×
20.01.2014
216.012.9829

Результат интеллектуальной деятельности: СПОСОБ ИССЛЕДОВАНИЯ ПРОДУКТИВНОСТИ НАКЛОННО НАПРАВЛЕННОЙ СКВАЖИНЫ, ВСКРЫВШЕЙ ПРОДУКТИВНЫЙ ПЛАСТ

Вид РИД

Изобретение

Аннотация: Группа изобретений относится к нефтегазодобывающей промышленности, а именно к бурению скважин и добыче газа. Группа изобретений может найти применение при проведении геофизических и гидродинамических исследований и позволяет оценить продуктивность газовых скважин, вскрывших продуктивный изотропный пласт под заданным зенитным углом, и оптимизировать их конструкции. Технический результат, на достижение которого направлено предлагаемое решение, заключается в повышении точности оценки продуктивности наклонно-направленных скважин, вскрывших изотропный газовый пласт, при любых зенитных углах наклона их эксплуатационной части ствола. Группа изобретений позволяет обеспечить исследования притока газа к наклонно-направленной скважине и определять на основе моделирования ее продуктивность путем замены наклонно-направленной скважины (ННС) вертикальными и горизонтальными проекциями. 3 н. и 1 з.п. ф-лы, 4 ил.

Группа изобретений относится к нефтегазодобывающей промышленности, а именно к бурению скважин и добыче газа. Группа изобретений может найти применение при проведении геофизических и гидродинамических исследований и позволяет оценить продуктивность газовых скважин, вскрывших продуктивный изотропный пласт под заданным зенитным углом, и оптимизировать их конструкции.

Из уровня техники известен способ определения дебита нефтяной скважины (патент RU №2354825 С2, Е21В 47/10, опубл. 10.05.2009). Известный способ включает отбор пробы нефти в заданном количестве, взятой в любом удобном месте из скважины. Отобранную пробу гомогенизируют до получения однородной по свойствам массы, затем определяют коэффициент вязкости этой пробы при соответствующих условиях: P=P1, T=T1, P=P2=P1, T=T2>T1 и Р=Р32, Т=Т32, где P1, Р2, Р3, T1, Т2, Т3 - значения величин давления Р и температуры Т в каждом из трех замеров вязкости данной пробы нефти. С помощью математических формул определяют параметры α, β, γ. Затем замеряют давление РL, Р0 и температуру ТL, Т0 на уровнях перфорированных отверстий и определяют параметры коэффициентов вязкости по математическим формулам. Известный способ не раскрывает, каким образом можно определить профиль ствола скважины.

Известен способ определения положения ствола направленной скважины (патент RU №2300631 С2, Е21В 47/022, опубл. 10.06.2007).

Известный способ определения положения ствола направленной скважины включает углубление скважины, циркуляцию бурового раствора, измерение гидростатического давления бурового раствора и определение зенитного угла ствола скважины. Согласно изобретению производят спуск бурильной колонны, выравнивают и измеряют среднюю плотность бурового раствора по стволу, измеряют гидростатическое давление в бурильных трубах глубинным манометром и в скважинах со значениями зенитного угла ствола скважины меньше и больше 90° определяют вертикальные и горизонтальные проекции и средние значения зенитного угла ствола скважины по заданным соотношениям. Недостаток известного способа состоит в том, что при определении зенитного угла ствола наклонно-направленной скважины не учитываются параметры «недовскрытой» части пласта, что не позволяет обеспечить достаточную точность при определении ее профиля.

Задачей предлагаемой группы изобретений является создание способа исследования притока газа к наклонно-направленной скважине с целью определения ее продуктивности, обеспечения оптимальной конструкции эксплуатационной части ствола наклонно-направленной скважины и ее профиля.

Технический результат, на достижение которого направлено предлагаемое решение, заключается в повышении точности оценки продуктивности наклонно-направленных скважин, вскрывших изотропный газовый пласт, при любых зенитных углах наклона их эксплуатационной части ствола.

Другой технический результат, на достижение которого направлена предлагаемая группа изобретений, заключается в обеспечении оптимизации конструкции наклонно-направленной скважины и ее профиля, т.е. в обеспечении выбора оптимальных значений длины, радиуса и зенитного угла наклона ствола в продуктивной части пласта.

