этим заданное положение p* подвергается исправлению на значение z компенсации помеховых величин.

Как указывалось выше, установка закрывающего устройства 4 происходит обычно с регулированием. В этом случае, который показан на фиг.2, в регулятор 19 положения подают исправленное заданное положение, т.е. значение

p*-z,

в который также подают дополнительно фактическое положение p закрывающего устройства 4. Регулятор 19 положения может быть выполнен, например, в виде Р-регулятора.

Фактическое положение p закрывающего устройства 4 воздействует на основании устанавливаемого с его помощью притока жидкого металла 3 на действительный уровень 9 расплава. Фактическое значение hG уровня 9 расплава измеряют и, как указывалось выше, подают в регулятор 18 уровня расплава.

На кристаллизатор 1 непрерывного литья могут воздействовать помеховые величины, которые могут оказывать влияние на уровень 9 расплава. Для компенсации помеховых величин предусмотрен компенсатор 20 помеховых величин. В компенсатор 20 помеховых величин подают измеренное значение hG уровня 9 расплава, а также другие величины.

Как показано на фиг.2, в компенсатор 20 помеховых величин подают в качестве дополнительной величины исправленное на значение z компенсации помеховых величин заданное положение p* закрывающего устройства 4. В качестве альтернативного решения, в компенсатор 20 помеховых величин можно подавать не исправленное заданное положение p*. Это альтернативное решение показано на фиг.2. Его равноценность реализованному решению очевидна, поскольку значение z компенсации помеховых величин компенсатор 20 помеховых величин определяет, как показано на фиг.2, на основе подаваемых в него значений. Поэтому исправленное значение положения, т.е. значение p* - z можно просто определять также внутри компенсатора 20 помеховых величин.

Определение значения z компенсации помеховых величин с применением (среди прочего) исправленного или не исправленного заданного положения p* - z соответственно, p* закрывающего устройства 4 является предпочтительным в рамках данного изобретения. В качестве альтернативного решения, можно подавать в компенсатор 20 помеховых величин фактическое положение p или исправленное на значение z компенсации помеховых величин фактическое положение p - z закрывающего устройства 4. Эта альтернатива также показана на фиг.2 штриховыми линиями.

Ниже приводится более подробное пояснение выполнения и принципа действия компенсатора 20 помеховых величин со ссылками на фиг.3.

Как показано на фиг.3, компенсатор 20 помеховых величин содержит, среди прочего, модель 21 кристаллизатора 1 непрерывного литья. С помощью модели 21 компенсатор 20 помеховых величин определяет ожидаемое значение hE уровня 9 расплава. Для этой цели в модель 21 подают входное значение i модели, которое определяется соотношением

i=p'+z',

где p' является не исправленным заданным положением p* закрывающего устройства 4, т.е. выходным сигналом регулятора 18 уровня расплава. Если в компенсатор 20 помеховых величин подавать вместо заданного положения p* фактическое положение p закрывающего устройства 4, то в указанном выше соотношении необходимо применять вместо значения p* значение p. z' является значением компенсации скачков.

Значение z' компенсации скачков определяет компенсатор 20 помеховых величин с помощью определителя 22 скачков, который также является составной частью компенсатора 20 помеховых величин. Определение значения z' компенсации скачков происходит, как показано на фиг.3, на основе разницы е фактического значения hG и ожидаемого значения hE уровня 9 расплава, называемой в последующем применительно к фиг.3 лишь коротко разницей е.

Как показано на фиг.3, компенсатор 20 помеховых величин содержит дополнительно несколько компенсаторов 23 колебаний. С помощью компенсаторов 23 колебаний, компенсатор 20 помеховых величин определяет относительно соответствующей помеховой частоты fS долю zS помех, называемую в дальнейшем долей zS частотных помех. Определение осуществляется на основе разницы е.

Количество компенсаторов 23 колебаний составляет минимально единицу. В этом случае компенсируется лишь одна единственная доля zS частотных помех. В качестве альтернативного решения, количество компенсаторов 23 колебаний может быть больше единицы. В этом случае каждый компенсатор 23 колебаний определяет на собственной помеховой частоте fS соответствующую долю zS частотных помех. На фиг.3 показаны два компенсатора 23 колебаний. Однако возможно также выполнение с тремя, четырьмя, пятью и т.д. компенсаторами 23 колебаний.

Выходные сигналы zS компенсаторов 23 колебаний суммируются в узловой точке 24, в результате чего получают значение z компенсации помеховых величин. В случае лишь одного единственного компенсатора 23 колебаний суммирование, естественно, не требуется, поскольку в этом случае сумма идентична единственному слагаемому.

