×
27.12.2013
216.012.9259

Результат интеллектуальной деятельности: СПОСОБ ЗОНДОВОЙ ДИАГНОСТИКИ ПЛАЗМЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Вид РИД

Изобретение

Аннотация: Заявленная группа изобретений относятся к области электрофизики, в частности к технике диагностики плазмы, и может быть использована для измерения электронной концентрации и температуры нестационарной плазмы в широком диапазоне исследуемых параметров. Заявленный способ включает установку зонда в плазму, приложение к зонду дискретных ступенчатых импульсов напряжения, регистрацию вольтамперной характеристики, измеряют потенциал пространства плазмы, напряжение каждой последующей ступени в импульсе задают большим по сравнению с предыдущей, ступени формируют с временными интервалами между ними, во время которых потенциал на зонде устанавливают равным потенциалу пространства плазмы. При этом длительность каждой ступени и интервалы времени между ними устанавливают не менее времени восстановления квазинейтральности плазмы. Устройство для зондовой диагностики плазмы содержит источник питания, зонд, генератор дискретных ступенчатых импульсов напряжения и блок измерения, генератор запускающих импульсов, соединенный с генератором дискретных ступенчатых импульсов. Генератор дискретных ступенчатых импульсов состоит из блока коммутации, источников постоянной ЭДС и микропроцессора, управляющего блоком коммутации, а блок измерения включает набор переключаемых резисторов. Технический результат заключается в повышении точности определения параметров плазмы (концентрации и температуры). 2 н. и 5 з.п. ф-лы, 3 ил.

Группа изобретений относится к области электрофизики, в частности к технике диагностики плазмы, и может быть использована для измерения электронной концентрации и температуры нестационарной плазмы в широком диапазоне исследуемых параметров.

Из существующего уровня техники известен способ измерения электронной концентрации плазменных образований с помощью электрического зонда Ленгмюра [1-4], основанный на активном зондировании исследуемой плазмы током малой интенсивности. Суть способа заключается в том, что в плазму помещают металлический проводник (далее - зонд) различной формы - плоской, цилиндрической или сферической. С помощью внешнего источника напряжения задают потенциал зонда относительно одного из инициирующих разряд электродов (чаще всего находящегося под нулевым потенциалом). Регистрируют зависимость тока на зонд от подаваемого на него потенциала, т.е. снимают зондовую вольтамперную характеристику (ВАХ), по которой судят о концентрации электронов плазмы.

Из существующего уровня техники известны используемые в импульсных зондовых измерениях генераторы напряжения синусоидальной и пилообразной формы [1-3].

Эти устройства обеспечивают непрерывное изменение напряжения на электродах зонда. Т.к. толщина двойного слоя (ДС - возмущенная призондовая область) является непрерывной функцией потенциала [1], то его изменение приводит к движению границы ДС. В этом случае восстановление квазинейтральности плазмы за пределами ДС происходит с конечной скоростью [3, 4], что приводит к зависимости результатов зондовых измерений от скорости нарастания потенциала.

Недостатком данного типа устройств является то, что ток зонда регистрируется для неустановившегося режима, что приводит к погрешности в определении вольтамперных характеристик, а, следовательно, и в вычислениях концентрации и температуры плазмы.

Наиболее близким к заявленному техническому решению является способ зондовой диагностики плазмы и устройство для его осуществления [5], позволяющие регистрировать параметры плазмы в течение одного импульса. Способ заключается в следующем. Напряжение с генератора дискретных ступенчатых импульсов подают на вводы зонда с такой частотой ступенчатого напряжения, при которой каждое следующее изменение напряжения на вводах зонда происходит только после окончания переходного процесса, вызванного предыдущим изменением напряжения. Снимают вольтамперную характеристику, по которой судят о параметрах плазмы. Устройство для зондовой диагностики плазмы содержит источник питания, зонд, к вводам которого присоединены генератор дискретных ступенчатых импульсов напряжения и регистрирующие вольтамперную характеристику приборы.

Недостатком способа и устройства [5] является различие потенциалов зонда и пространства плазмы на протяжении практически всего времени измерений. В этом случае в пределах двойного слоя плазма не восстанавливает квазинейтральности [6-8], что приводит к увеличению погрешности измерений электронной концентрации и температуры нестационарной плазмы.