Технический результат способа определения притока газа к наклонно-направленной скважине (ННС) достигается за счет того, что в диафрагменном измерителе критического течения газа (ДИКТ), установленном на газовой вертикальной скважине, используют диафрагму с малым диаметром калиброванного отверстия. Затем открывают коренную задвижку фонтанной елки и запускают газовую вертикальную скважину в работу до наступления установившегося состояния, при котором давление и температура газа перед ДИКТ и в затрубном пространстве не изменяются во времени. Показания приборов регистрируют на носитель информации. Закрывая коренную задвижку, газовую вертикальную скважину останавливают. Затем в ДИКТ устанавливают диафрагму с большим диаметром калибровочного отверстия и вновь выводят газовую вертикальную скважину на установившийся режим. Вновь регистрируют результаты измерений на носитель информации и останавливают газовую вертикальную скважину. Операции повторяют по числу имеющихся диафрагм с различными диаметрами. По данным промысловых исследований газовой вертикальной скважины на стационарных режимах фильтрации определяют линейный А и квадратичный В коэффициенты фильтрационных сопротивлений, пластовое Рпл и забойное Рз давления, характеристики продуктивности пласта. Проводят оценку притока газа к скважине и ее продуктивности. На основании полученных результатов исследования газовой вертикальной скважины строят модель профиля ННС, который проецируют на вертикальную и горизонтальную оси. Участок ННС, лежащий в пределах продуктивного пласта, условно делят на N равных по длине горизонтальных и вертикальных интервалов. Для заданного значения зенитного угла φ ННС определяют длину горизонтальной IГ и вертикальной IВ проекций ствола скважины как

lГ=L sin φ

и

lВ=L cos φ соответственно,

где L - длина ствола эксплуатационной части ННС. Затем определяют линейный и квадратичный коэффициенты фильтрационных сопротивлений для i-го участка вертикальной проекции ствола скважины

где i=1, 2,…N,

а, b - не зависящие от конструкции скважины множители, учитывающие влияние фильтрационно-емкостных свойств пласта и физико-химические свойства флюидов, определенные для газовой вертикальной скважины,

- эффективная толщина единичного вскрытого интервала вертикальной проекции ствола, Кпес - коэффициент песчанистости,

Rкв - радиус контура дренирования газовой вертикальной скважины,

, где Rс - радиус ствола ННС.

Определяют продуктивность каждого i-го участка вертикальной проекции скважины

а затем определяют суммарную продуктивность ННС

.

Технический результат способа определения притока газа к наклонно-направленной скважине (ННС) (по второму варианту) достигается за счет того, что в диафрагменном измерителе критического течения газа (ДИКТ), установленном на газовой вертикальной скважине, используют диафрагму с малым диаметром калиброванного отверстия, открывают коренную задвижку фонтанной елки и запускают газовую вертикальную скважину в работу до наступления установившегося состояния, при котором давление и температура газа перед ДИКТ и в затрубном пространстве не изменяются во времени. Показания приборов регистрируют на носитель информации. Закрывая коренную задвижку, газовую вертикальную скважину останавливают. В ДИКТ затем устанавливают диафрагму с большим диаметром калибровочного отверстия и вновь выводят газовую вертикальную скважину на установившийся режим. Затем регистрируют результаты измерений на носитель информации и останавливают газовую вертикальную скважину. Осуществляют повтор операций по числу имеющихся диафрагм с различными диаметрами. По данным промысловых исследований газовой вертикальной скважины на стационарных режимах фильтрации определяют линейный А и квадратичный В коэффициенты фильтрационных сопротивлений, пластовое Рпл и забойное Рз давления, характеристики продуктивности пласта. Затем проводят оценку притока газа к скважине и ее продуктивности. На основании полученных результатов исследования газовой вертикальной скважины строят модель профиля ННС, который проецируют на вертикальную и горизонтальную оси. Участок ННС, лежащий в пределах продуктивного пласта, условно делят на N равных по длине горизонтальных и вертикальных интервалов. Затем определяют для заданного значения зенитного угла φ ННС длину горизонтальной lГ и вертикальной lВ проекций ствола скважины как

lГ=L sin φ

и

lВ=L cos φ соответственно,

где L - длина ствола эксплуатационной части ННС. Определяют линейный и квадратичный коэффициенты фильтрационных сопротивлений для i-го участка горизонтальной проекции ствола скважины

где i=1, 2,…N,

j=I, II - зоны дренирования газа (иллюстрация на фиг.1);

hij - эффективная толщина на i-м участке j-й зоны дренирования;

- длина единичного вскрытого интервала (см. фиг.1).