В одном предпочтительном варианте выполнения компенсатора 20 помеховых величин, показанном на фиг.4, модель 21 кристаллизатора 1 непрерывного литья состоит из интегратора 25 и звена 26 задержки, которые включены, как показано на фиг.4, последовательно. Поскольку интегратор 25 и звено 26 задержки являются составляющими частями модели 21 кристаллизатора 1 непрерывного литья, то они называются в последующем с добавлением слова «модели». Таким образом, они называются интегратор 25 модели и звено 26 задержки модели. Однако добавка «модели» служит лишь для обозначения их принадлежности. Другого значения добавка «модели» не имеет.

Интегратор 25 модели имеет постоянную времени интегрирования Т1, звено 26 задержки модели имеет постоянную времени задержки Т2. Постоянные Т1, Т2 времени заданы так, что они возможно более реалистично отражают реальный кристаллизатор 1 непрерывного литья.

В интегратор 25 модели в качестве входного сигнала m подают значение

m=V·i+h1·e,

где V является коэффициентом усиления, i - уже упомянутым входным значением модели, е - также уже упомянутой разницей, h1 является коэффициентом согласования.

Интегратор 25 модели выдает выходной сигнал I. Выходной сигнал I исправляется в узловой точке 27 на значение

h2·e,

а затем подается в звено 26 задержки модели в качестве его входного сигнала. h2 является другим коэффициентом согласования.

Подаваемые в узловую точку значения I, h2·e суммируются в узловой точке 27. Это обеспечивается тем, что оба входных сигнала I, h2·e узловой точки 27 не снабжаются на стороне входа узловой точки 27 отрицательным знаком.

Коэффициенты согласования h1 и h2 относятся к модели 21 кристаллизатора 1 непрерывного литья. Поэтому они называются в последующем коэффициентами h1, h2 согласования модели.

Компенсаторы 23 колебаний выполнены в принципе аналогично друг другу. Поэтому ниже приводится подробное описание лишь одного из компенсаторов 23 колебаний, а именно, верхнего на фиг.4 компенсатора 23 колебаний. Однако приведенные ниже выкладки справедливы аналогичным образом для других компенсаторов 23 колебаний.

Как показано на фиг.4, верхний компенсатор 23 колебаний состоит из двух интеграторов 28, 29, которые включены последовательно. Оба интегратора 28, 29 называются в последующем интеграторами 28, 29 колебаний, поскольку они является соответствующими составляющими частями компенсатора 23 колебаний. Добавка «колебаний» служит лишь для обозначения принадлежности обоих интеграторов 28, 29 к соответствующему компенсатору 23 колебаний. Другого значения добавка «колебаний» не имеет.

Интеграторы 28, 29 колебаний имеют постоянную времени интегрирования а. Постоянная времени интегрирования получается из соотношения

где fS является соответствующей подлежащей компенсации помеховой частотой. Помеховая частота fS должна быть известной заранее.

В передний интегратор 28 колебаний подается, как показано на фиг.4, в качестве входной величины s1 значение

s1=h3·e-S2

В задний интегратор 29 колебаний подается в качестве входной величины s2 значение

s2=h4·e+S1,

где S1 и S2 являются выходными сигналами переднего и заднего интегратора 28, 29 колебаний, h3 и h4 являются коэффициентами согласования. На основании их принадлежности к соответствующему компенсатору 23 колебаний они называются в последующем коэффициентами h3, h4 согласования колебаний.

Определитель 22 скачков состоит из одного единственного интегратора 30, называемого в последующем на основании своей принадлежности к определителю 22 скачков интегратором 30 скачков. В него подается значение s3=h5·e, где h5 является коэффициентом согласования, называемым в последующем коэффициентом согласования скачков.

Как указывалось выше, могут быть предусмотрены несколько компенсаторов 23 колебаний. В этом случае коэффициенты h3, h4 согласования колебаний отдельных компенсаторов 23 колебаний не зависят друг от друга. Кроме того, постоянные а времени интегрирования всех компенсаторов 23 колебаний отличаются друг от друга.

Для определения коэффициентов h1-h5 согласования, т.е. коэффициентов h1, h2 согласования модели, коэффициента h5 согласования скачков и для каждого компенсатора 23 колебаний обоих соответствующих коэффициентов h3, h4 согласования колебаний, сначала предпочтительно определяют передаточную функцию показанной на фиг.4 системы. Передаточная функция является дробнорациональной функцией оператора Лапласа, т.е. функцией, которая может быть представлена в виде частного числителя и знаменателя, при этом как числитель, так и знаменатель являются полиномами оператора Лапласа. Как полином числителя, так и полином знаменателя содержат в своих коэффициентах коэффициенты согласования h1-h5.

