×
10.01.2014
216.012.95ce

Результат интеллектуальной деятельности: ЦИКЛИЧЕСКИЙ МАСС-СПЕКТРОМЕТР ГАЗОВЫХ ЧАСТИЦ

Вид РИД

Изобретение

Аннотация: Изобретение относится к приборостроению, средствам автоматизации и системам управления, а именно к области космических исследований, и может быть использовано в ходе натурного эксперимента для измерения элементного состава собственной внешней атмосферы космического аппарата. Технический результат - расширение диапазона исследуемых масс с увеличением разрешающей способности. Циклический масс-спектрометр газовых частиц содержит приемник ионов, три тороидальных дефлектора, блок обработки ионных спектров и заземленные сетки, дополнительно снабжен ионным источником, подключенным к блоку обработки спектров, выталкивающей сеткой, подключенной к генератору выталкивающих импульсов, отклоняющим электродом, подключенным к генератору отклоняющих импульсов, генератором отклоняющего напряжения тороидальных дефлекторов, подключенным к внешним отражающим электродам, генераторы напряжений подключены к устройству синхронизации, тороидальные дефлекторы расположены друг за другом и обеспечивают циклический пролет ионов. В пространстве дрейфа установлены выравнивающие сетки и фокусаторы, представляющие собой квадруполи или фокусирующие кольца. 1 ил.
Основные результаты: Циклический масс-спектрометр газовых частиц, содержащий приемник ионов, три тороидальных дефлектора, каждый из которых состоит из внешнего отражающего электрода и внутреннего отражающего электрода, блок обработки ионных спектров и заземленные сетки, отличающийся тем, что дополнительно снабжен ионным источником, подключенным к блоку обработки спектров, выталкивающей сеткой, подключенной к генератору выталкивающих импульсов, отклоняющим электродом, подключенным к генератору отклоняющих импульсов, генератором отклоняющего напряжения тороидальных дефлекторов, подключенным к внешним отражающим электродам, генераторы напряжений подключенны к устройству синхронизации, тороидальные дефлекторы расположены друг за другом и обеспечивают циклический пролет ионов, в пространстве дрейфа установлены выравнивающие сетки и фокусаторы, представляющие собой квадруполи или фокусирующие кольца.

Изобретение относится к приборостроению, средствам автоматизации и системам управления, а именно к области космических исследований, и может быть использовано в ходе натурного эксперимента для измерения элементного состава собственной внешней атмосферы космического аппарата.

Известен прибор пылеударный масс-спектрометр (патент RU 2235386 С2, МПК H01J 49/40, опубл. 27.08.04), содержащий мишень, четыре тороидальных отклоняющих системы и приемник ионов.

Недостатками прибора являются единичное использование каждого дефлектора при пролете ионных пакетов и фиксированный диапазон исследуемых масс.

В качестве прототипа выбран пылеударный масс-спектрометр (патент RU 2326465 С2, МПК H01J 49/40, опубл. 20.01.08), содержащий полусферическую мишень, заземленную сетку, четыре приемника ионов, четыре тороидальных дефлектора, каждый из которых состоит из внутреннего отражающего и внешнего отражающего электрода, источник напряжения, блок обработки ионных спектров, блок индикации, полусферическую сетку, цилиндрическую сетку, параболический отражатель и параболическую сетку.

Недостатком прототипа является фиксированные отклоняющие напряжения, а следовательно, ограниченный диапазон исследуемых масс.

В основу изобретения поставлена задача улучшения функциональных характеристик прибора (расширение диапазона исследуемых масс с сохранением или увеличением разрешающей способности прибора).