Затем определяют продуктивность каждого интервала горизонтальной проекции ствола скважины

а затем

определяют суммарную продуктивность ННС

.

Технический результат способа определения критического зенитного угла наклонно-направленной скважины достигается за счет того, что определяют суммарную продуктивность ННС способами определения притока газа к ННС по первому и второму вариантам для различных значений зенитного угла. Затем в одной и той же системе координат строят графики нормализованной зависимости продуктивности ННС, полученной путем замены ННС вертикальными и горизонтальными проекциями ствола скважины от величины зенитного угла. В качестве критического зенитного угла ННС принимают угол, соответствующий значению зенитного угла в точке пересечения упомянутых кривых.

Величину критического зенитного угла принимают равной 50°.

Сущность заявленной группы изобретений поясняется технологическими схемами, представленными на фиг.1-4.

На фиг.1 представлена схема притока газа к стволу наклонно-направленной скважины радиусом Rс (м), длиной L (м), вскрывшей полосообразный пласт толщиной Нпл (м) с зенитным углом наклона φ (град.). Расстояние от оси скважины до ее контура дренирования равно Rкг (м). Длина горизонтальной проекции вскрытой части равна Iг (м).

На фиг.2 представлена схема притока газа к стволу наклонно-направленной скважины радиусом Rс длиной L, расположенной в продуктивной толще с зенитным углом φ, вскрывшей пласт от кровли до некоторой глубины, при плоскорадиальном притоке флюида. Радиус контура дренирования равен Rкв (м). Толщина вскрытой части пласта равна Iв (м).

На фиг.3 представлен график выполаживания относительной погрешности вычисления продуктивности наклонно-направленной скважины от числа разбиений ствола (при некотором фиксированном зенитном угле φ) на элементарные интервалы.

На фиг.4 представлен график нормализованных зависимостей функций продуктивности наклонно-направленной скважины от зенитного угла.

Предложенную группу изобретений можно реализовать следующим образом.

Бурение бокового ствола и проводка наклонно-направленной скважины (ННС) из пилотной вертикальной скважины (ВС), вскрывшей продуктивный изотропный пласт, или путем реконструкции эксплуатационной ВС требует предварительного исследования продуктивности Q (тыс. м3/сут) ВС. При этом под продуктивностью скважины понимают либо зависимость дебита от депрессии, либо объемный приток газа к стволу скважины в единицу времени. Исследование проводят с учетом заданной конструкции ННС (в предельном случае - вертикального или горизонтального ствола). Исходя из выбранной конструкции ННС, используемого на заданном месторождении бурового оборудования и инструментов, осуществляют следующий выбор: тип ствола эксплуатационной части (открытый не обсаженный, перфорированный в заданном интервале, оснащенный фильтром хвостовик), его длина L (м), внешний радиус Rс (мм) и зенитный угол φ в продуктивном пласте. Учитывая особенности конкретного месторождения и условия его разработки, проводят промысловые исследования геолого-физических параметров залежи и газогидродинамические исследования вертикальной скважины.

Исследование газовых скважин, например, методом установившихся отборов при стационарных режимах фильтрации газа могут быть проведены в следующем порядке.

На устье скважины осуществляют подготовительные операции: проводят монтаж приборов и оборудования; осуществляют продувку скважины; проводят герметизацию устья; полностью восстанавливают устьевое давление путем технологического отстоя. В диафрагменном измерителе критического течения газа (ДИКТ) устанавливают диафрагму с малым диаметром калиброванного отверстия. После этого открывают коренную задвижку фонтанной елки, пускают скважину в работу до наступления установившегося состояния, при котором давление и температура газа перед ДИКТ и в затрубном пространстве не изменяются во времени. Показания приборов регистрируют, после чего останавливают скважину, закрывая коренную задвижку. Затем в ДИКТ устанавливают диафрагму с большим диаметром калибровочного отверстия и вновь выводят скважину на установившийся режим. Результаты измерений также фиксируют, а скважину останавливают. Перечисленные операции повторяют от 6 до 10 раз в зависимости от числа имеющихся диафрагм. Выборочно осуществляют контроль замеров для убывающей последовательности диаметров калибровочного отверстия диафрагм.