Задачей, на решение которой направлено заявляемое изобретение является определение параметров невозмущенной зондом плазмы и уменьшение погрешности измерений электронной концентрации и температуры нестационарной плазмы с помощью импульсного зонда, а также создание устройства, исключающего влияние скорости нарастания потенциала на результат зондовых измерений.

Раскрытие изобретения.

Техническим результатом является повышение точности определения параметров плазмы (концентрации и температуры).

Технический результат достигается тем, что в способе зондовой диагностики плазмы, включающем установку зонда в плазму, приложение к зонду дискретных ступенчатых импульсов напряжения, регистрацию вольтамперной характеристики, по которой определяют параметры плазмы, новым является то, что предварительно измеряют потенциал пространства плазмы, напряжение каждой последующей ступени в импульсе задают большим по сравнению с предыдущей, ступени формируют с временными интервалами между ними, во время которых потенциал на зонде устанавливают равным потенциалу пространства плазмы, причем длительность каждой ступени и интервалы времени между ступенями устанавливают не менее времени восстановления квазинейтральности плазмы.

Кроме того, возможно изменение длительности и амплитуды каждой ступени, а также интервалов времени между ступенями, что позволяет проводить исследования как стационарной, так и нестационарной плазмы в широком диапазоне концентраций (108-1013 см-3), а также с хорошим временным разрешением прописать профили кривых концентрации и температуры.

Технический результат достигается также тем, что в устройстве для зондовой диагностики плазмы, содержащем источник питания, зонд, генератор дискретных ступенчатых импульсов напряжения и блок измерения, подключенные к зонду, новым является то, что устройство дополнительно содержит генератор запускающих импульсов, соединенный с генератором дискретных ступенчатых импульсов, причем генератор дискретных ступенчатых импульсов состоит из блока коммутации, источников постоянной ЭДС, подключаемых к зонду в запрограммированной последовательности блоком коммутации, и микропроцессора, управляющего блоком коммутации, а блок измерения включает набор переключаемых резисторов.

Источник питания гальванически развязан с сетью переменного напряжения.

В качестве источников постоянной ЭДС могут быть использованы промышленно выпускаемые аккумуляторы.

При увеличении потенциала ток на зонд не сразу достигает установившегося значения. В этом случае информацию о параметрах невозмущенной плазмы несет зондовая вольтамперная характеристика, построенная для установившихся значений тока. Если на зонд, в соответствии с [5], подавать ступенчато изменяющийся во времени потенциал, то параметры плазмы действительно измеряются для установившихся значений тока на зонд. Однако между измерениями (временной интервал между полками ступеней) восстановления квазинейтральности плазмы в пределах двойного слоя не происходит. Если на зонд подавать потенциал ступенчатой формы в соответствии с [5], то значения зондового тока и вычисленной по ним плотности электронов плазмы будут завышены.

Предварительное измерение потенциала пространства плазмы, а также то, что ступени формируют с временными интервалами, во время которых потенциал на зонде устанавливают равным потенциалу пространства плазмы позволяет избавиться от погрешности в измерениях вольтамперной характеристики. Потенциал пространства плазмы определяется по известным из уровня техники методикам [10, 11].

Напряжение каждой последующей ступени в импульсе задают большим по сравнению с предыдущей для того, чтобы определить зависимость тока зонда от подаваемого на него напряжения.

Длительность каждой ступени и интервалы времени между ступенями устанавливают не менее времени восстановления квазинейтральности плазмы для того, чтобы регистрировать параметры невозмущенной плазмы.

Изменение длительности каждой ступени позволяет проводить исследования с большей точностью. Вольтамперную характеристику необходимо регистрировать для установившихся значений тока на зонд. Другими словами, для восстановления квазинейтральности плазмы требуется некоторое время, которое в каждом конкретном опыте может существенно различаться, поэтому необходима возможность изменения длительности не только всего импульса, но также каждой отдельной ступени.

Изменение амплитуды каждой ступени позволяет исследовать плазму с любыми параметрами, т.к. в каждом конкретном эксперименте зависимость тока зонда от напряжения является уникальной характеристикой.

Изменение интервалов времени между ступенями позволяет увеличить скважность, зарегистрировать большее количество точек вольтамперной характеристики, и, соответственно, уменьшить погрешность в расчетах параметров плазмы.

На Фиг.1 приведена форма сигнала, подаваемого на ленгмюровский зонд, где Uпл - потенциал плазмы; t1i - время, необходимое для релаксации плазмы; t2i - длительность i ступени в импульсе напряжения.