Затем для полинома знаменателя задают его желаемые нулевые точки, т.е. желаемые полюса передаточной функции. Это приводит к системе уравнений, в которой неизвестны лишь коэффициенты согласования h1-h5. Уравнения системы уравнений являются независимыми друг от друга. Их количество соответствует количеству коэффициентов h1-h5 согласования. Поэтому на основании системы уравнений можно однозначно определять коэффициенты h1-h5 согласования.

Предпочтительно, желаемые полюса задают следующим образом:

Для каждой подлежащей компенсации помеховой частоты fS задают пару комплексно-сопряженных полюсов. Мнимые доли соответствующей пары полюсов равны +/-2πfS, где, как указывалось выше, fS является подлежащей компенсации помеховой частотой. Таким образом, мнимые доли равны (по величине) соответствующей подлежащей компенсации круговой частоте ωS. Действительные части соответствующей пары полюсов меньше нуля.

Три других полюса являются предпочтительно все реальными и меньше нуля, т.е. отрицательными.

Когда постоянные T1, T2 времени модели хорошо моделируют реальный кристаллизатор 1 непрерывного литья, то действительные части комплексно-сопряженных полюсов и реальные полюса могут изменяться в широких пределах, без оказания отрицательного влияния на качество способа регулирования. Однако правильные постоянные Т1, Т2 времени модели можно часто оценивать лишь приблизительно. Тем не менее, обеспечивается хорошее качество регулирования, когда действительные части комплексно-сопряженных полюсов и реальные полюса отвечают определенным критериям.

Стабильность способа регулирования может быть достигнута, например, за счет того, что действительные части комплексно-сопряженных полюсов лежат между -0,1 и -0,3 соответствующей круговой частоты ωS. В ходе испытаний было установлено, что особенно предпочтительно, когда действительные части примерно равны -0,2 соответствующей круговой частота ωS.

Кроме того, предпочтительно, когда реальные полюса все меньше -2,0 или отличаются попарно друг от друга. Еще лучше, когда выполняются оба критерия. Особенно хорошие результаты достигались, когда один из реальных полюсов лежит при -3,0, -4,0 и -5,0 (соответственно, +/-0,5, предпочтительно +/-0,2).

На фиг.5 показан ход изменения фактического значения hG уровня 9 расплава и соответствующий ход изменения фактического положения р закрывающего устройства 4 реального кристаллизатора 1 непрерывного литья в зависимости от времени. При показанных на фиг.5 кривых уровень 9 расплава регулировали с помощью способа, согласно изобретению, при этом осуществлялась компенсация двух помеховых частот fS, и коэффициенты h1-h5 согласования были установлены на поясненные выше оптимальные значения. Можно видеть значительные изменения фактического положения р закрывающего устройства 4. Однако достигается, что уровень расплава остается очень стабильным. Колебания составляют лишь примерно +/-3 мм.

В противоположность этому, на фиг.6 показаны соответствующие кривые регулирования уровня расплава, согласно уровню техники. Очевидно, что уровень 9 расплава колеблется значительно сильней. Кратковременно, а именно, в точках 31 и 32 он даже выходит за изображенный диапазон допусков +/-10 мм.

Выше упоминалось, что подлежащие компенсации помеховые частоты fS должны быть известны заранее. Определение помеховых частот fS можно осуществлять, например, посредством оценки хода изменения фактического значения р уровня 9 расплава, показанного на фиг.6. Из него можно затем определять соответствующие помеховые частоты fS и тем самым также постоянные а времени интегрирования.

Приведенное выше описание служит исключительно для пояснения данного изобретения. В противоположность этому, объем защиты данного изобретения определяется исключительно прилагаемой формулой изобретения.


СПОСОБ РЕГУЛИРОВАНИЯ УРОВНЯ РАСПЛАВА КРИСТАЛЛИЗАТОРА НЕПРЕРЫВНОГО ЛИТЬЯ
СПОСОБ РЕГУЛИРОВАНИЯ УРОВНЯ РАСПЛАВА КРИСТАЛЛИЗАТОРА НЕПРЕРЫВНОГО ЛИТЬЯ
СПОСОБ РЕГУЛИРОВАНИЯ УРОВНЯ РАСПЛАВА КРИСТАЛЛИЗАТОРА НЕПРЕРЫВНОГО ЛИТЬЯ
СПОСОБ РЕГУЛИРОВАНИЯ УРОВНЯ РАСПЛАВА КРИСТАЛЛИЗАТОРА НЕПРЕРЫВНОГО ЛИТЬЯ
СПОСОБ РЕГУЛИРОВАНИЯ УРОВНЯ РАСПЛАВА КРИСТАЛЛИЗАТОРА НЕПРЕРЫВНОГО ЛИТЬЯ
СПОСОБ РЕГУЛИРОВАНИЯ УРОВНЯ РАСПЛАВА КРИСТАЛЛИЗАТОРА НЕПРЕРЫВНОГО ЛИТЬЯ
Источник поступления информации: Роспатент