По данным промысловых исследований газовой скважины на стационарных режимах фильтрации определяют линейный А (МПа2/тыс.м3/сут)) и квадратичный В (МПа2/тыс.м3/сут)2) коэффициенты фильтрационных сопротивлений, пластовое Рпл (МПа) и забойное Рз (МПа) давления, характеристики продуктивного пласта: общую Нпл (м) и эффективную Нэф (м) толщины пласта по разрезу скважины, безразмерный коэффициент песчанистости Кпес и радиус контура дренирования ВС Rкв (м). Затем проводят оценку притока газа к скважине и ее продуктивности Q, используя квадратичную зависимость стационарной фильтрации

На основе известных формул (Гриценко А.И. и др., Руководство по исследованию скважин. - М.: Наука, 1995, стр.182-183, (15.4), (16.4), (17.4)) определяют не зависящие от конструкции скважины множители а (МПа2/(тыс.м2/сут)) и b (МПа2/(тыс.м2/сут)2), учитывающие влияние фильтрационно-емкостных свойств пласта и физико-химические свойства флюидов

где C1, С3 и С2, С4 - коэффициенты несовершенства по степени и характеру вскрытия пласта ВС соответственно.

Для определения коэффициентов несовершенства по степени вскрытия (C1, С3) имеются ряд зависимостей (например, Гриценко А.И. и др., Руководство по исследованию скважин. - М: Наука, 1995, стр.183-186, (19.4), (21.4), (22.4), (24.4), (29.4)).

Влияние коэффициентов несовершенства по характеру вскрытия на приток газа (С2 и С4), как правило, не рассматривается, а считается, что ствол скважины либо открытый, либо с достаточным числом перфорационных отверстий эксплуатационной колонны в интервале эффективной толщины пласта, т.е. С24=0.

Расчетные фильтрационные коэффициенты притока газа к ВС АВС и ВВС (т.е. коэффициенты А и В в уравнении (1)) определяют с помощью тех же известных формул (Гриценко А.И. и др., Руководство по исследованию скважин. - М: Наука, 1995, стр.182-183, (16.4), (17.4)).

Расчетные фильтрационные коэффициенты притока газа к горизонтальной скважине (ГС) AГС и ВГС определяют с помощью различных методик. Например, при схематизации притока газа к ГС (см. фиг.1), вскрывшей изотропный полосообразный пласт, коэффициенты фильтрационных сопротивлений имеют следующий вид (Алиев З.С. и др., Определение производительности горизонтальных скважин, вскрывших газовые и газонефтяные пласты. М.: Недра, 1995, стр.53, (2.21)):

где Rкг - расстояние от оси горизонтальной скважины до ее контура питания, которое определяют на основе промысловых исследований и полученного значения радиуса контура дренирования ВС Rкв

Rкг≈0,8·Rкв.

При формировании модели притока газа к ННС, вскрывшей изотропную залежь, участок ННС, лежащий в пределах продуктивного пласта, условно делят на N равных по длине горизонтальных или вертикальных интервалов (см. фиг.1 и 2). Суммарная длина этих интервалов равна длине горизонтальной проекции ствола скважины: lГ=L sin φ или длине вертикальной проекции: lВ=L cos φ.

При любом значении зенитного угла φ в случае замены ННС элементарными горизонтальными участками достаточное число разбиений составляет N=50·L/Нпл. Обоснование выбора числа N иллюстрируется с помощью выполаживающейся зависимости относительной погрешности вычисления продуктивности от числа интервальных разбиений N (см. фиг.3). Для интервалов вертикальной проекции величина N не имеет принципиального значения при вскрытии изотропного пласта и может быть принята равной той же величине, что и для ГС.

Искомую продуктивность ННС определяют суммарной продуктивностью всех этих интервалов. В зависимости от положения каждого интервала, а также исходя из соблюдения равенства площади фильтрации, ему назначается гидродинамически эквивалентный радиус элемента ствола

для вертикальной проекции - ;

для горизонтальной проекции - .

Для всего интервала зенитного угла радиус (либо длина) контура дренирования описывается следующей зависимостью, полученной экспериментально:

.

На базе совершенных средств измерения и программных решений для исследования параметров газовой скважины строят модель профиля ННС и определяют производные данные от ее вертикальной и горизонтальной проекций.

Если локальный интервал ННС расположен под зенитным углом от 0° до некоторой критической величины φкр (характеристика φкр приведена ниже), то его фильтрационные коэффициенты определяют в соответствии с формулами (3). Коэффициенты C1 и С3, определяющие степень вскрытия пласта, оказывают значительное влияние на продуктивность скважины. Несовершенство по степени вертикального вскрытия ННС выражается в «недовскрытии» пласта по его геометрической толщине в зависимости от зенитного угла φ. На фиг.2б заштрихованная зона соответствует не вскрытой части пласта. Тогда формулы (3) для i-го элемента скважины преобразуются в следующий вид:

где i=1, 2,…N;

- эффективная толщина единичного вскрытого интервала.