На Фиг.2 представлена принципиальная блок-схема устройства, где (1) - источник питания; (2) - генератор запускающих импульсов; (3) - генератор дискретных ступенчатых импульсов, который в свою очередь состоит из микропроцессора (4), блока коммутации (5), источников ЭДС (6); (7) - зонд; (8) - блок измерения; (9) - осциллограф.

На Фиг.3 приведена принципиальная электрическая схема генератора дискретных ступенчатых импульсов.

Работа устройства.

Заявляемый способ реализуется следующим образом. Устанавливают одиночный или двойной электрический зонд в плазменную камеру. Создают в камере плазму и подают на зонд потенциал специальной формы (Фиг.1). При подаче первой ступени амплитудой Uст1 и длительностью t2i регистрируется зондовый ток, соответствующий установившемуся значению. После этого к зонду прикладывается напряжение Uпл, что позволяет устранить возмущение плазмы зондом, обусловленное явлением переходных процессов. Далее на зонд подается напряжение Uст2, длительностью t22, и процесс повторяется. Определяются вольтамперные характеристики для установившихся значений тока заряженных частиц на зонд. Далее, согласно известным методам обработки зондовых вольтамперных характеристик [1-3] определяют электронную концентрацию и температуру плазмы.

Алгоритм работы генератора дискретных ступенчатых импульсов заключается в следующем:

1. Переход микропроцессора (4) на выполнение бесконечного цикла программы: ожидание сигнала запуска с генератора запускающих импульсов (2) на пин РD2(Пуск);

2. При низком уровне напряжения (подается от генератора запускающих импульсов (2)), переход в подпрограмму обработки прерывания: выполнение подпрограммы формирования сигнала заданной формы;

3. Выполнение подпрограммы прерывания: последовательное включение пинов порта С (РС0…РС5) и порта В (РВ4, РВ5), через постоянный интервал времени (высчитывается и программируется исходя из заданных условий, определяет общую длительность импульса),

4. Последовательное включение пинов порта С и В, также последовательно открываются транзисторы (IRLR110) с помощью драйверов (IR2110). Здесь транзисторы (IRLR110) и драйверы (IR2110) это блок коммутации (5) (фигура 3). Таким образом происходит последовательное подключение источников ЭДС (6) и на выходе формируется сигнал заданной длительности и амплитуды (максимальная амплитуда определяется количеством и номинальным напряжением источников ЭДС).

5. Одновременное отключение пинов порта С и В, закрытие транзисторов и отключение всех источников ЭДС.

6. Выход из подпрограммы и переход в бесконечный цикл: ожидание следующего импульса от генератора запускающих импульсов (2).

На предприятии ФГУП «РФЯЦ-ВНИИЭФ» проводились эксперименты по исследованию влияния скорости нарастания потенциала зонда на результаты снятия зондовой вольтамперной характеристики. Установлено, что на точность измерений параметров плазмы влияет как скорость нарастания, так и форма потенциала зонда. Для проведения корректных измерений время нарастания потенциала зонда должно быть больше времени перераспределения зарядов плазмы.

Методика определения параметров нестационарной плазмы зондом со ступенчато изменяющимся потенциалом и устройство для ее реализации протестированы на реальной плазменной нагрузке. Измерения проводились двойным зондом в плазме импульсного тлеющего разряда при давлении 0,3 Top. Предложенная методика позволила регистрировать зондовые вольтамперные характеристики для установившихся значений тока на зонд. Определенные по измеренной с помощью устройства зондовой вольтамперной характеристике температура и концентрация электронов плазмы типичны для тлеющего разряда [6, 9].

Источники постоянной ЭДС представляют собой сборки аккумуляторов типа АА, напряжением 1.3 V. Блок коммутации состоит из восьми драйверов IR2110. Каждый драйвер управляет транзистором IRLR110, последовательно подключая или/и отключая источники постоянной ЭДС по определенному закону. Основным элементом генератора ступенчатых импульсов является программируемый микропроцессор ATmega8L. Длительность и амплитуда выходного сигнала задаются программным способом.

Запускающий импульс имеет гальваническую развязку с помощью оптрона (TLP759).