Showing 641-650 of 1,427 items.
13.01.2017
№217.015.76f7

Монтажное устройство для измерительных зондов

Монтажное устройства (10) содержит два измерительных зонда (20) с соединительной частью (22) и измерительной частью (24) для измерения параметров машины (100) и/или вращающегося элемента (110), опорную структуру (30) зондов с одним сквозным отверстием (32) для каждого из них и с монтажными...
Тип: Изобретение
Номер охранного документа: 0002599594
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.7747

Токарный или накатно-полировальный станок

Токарный или накатно-полировальный станок, содержащий основание, предназначенное для неподвижного монтажа, в частности, на обрабатываемой детали, привод, ротационную часть, установленную на основании с возможностью вращения относительно него вокруг центральной оси с использованием привода, и...
Тип: Изобретение
Номер охранного документа: 0002599655
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.79bb

Подмодуль для модульного многоступенчатого преобразователя частоты

Изобретение относится к электротехнике, а именно к подмодулю модульного многоступенчатого преобразователя частоты с однополюсным аккумулятором энергии и с включенной параллельно аккумулятору энергии мощной полупроводниковой последовательной схемой, содержащей два последовательно включенных...
Тип: Изобретение
Номер охранного документа: 0002599261
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.79d1

Система герметизирующих корпусов с изменяемой длиной для герметизированного устройства передачи электроэнергии

Изобретение относится к электротехнике, к устройствам передачи энергии. Технический результат состоит в расширении эксплуатационных возможностей путем обеспечения использования под открытым небом. Система герметизирующих корпусов с изменяемой длиной имеет первый и второй герметизирующий корпус...
Тип: Изобретение
Номер охранного документа: 0002599383
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.7a06

Канал для охлаждения корпуса

Турбина, в частности газовая турбина, содержит внутренний корпус, предназначенный для установки по меньшей мере одной статорной лопатки турбинной ступени, и наружный корпус, расположенный вокруг внутреннего корпуса таким образом, что образуется наружный охлаждающий канал между внутренним...
Тип: Изобретение
Номер охранного документа: 0002599413
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.7bf1

Преобразователь и способ его эксплуатации для преобразования напряжений

Изобретение относится к области электротехники. Для передачи электроэнергии между системой постоянного напряжения и, по меньшей мере, n-фазной системой переменного напряжения создан преобразователь (10), содержащий n-фазный трансформатор (20) и преобразовательную схему (12) из n-го числа...
Тип: Изобретение
Номер охранного документа: 0002600125
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.7cad

Разъединительное устройство

Разъединительное устройство устройства передачи электроэнергии имеет изоляционный промежуток (2), который продолжается вдоль оси (5), пересекающей перпендикулярно первую плоскость (1) и лежащей в или параллельно второй плоскости (14). Разъединительное устройство также имеет заземляющий...
Тип: Изобретение
Номер охранного документа: 0002600724
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.7d70

Лопаточный узел со связующим ptal покрытием и термобарьерным покрытием и соответствующий способ изготовления

Лопаточный узел для газовой турбины содержит внутренний и внешний бандажи и лопатку, расположенную между ними. Лопатка содержит покрытую секцию поверхности, которая покрыта платино-алюминидным и термобарьерным покрытиями и представляет собой часть полной поверхности лопатки. Термобарьерное...
Тип: Изобретение
Номер охранного документа: 0002600837
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.7e19

Способ и устройство для управления, соответственно, регулирования транспортера текучей среды для транспортировки текучей среды внутри трубопровода для текучей среды

Способ предназначен для управления/регулирования транспортера (112) текучей среды для транспортировки текучей среды (118) внутри трубопровода (114, 116) для текучей среды. Способ содержит: получение информации (128) о заданной величине потока текучей среды внутри трубопровода для текучей среды;...
Тип: Изобретение
Номер охранного документа: 0002600835
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.7e5c