Далее определяют продуктивность каждого i-го интервала с учетом уравнения притока (1), представленного в виде

Соответственно суммарная продуктивность ННС составит

Если локальный интервал ННС расположен под зенитным углом от некоторой критической величины φкр до 90°, то его фильтрационные коэффициенты AГС и ВГС определяют в соответствии с формулами (4). В этом случае несовершенство по степени вскрытия ННС выражается в «недовскрытии» части пласта по его длине, определяемой величиной зенитного угла φ. Это иллюстрирует заштрихованная зона на фиг.1б. С учетом сказанного, формулы (4) можно записать в следующем виде:

где i=1, 2,…N;

j=I, II - зоны дренирования газа (иллюстрация на фиг.1);

hij - эффективная толщина на i-м участке j-й зоны дренирования;

- длина единичного вскрытого интервала (см. фиг.1).

Далее продуктивность каждого интервала определяется с учетом уравнения притока газа к скважине (1)

Соответственно суммарная продуктивность ИНС

Критический угол (φкр) определяется путем сравнения нормализованных зависимостей продуктивности ННС от угла наклона (см. фиг.4). Кривая 1, как функция от φ, получена на основе моделирования продуктивности пласта путем замены ННС горизонтальными элементами. Кривая 2, как функция от φ, получена на основе моделирования продуктивности пласта путем замены ННС вертикальными элементами. Точка пересечения двух кривых служит индикатором (критическим углом) смены рассмотренных расчетных алгоритмов для корректного определения продуктивности ННС на всем интервале изменения зенитного угла от 0° до 90°, а именно: от 0° до φкр продуктивность элементарных интервалов рассчитывается по формулам (6) и (7); от φкр до 90° продуктивность элементарных интервалов рассчитывается по формулам (9) и (10). В нормализованной зависимости величина критического зенитного угла φкр изменяется в пределах от 49,3° до 50,3°, т.е. условно может считаться константой, равной 50°.

Применяя предлагаемую модель для проведения промысловых газогидродинамических исследований пилотных вертикальных скважин, можно оперативно, с достаточно высокой точностью оценить продуктивность проектируемой наклонно-направленной скважины для вскрытия изотропного газового пласта при любом зенитном угле наклона ее эксплуатационной части ствола, либо с помощью предложенного в настоящем решении исследовательского аппарата провести оптимизацию конструкции наклонно-направленной скважины и ее профиля, т.е. выбрать оптимальные значения длины, радиуса и зенитного угла наклона ствола в продуктивной части пласта.