Для исследования плазмы с заведомо неизвестным сопротивлением в блоке измерения предусмотрен набор из 9 переключаемых резисторов. Это позволяет без изменения схемы, посредством выбора нужного сопротивления, проводить регистрацию зондовых вольтамперных характеристик в широком диапазоне измеряемых параметров плазмы (108-1013 см-3).

Кроме того, регистрация зондовых кривых может проводиться пакетом с частотой не более 5 кГц. При этом количество импульсов в пакете определяется проводимостью и временем существования плазмы, а также схемотехническими особенностями устройства. Такая схема регистрации позволяет с заданной точностью прописать профили измеряемых зондовым методом температуры и плотности электронов плазмы во временной динамике.

Источники информации:

[[1] Б.В. Алексеев, В.А. Котельников. Зондовый метод диагностики плазмы. М.: Энергоатомиздат. 1998, с.200-214.

[2] Козлов О.В. Электрический зонд в плазме. М.: Атомиздат, 1969. с.189-192, 210-223.

[3] Ю.А. Лебедев. Электрические зонды в плазме пониженного давления. Методическое пособие. ИНС им. А.В. Топчиева РАН. 2001.

[4] Шарабанов П.А., Бакумов А.О. и др. Исследование сильноточного импульсного объемного разряда в продольном магнитном поле. Сборник докладов восьмой научно-технической конференции «Молодежь в науке», 2009.

[5] А.с. №416617, опубл.25.11.1974 г., Тихомиров И.А., Тихомиров В.В., Федянин В.Я., Шишковский В.И., Устройство для зондовой диагностики плазмы

[6] Ю.П. Райзер. Физика газового разряда. М.: Наука. 1987.

[7] Мамурин Б.А., Журнал Техническая физика, 1953.

[8] Kamke D. and Rose H.J, Z. Phuz., 1956.

[9] Энгель А. Ионизованные газы. М.: ГИФМЛ. 1959.

[10] Козлов О.В. Электрический зонд в плазме. М.: Атомиздат, 1969. с.179-186

[11] Воробьева И.А., Каган Ю.М., Меленин В.М., Журнал технической физики, 1963, 33, 571.


СПОСОБ ЗОНДОВОЙ ДИАГНОСТИКИ ПЛАЗМЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ ЗОНДОВОЙ ДИАГНОСТИКИ ПЛАЗМЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ ЗОНДОВОЙ ДИАГНОСТИКИ ПЛАЗМЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
Источник поступления информации: Роспатент

Showing 61-70 of 658 items.
10.09.2013
№216.012.6781

Способ переработки металлических бериллиевых отходов

Изобретение относится к переработке бериллийсодержащих металлических отходов. Способ включает растворение металлических бериллиевых отходов в щелочном растворе в присутствии нитрата натрия или калия. Вводят в процесс азотную кислоту в количестве 2,09-2,26 моль/моль бериллия. Азотная кислота...
Тип: Изобретение
Номер охранного документа: 0002492144
Дата охранного документа: 10.09.2013
10.09.2013
№216.012.680a

Способ нанесения защитного покрытия на изделия из стали или титана

Изобретение относится к области машиностроения, а именно к химико-термической обработке изделий из стали или титана, и может быть использовано для нанесения защитного покрытия на детали, работающие в условиях воздействия агрессивных сред, высоких температур. Осуществляют подготовку защищаемой...
Тип: Изобретение
Номер охранного документа: 0002492281
Дата охранного документа: 10.09.2013
10.09.2013
№216.012.68b1

Устройство для контроля процесса деградации защитных покрытий

Изобретение относится к испытательной технике, а именно к устройствам для контроля процесса деградации защитных гальванических и лакокрасочных покрытий, находящихся в эксплуатационных условиях под действием внешней агрессивной среды. Устройство содержит нижнее основание, установленную на нем...
Тип: Изобретение
Номер охранного документа: 0002492448
Дата охранного документа: 10.09.2013
20.09.2013
№216.012.6b3e

Способ разделения циркония и гафния

Изобретение относится к технологии редких металлов, в частности к гидрометаллургии циркония и гафния. Способ разделения циркония и гафния включает получение гидроксидов циркония и гафния при температуре, не превышающей 30-35°С, обезвоживание полученных гидроксидов циркония и гафния, растворение...
Тип: Изобретение
Номер охранного документа: 0002493105
Дата охранного документа: 20.09.2013
20.09.2013
№216.012.6d05