Способ эксплуатации ротационной машины

Изобретение относится к способу эксплуатации ротационной машины с установленным в подшипнике (39) ротором (14), который в какой-то момент работы подвержен действию силы тяги, действующей, главным образом, только в аксиальном направлении, а воспринимаемой и отводимой первым упорным подшипником...
Тип: Изобретение
Номер охранного документа: 0002601067
Дата охранного документа: 27.10.2016
Showing 641-650 of 943 items.
12.01.2017
№217.015.636d

Многофазный расходомер

Изобретение относится к многофазному рентгеновскому расходомеру. Расходомер содержит первое детекторное средство для измерения объемного расхода многофазной текучей среды внутри секции трубы и второе детекторное средство для определения поглощения рентгеновского или гамма-излучения текучей...
Тип: Изобретение
Номер охранного документа: 0002589354
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.638e

Устройство и способ для добычи на месте залегания (in-situ) битума или тяжелой фракции нефти

Группа изобретений относится к способу и устройству для добычи углеводородсодержащего вещества из резервуара. Способ для добычи углеводородсодержащего вещества, в частности битума или тяжелой фракции нефти, из резервуара, причем резервуар нагружается тепловой энергией для снижения вязкости...
Тип: Изобретение
Номер охранного документа: 0002589011
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.640c

Система уплотнения вала

Изобретение относится к устройству (DGSM) для уплотнения (SHS) вала турбомашины (CO), причем устройство (DGSM) для уплотнения вала с одного конца оси имеет сторону (HPS) высокого давления, а с другого конце оси - сторону низкого давления (LPS), содержащему роторную часть (RS), вращающуюся при...
Тип: Изобретение
Номер охранного документа: 0002589417
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.645e

Передатчик хода для газовой турбины

Изобретение относится к энергетике. Передатчик хода включает канал для обеспечения прохода текучей среды, исполнительный модуль для увеличения давления в гидравлической жидкости, клапанный модуль, функционирующий в зависимости от давления гидравлической жидкости, при этом клапанный модуль...
Тип: Изобретение
Номер охранного документа: 0002589413
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.6497

Вставка уплотнения вала

Изобретение касается вставки (DGSM) уплотнения для уплотнения (SHS) вала турбомашины (CO), которое распространяется в осевом направлении по оси (AX) вращения, включающей в себя роторную часть (RS), которая выполнена таким образом, что она может устанавливаться на валу (SH) распространяющегося...
Тип: Изобретение
Номер охранного документа: 0002589415
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.659a

Единица рельсового подвижного состава, имеющая внутренний бак

Изобретение относится к санитарно-техническому оборудованию транспорта. Единица рельсового подвижного состава содержит встроенный внутри бак (3), на дне (10) которого предусмотрено соединительное отверстие (7), в которое снаружи бака (3) вставляется запорное устройство (6) бака. Запорное...
Тип: Изобретение
Номер охранного документа: 0002592181
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.660b

Тормозное устройство для транспортного средства и транспортное средство, имеющее такого рода тормозное устройство

Группа изобретений относится к области железнодорожного транспорта, в частности к зажимным тормозным устройствам. Тормозное устройство имеет прижимное устройство, включающее в себя два тормозных рычага и соединительную часть. Для разведения тормозных рычагов для каждого из тормозных рычагов...
Тип: Изобретение
Номер охранного документа: 0002592469
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.67b8

Устройство и способ для определения путевых информаций

Устройство предназначено для определения путевых информаций (FI), которые относятся к отрезку пути (14), который проехал пассажир. Устройство содержит носимый пассажиром приемный блок (16) для приема сигнала, который генерируется наземным, связанным с определенным местоположением передающим...
Тип: Изобретение
Номер охранного документа: 0002591545
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.68af

Способ охлаждения турбинной ступени и газовая турбина, включающая в себя охлаждаемую турбинную ступень

Газовая турбина включает в себя охлаждаемую турбинную ступень (8), имеет эксплуатируемую с охлаждением охлаждающей средой направляющую лопатку (11) и устройство (19-24) подачи охлаждающей среды для подачи охлаждающей среды внутрь направляющей лопатки (11). Лопатка в области своей задней кромки...
Тип: Изобретение
Номер охранного документа: 0002591751
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.6944

Магнитоупругий датчик крутящего момента

Предложен магнитоупругий датчик (1) крутящего момента. Отличительной особенностью изобретения является то, что торцевые плоскости 17 приемных катушек той пары приемных катушек, соединительная линия которых проходит параллельно оси R вращения вала 3, должны лежать в той же плоскости, что и...
Тип: Изобретение
Номер охранного документа: 0002591587
Дата охранного документа: 20.07.2016
+ добавить свой РИД