СПОСОБ ИССЛЕДОВАНИЯ ПРОДУКТИВНОСТИ НАКЛОННО НАПРАВЛЕННОЙ СКВАЖИНЫ, ВСКРЫВШЕЙ ПРОДУКТИВНЫЙ ПЛАСТ
СПОСОБ ИССЛЕДОВАНИЯ ПРОДУКТИВНОСТИ НАКЛОННО НАПРАВЛЕННОЙ СКВАЖИНЫ, ВСКРЫВШЕЙ ПРОДУКТИВНЫЙ ПЛАСТ
СПОСОБ ИССЛЕДОВАНИЯ ПРОДУКТИВНОСТИ НАКЛОННО НАПРАВЛЕННОЙ СКВАЖИНЫ, ВСКРЫВШЕЙ ПРОДУКТИВНЫЙ ПЛАСТ
СПОСОБ ИССЛЕДОВАНИЯ ПРОДУКТИВНОСТИ НАКЛОННО НАПРАВЛЕННОЙ СКВАЖИНЫ, ВСКРЫВШЕЙ ПРОДУКТИВНЫЙ ПЛАСТ
СПОСОБ ИССЛЕДОВАНИЯ ПРОДУКТИВНОСТИ НАКЛОННО НАПРАВЛЕННОЙ СКВАЖИНЫ, ВСКРЫВШЕЙ ПРОДУКТИВНЫЙ ПЛАСТ
СПОСОБ ИССЛЕДОВАНИЯ ПРОДУКТИВНОСТИ НАКЛОННО НАПРАВЛЕННОЙ СКВАЖИНЫ, ВСКРЫВШЕЙ ПРОДУКТИВНЫЙ ПЛАСТ
СПОСОБ ИССЛЕДОВАНИЯ ПРОДУКТИВНОСТИ НАКЛОННО НАПРАВЛЕННОЙ СКВАЖИНЫ, ВСКРЫВШЕЙ ПРОДУКТИВНЫЙ ПЛАСТ
СПОСОБ ИССЛЕДОВАНИЯ ПРОДУКТИВНОСТИ НАКЛОННО НАПРАВЛЕННОЙ СКВАЖИНЫ, ВСКРЫВШЕЙ ПРОДУКТИВНЫЙ ПЛАСТ
СПОСОБ ИССЛЕДОВАНИЯ ПРОДУКТИВНОСТИ НАКЛОННО НАПРАВЛЕННОЙ СКВАЖИНЫ, ВСКРЫВШЕЙ ПРОДУКТИВНЫЙ ПЛАСТ
СПОСОБ ИССЛЕДОВАНИЯ ПРОДУКТИВНОСТИ НАКЛОННО НАПРАВЛЕННОЙ СКВАЖИНЫ, ВСКРЫВШЕЙ ПРОДУКТИВНЫЙ ПЛАСТ
СПОСОБ ИССЛЕДОВАНИЯ ПРОДУКТИВНОСТИ НАКЛОННО НАПРАВЛЕННОЙ СКВАЖИНЫ, ВСКРЫВШЕЙ ПРОДУКТИВНЫЙ ПЛАСТ
СПОСОБ ИССЛЕДОВАНИЯ ПРОДУКТИВНОСТИ НАКЛОННО НАПРАВЛЕННОЙ СКВАЖИНЫ, ВСКРЫВШЕЙ ПРОДУКТИВНЫЙ ПЛАСТ
СПОСОБ ИССЛЕДОВАНИЯ ПРОДУКТИВНОСТИ НАКЛОННО НАПРАВЛЕННОЙ СКВАЖИНЫ, ВСКРЫВШЕЙ ПРОДУКТИВНЫЙ ПЛАСТ
СПОСОБ ИССЛЕДОВАНИЯ ПРОДУКТИВНОСТИ НАКЛОННО НАПРАВЛЕННОЙ СКВАЖИНЫ, ВСКРЫВШЕЙ ПРОДУКТИВНЫЙ ПЛАСТ
СПОСОБ ИССЛЕДОВАНИЯ ПРОДУКТИВНОСТИ НАКЛОННО НАПРАВЛЕННОЙ СКВАЖИНЫ, ВСКРЫВШЕЙ ПРОДУКТИВНЫЙ ПЛАСТ
СПОСОБ ИССЛЕДОВАНИЯ ПРОДУКТИВНОСТИ НАКЛОННО НАПРАВЛЕННОЙ СКВАЖИНЫ, ВСКРЫВШЕЙ ПРОДУКТИВНЫЙ ПЛАСТ
СПОСОБ ИССЛЕДОВАНИЯ ПРОДУКТИВНОСТИ НАКЛОННО НАПРАВЛЕННОЙ СКВАЖИНЫ, ВСКРЫВШЕЙ ПРОДУКТИВНЫЙ ПЛАСТ
СПОСОБ ИССЛЕДОВАНИЯ ПРОДУКТИВНОСТИ НАКЛОННО НАПРАВЛЕННОЙ СКВАЖИНЫ, ВСКРЫВШЕЙ ПРОДУКТИВНЫЙ ПЛАСТ
СПОСОБ ИССЛЕДОВАНИЯ ПРОДУКТИВНОСТИ НАКЛОННО НАПРАВЛЕННОЙ СКВАЖИНЫ, ВСКРЫВШЕЙ ПРОДУКТИВНЫЙ ПЛАСТ
СПОСОБ ИССЛЕДОВАНИЯ ПРОДУКТИВНОСТИ НАКЛОННО НАПРАВЛЕННОЙ СКВАЖИНЫ, ВСКРЫВШЕЙ ПРОДУКТИВНЫЙ ПЛАСТ
Источник поступления информации: Роспатент

Showing 31-40 of 165 items.
20.01.2016
№216.013.a23a

Способ определения этиленгликоля в водных растворах

Изобретение относится к способам исследования материалов с использованием инфракрасной спектрометрии и может быть использовано в промышленных, экологических и научно-исследовательских лабораториях при исследовании состава и качества любых (сточной, попутной, поверхностной, питьевой) проб воды....
Тип: Изобретение
Номер охранного документа: 0002573172
Дата охранного документа: 20.01.2016
20.06.2016
№217.015.034e