Задача решается тем, что циклический масс-спектрометр газовых частиц, содержащий приемник ионов, три тороидальных дефлектора, каждый из которых состоит из внешнего отражающего электрода и внутреннего отражающего электрода, блок обработки ионных спектров и заземленные сетки, согласно изобретению дополнительно снабжен ионным источником, подключенным к блоку обработки спектров, выталкивающей сеткой, подключенной к генератору выталкивающих импульсов, отклоняющим электродом, подключенным к генератору отклоняющих импульсов, генератором отклоняющего напряжения тороидальных дефлекторов, подключенным к внешним отражающим электродам, генераторы напряжений подключенны к устройству синхронизации, тороидальные дефлекторы расположены друг за другом и обеспечивают циклический пролет ионов, в пространстве дрейфа установлены выравнивающие сетки и фокусаторы, представляющие собой квадруполи или фокусирующие кольца.

На чертеже представлена структурная схема устройства.

Устройство определения элементного состава газов, состоит из блока обработки спектров 1, подключенного к устройству синхронизации 2 и приемнику ионов 3, источника ионов 4, подключенного к устройству синхронизации 2, генератора выталкивающих импульсов 5, подключенного к ускоряющей сетке 6 и устройству синхронизации 2, генератора отклоняющих импульсов 7, подключенного к отклоняющей сетке 8 и устройству синхронизации 2, генератора отклоняющего напряжения тороидальных дефлекторов 9, подключенного к внешним обкладкам- тороидальных дефлекторов 10 и устройству синхронизации 2, заземленных обкладок тороидальных дефлекторов 11, заземленного электрода отклоняющего промежутка 12, выравнивающих сеток 13, а также фокусаторов 14.

Устройство работает следующим образом. Блок управления 1 подает управляющую команду в устройство синхронизации 2, команда содержит необходимые данные, включающие в себя уровни напряжений на внешних обкладках тороидальных дефлекторов 10, а также расчетное время подачи отклоняющего импульса. Устройство синхронизации 2 подает управляющий импульс источнику ионов 4, источник ионов ионизирует вещество внутри ускоряющего промежутка (между выравнивающей сеткой 13 и ускоряющей сектой 6). После чего устройство синхронизации 2 подает команду на генератор выталкивающих импульсов 5, который, в свою очередь, подает выталкивающий импульс на ускоряющую сетку 6. Также устройство синхронизации 2 подает команду на генератор отклоняющего напряжения 9, в соответствии с которой задается уровень напряжения на внешних обкладках тороидальных дефлекторов 10. Ионы, вылетев из ускоряющего промежутка, попадают в первый тороидальный дефлектор, внутри которого происходит сепарация ионов по массам. Ионы, не отвечающие заданному на обкладке 10 напряжению, оседают на одной из обкладок тороидального дефлектора, остальные ионы проходят через тороидальный дефлектор, выравнивающую сетку 13, которая обеспечивает равномерность поля в пространстве дрейфа, через фокусирующую систему 14, через еще одну выравнивающую сетку 13 в следующий тороидальный дефлектор, далее, ионы тем же путем пролетают через еще два тороидальных дефлектора и вновь попадают в первый, таким образом их траектория замыкается и цикл повторяется снова. При достижении расчетного времени подачи отклоняющего импульса устройство синхронизации 2 подает сигнал генератору отклоняющих импульсов 7, который в свою очередь передает отклоняющий импульс на отклоняющую сетку 8, пучок ионов разворачивается в приемник ионов 3. Варьируя напряжение на внешних обкладках тороидальных дефлекторах 10, а также расчетное время подачи отклоняющего импульса, можно производить сканирование масс во всем представляющем интерес диапазоне масс, при этом увеличивая время подачи отклоняющего импульса с сохранением заданного уровня напряжений на внешних обкладках тороидальных дефлекторов 10, можно увеличить время пролета ионов соответствующей массы, что в свою очередь позволяет увеличить разрешающую способность в данной области спектра.