Способ закрепления подводного трубопровода в проектном положении

Изобретение относится к строительству подводных переходов трубопроводов. В предлагаемом способе закрепления подводного трубопровода в проектном положении в качестве системы для закрепления трубопровода используют металлическую сетку. Предварительно на одном из концов полотна сетки формируют...
Тип: Изобретение
Номер охранного документа: 0002587730
Дата охранного документа: 20.06.2016
10.04.2016
№216.015.2e8c

Устройство для испытаний сепарационного оборудования

Изобретение относится к технике для изучения процессов добычи и подготовки газа в нефтегазовой отрасли. Технический результат изобретения заключается в повышении точности результатов проводимых газогидродинамических экспериментов и уменьшении времени их анализа, повышении наглядности проведения...
Тип: Изобретение
Номер охранного документа: 0002580546
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.30d7

Способ определения давления начала конденсации в пористой среде

Изобретение относится к газовой промышленности и предназначено для исследования газоконденсатных смесей в пористой среде, а именно для определения давления начала конденсации в пористой среде. Техническим результатом является повышение точности, а также снижение трудоёмкости измерения давления...
Тип: Изобретение
Номер охранного документа: 0002580858
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.31f3

Способ определения тяжелых металлов в техническом углероде

Использование: для определения содержания тяжелых металлов в техническом углероде. Сущность изобретения заключается в том, что выполняют градуировку прибора рентгенофлуоресцентной спектрометрии для каждого элемента, регистрируют интенсивность аналитической линии элемента на соответствующей ему...
Тип: Изобретение
Номер охранного документа: 0002580334
Дата охранного документа: 10.04.2016
27.04.2016
№216.015.3a26

Способ захоронения co (варианты)

Группа изобретений предназначена для использования в области подземного хранения CO и других вредных газов, а также защиты окружающей среды. Технический результат - повышение надежности хранилища и снижение затрат на его создание. В первом варианте реализации способа для закачки CO выбирают...
Тип: Изобретение
Номер охранного документа: 0002583029
Дата охранного документа: 27.04.2016
10.05.2016
№216.015.3b58

Установка для исследования и способ исследования влияния пористых сред на фазовое поведение жидких и газообразных флюидов

Группа изобретений относится к термодинамике и может использоваться для проведения калориметрических измерений. Установка для исследования влияния пористых сред на фазовое поведение жидких и газообразных флюидов содержит две калориметрические ячейки, каждая из которых окружена двумя...
Тип: Изобретение
Номер охранного документа: 0002583061
Дата охранного документа: 10.05.2016
10.06.2016
№216.015.446a

Абсорбент для очистки газов от сероводорода и диоксида углерода

Изобретение относится к области очистки газов от сероводорода и/или диоксида углерода и может быть использовано в газовой, нефтяной и нефтеперерабатывающей отраслях промышленности. Абсорбент для очистки газа от HS и СО содержит метилдиэтаноламин, аминоэтилпиперазин, метиловый или этиловый эфир...
Тип: Изобретение
Номер охранного документа: 0002586159
Дата охранного документа: 10.06.2016
10.06.2016
№216.015.453e

Экспресс-способ определения текущего содержания углеводородов c в пластовом газе газоконденсатной скважины

Изобретение относится к области исследований газоконденсатных эксплуатационных скважин и может быть использовано при определении содержания углеводородов (далее - УВ) С в пластовом газе непосредственно при проведении исследовательских работ газоконденсатных эксплуатационных скважин. Предложен...
Тип: Изобретение
Номер охранного документа: 0002586940
Дата охранного документа: 10.06.2016
10.06.2016
№216.015.46e5

Способ биологической очистки сточных вод и устройство для его осуществления

Группа изобретений может быть использована для биологической очистки хозяйственно-бытовых и промышленных сточных вод. Для осуществления способа не менее 70% активного ила подвергают обработке пероксидом водорода в течение 2 часов в непрерывном режиме с внесением пероксида водорода в количестве...
Тип: Изобретение
Номер охранного документа: 0002586155
Дата охранного документа: 10.06.2016
Showing 31-40 of 95 items.
20.01.2016
№216.013.a23a