Циклический масс-спектрометр газовых частиц, содержащий приемник ионов, три тороидальных дефлектора, каждый из которых состоит из внешнего отражающего электрода и внутреннего отражающего электрода, блок обработки ионных спектров и заземленные сетки, отличающийся тем, что дополнительно снабжен ионным источником, подключенным к блоку обработки спектров, выталкивающей сеткой, подключенной к генератору выталкивающих импульсов, отклоняющим электродом, подключенным к генератору отклоняющих импульсов, генератором отклоняющего напряжения тороидальных дефлекторов, подключенным к внешним отражающим электродам, генераторы напряжений подключенны к устройству синхронизации, тороидальные дефлекторы расположены друг за другом и обеспечивают циклический пролет ионов, в пространстве дрейфа установлены выравнивающие сетки и фокусаторы, представляющие собой квадруполи или фокусирующие кольца.
ЦИКЛИЧЕСКИЙ МАСС-СПЕКТРОМЕТР ГАЗОВЫХ ЧАСТИЦ
Источник поступления информации: Роспатент

Showing 31-32 of 32 items.
04.04.2018
№218.016.2fa5

Способ формирования массовой линии ионов во времяпролетном масс-спектрометре

Изобретение относится к области масс-спектрометрии, преимущественно для космических исследований и для применения в других областях при условиях жестких ограничений массы и габаритов. Способ основан на выталкивании ионов из ускоряющего промежутка нелинейным полем и отклонении ионов в бесполевом...
Тип: Изобретение
Номер охранного документа: 0002644578
Дата охранного документа: 13.02.2018
11.03.2019
№219.016.ddab

Способ неразъемного соединения труб

Изобретение относится к области машиностроения и может быть использовано в неразъемных соединениях металлических законцовок труб и труб из композиционных материалов, например в трубопроводах и топливных баках ракеты-носителя. Способ неразъемного соединения труб включает операцию выполнения...
Тип: Изобретение
Номер охранного документа: 0002466324
Дата охранного документа: 10.11.2012
Showing 41-45 of 45 items.
25.08.2017
№217.015.9c85

Устройство для исследования потоков микрометеороидов и частиц космического мусора

Изобретение относится к области космического приборостроения и касается устройства для исследования потоков микрометеороидов и частиц космического мусора. Устройство включает в себя мишень, крепежный диск, лазер, ПЗС-матрицу, шаговый двигатель, двигатель диска, светодиод, фотодиод, блок...
Тип: Изобретение
Номер охранного документа: 0002610342
Дата охранного документа: 09.02.2017
26.08.2017
№217.015.da3e

Времяпролетный масс-спектрометр с нелинейным источником ионов

Изобретение относится к области масс-спектрометрии, преимущественно для космических исследований и для применения в других областях при условиях жестких ограничений массы и габаритов. Времяпролетный масс-спектрометр снабжен ионным источником с нелинейным ускоряющим промежутком, выполненным в...
Тип: Изобретение
Номер охранного документа: 0002623729
Дата охранного документа: 29.06.2017
04.04.2018
№218.016.2fa5

Способ формирования массовой линии ионов во времяпролетном масс-спектрометре

Изобретение относится к области масс-спектрометрии, преимущественно для космических исследований и для применения в других областях при условиях жестких ограничений массы и габаритов. Способ основан на выталкивании ионов из ускоряющего промежутка нелинейным полем и отклонении ионов в бесполевом...
Тип: Изобретение
Номер охранного документа: 0002644578
Дата охранного документа: 13.02.2018
09.06.2019
№219.017.790e

Детектор микрометеороидных и техногенных частиц

Изобретение относится к области космического приборостроения и может быть использовано для исследования степени и характера загрязнения космического пространства техногенными и микрометеороидными частицами. Сущность: детектор микрометеороидных и техногенных частиц, содержит мишень в виде...
Тип: Изобретение
Номер охранного документа: 0002348949
Дата охранного документа: 10.03.2009
28.06.2019
№219.017.997d

Устройство контроля параметров углового движения космического аппарата по данным бортовых измерений состояния геомагнитного поля

Изобретение относится к магнитным средствам управления параметрами движением вокруг центра масс космического аппарата (КА) научно-технологического назначения, особенностью которого является обеспечение ориентированного режима полета с невысокими требованиями к точности угловой ориентации....
Тип: Изобретение
Номер охранного документа: 0002692741
Дата охранного документа: 26.06.2019
+ добавить свой РИД