Способ определения этиленгликоля в водных растворах

Изобретение относится к способам исследования материалов с использованием инфракрасной спектрометрии и может быть использовано в промышленных, экологических и научно-исследовательских лабораториях при исследовании состава и качества любых (сточной, попутной, поверхностной, питьевой) проб воды....
Тип: Изобретение
Номер охранного документа: 0002573172
Дата охранного документа: 20.01.2016
20.06.2016
№217.015.034e

Способ закрепления подводного трубопровода в проектном положении

Изобретение относится к строительству подводных переходов трубопроводов. В предлагаемом способе закрепления подводного трубопровода в проектном положении в качестве системы для закрепления трубопровода используют металлическую сетку. Предварительно на одном из концов полотна сетки формируют...
Тип: Изобретение
Номер охранного документа: 0002587730
Дата охранного документа: 20.06.2016
10.04.2016
№216.015.2e8c

Устройство для испытаний сепарационного оборудования

Изобретение относится к технике для изучения процессов добычи и подготовки газа в нефтегазовой отрасли. Технический результат изобретения заключается в повышении точности результатов проводимых газогидродинамических экспериментов и уменьшении времени их анализа, повышении наглядности проведения...
Тип: Изобретение
Номер охранного документа: 0002580546
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.30d7

Способ определения давления начала конденсации в пористой среде

Изобретение относится к газовой промышленности и предназначено для исследования газоконденсатных смесей в пористой среде, а именно для определения давления начала конденсации в пористой среде. Техническим результатом является повышение точности, а также снижение трудоёмкости измерения давления...
Тип: Изобретение
Номер охранного документа: 0002580858
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.31f3

Способ определения тяжелых металлов в техническом углероде

Использование: для определения содержания тяжелых металлов в техническом углероде. Сущность изобретения заключается в том, что выполняют градуировку прибора рентгенофлуоресцентной спектрометрии для каждого элемента, регистрируют интенсивность аналитической линии элемента на соответствующей ему...
Тип: Изобретение
Номер охранного документа: 0002580334
Дата охранного документа: 10.04.2016
27.04.2016
№216.015.3a26

Способ захоронения co (варианты)

Группа изобретений предназначена для использования в области подземного хранения CO и других вредных газов, а также защиты окружающей среды. Технический результат - повышение надежности хранилища и снижение затрат на его создание. В первом варианте реализации способа для закачки CO выбирают...
Тип: Изобретение
Номер охранного документа: 0002583029
Дата охранного документа: 27.04.2016
10.05.2016
№216.015.3b58

Установка для исследования и способ исследования влияния пористых сред на фазовое поведение жидких и газообразных флюидов

Группа изобретений относится к термодинамике и может использоваться для проведения калориметрических измерений. Установка для исследования влияния пористых сред на фазовое поведение жидких и газообразных флюидов содержит две калориметрические ячейки, каждая из которых окружена двумя...
Тип: Изобретение
Номер охранного документа: 0002583061
Дата охранного документа: 10.05.2016
10.06.2016
№216.015.446a

Абсорбент для очистки газов от сероводорода и диоксида углерода

Изобретение относится к области очистки газов от сероводорода и/или диоксида углерода и может быть использовано в газовой, нефтяной и нефтеперерабатывающей отраслях промышленности. Абсорбент для очистки газа от HS и СО содержит метилдиэтаноламин, аминоэтилпиперазин, метиловый или этиловый эфир...
Тип: Изобретение
Номер охранного документа: 0002586159
Дата охранного документа: 10.06.2016
10.06.2016
№216.015.453e

Экспресс-способ определения текущего содержания углеводородов c в пластовом газе газоконденсатной скважины

Изобретение относится к области исследований газоконденсатных эксплуатационных скважин и может быть использовано при определении содержания углеводородов (далее - УВ) С в пластовом газе непосредственно при проведении исследовательских работ газоконденсатных эксплуатационных скважин. Предложен...
Тип: Изобретение
Номер охранного документа: 0002586940
Дата охранного документа: 10.06.2016
10.06.2016
№216.015.46e5

Способ биологической очистки сточных вод и устройство для его осуществления

Группа изобретений может быть использована для биологической очистки хозяйственно-бытовых и промышленных сточных вод. Для осуществления способа не менее 70% активного ила подвергают обработке пероксидом водорода в течение 2 часов в непрерывном режиме с внесением пероксида водорода в количестве...
Тип: Изобретение
Номер охранного документа: 0002586155
Дата охранного документа: 10.06.2016
+ добавить свой РИД