Система контроля кислорода и водорода в газовых средах

Изобретение относится к устройствам для контроля параметров газовых сред, в частности к контролю газовых смесей, содержащих кислород и водород, и может быть использовано в атомной энергетике, транспортном, химическом машиностроении и других отраслях техники, например, для контроля водородной...
Тип: Изобретение
Номер охранного документа: 0002493560
Дата охранного документа: 20.09.2013
20.09.2013
№216.012.6d5a

Генератор акустических шумов

Изобретение относится к электронным устройствам и может быть использовано для защиты информации по акустическим каналам. Достигаемым техническим результатом является возможность формирования низкочастотного сигнала с расширенным частотным диапазоном и улучшенными характеристиками...
Тип: Изобретение
Номер охранного документа: 0002493645
Дата охранного документа: 20.09.2013
27.09.2013
№216.012.70a8

Лазерный источник ионов с активной системой инжекции

Изобретение относится к источникам ионов, предназначенным для ускорителей заряженных частиц. Заявленное изобретение характеризуется подачей на ускоряющий электрод ионно-оптической системы, размещенный между выходом пролетного канала и другим ускоряющим электродом, установленным в системе...
Тип: Изобретение
Номер охранного документа: 0002494491
Дата охранного документа: 27.09.2013
10.10.2013
№216.012.71fc

Способ очистки порошка титана от примеси кислорода

Изобретение относится к области порошковой металлургии металлов IVB подгруппы, в частности к способам очистки порошков металлов от примеси кислорода. Способ очистки порошка титана от примеси кислорода включает насыщение порошка титана водородом с получением порошкообразного гидрида титана и...
Тип: Изобретение
Номер охранного документа: 0002494837
Дата охранного документа: 10.10.2013
10.10.2013
№216.012.727b

Способ получения фторида бериллия

Изобретение может быть использовано в химической промышленности. Фторид бериллия получают растворением материалов, содержащих бериллий, в плавиковой кислоте. В исходный раствор перед выпариванием вносят фторид аммония в количестве, обеспечивающем мольное отношение фтора к бериллию в пределах...
Тип: Изобретение
Номер охранного документа: 0002494964
Дата охранного документа: 10.10.2013
10.10.2013
№216.012.729f

Плавленолитой хромсодержащий огнеупорный материал

Изобретение относится к огнеупорной промышленности и может быть использовано для изготовления хромсодержащих огнеупорных материалов для футеровки стекловаренных печей при утилизации радиоактивных отходов. Плавленолитой хромсодержащий огнеупорный материал содержит компоненты в следующем...
Тип: Изобретение
Номер охранного документа: 0002495000
Дата охранного документа: 10.10.2013
Showing 61-70 of 477 items.
10.09.2013
№216.012.6781

Способ переработки металлических бериллиевых отходов

Изобретение относится к переработке бериллийсодержащих металлических отходов. Способ включает растворение металлических бериллиевых отходов в щелочном растворе в присутствии нитрата натрия или калия. Вводят в процесс азотную кислоту в количестве 2,09-2,26 моль/моль бериллия. Азотная кислота...
Тип: Изобретение
Номер охранного документа: 0002492144
Дата охранного документа: 10.09.2013
10.09.2013
№216.012.680a

Способ нанесения защитного покрытия на изделия из стали или титана

Изобретение относится к области машиностроения, а именно к химико-термической обработке изделий из стали или титана, и может быть использовано для нанесения защитного покрытия на детали, работающие в условиях воздействия агрессивных сред, высоких температур. Осуществляют подготовку защищаемой...
Тип: Изобретение
Номер охранного документа: 0002492281
Дата охранного документа: 10.09.2013
10.09.2013
№216.012.68b1

Устройство для контроля процесса деградации защитных покрытий

Изобретение относится к испытательной технике, а именно к устройствам для контроля процесса деградации защитных гальванических и лакокрасочных покрытий, находящихся в эксплуатационных условиях под действием внешней агрессивной среды. Устройство содержит нижнее основание, установленную на нем...
Тип: Изобретение
Номер охранного документа: 0002492448
Дата охранного документа: 10.09.2013
20.09.2013
№216.012.6b3e

Способ разделения циркония и гафния

Изобретение относится к технологии редких металлов, в частности к гидрометаллургии циркония и гафния. Способ разделения циркония и гафния включает получение гидроксидов циркония и гафния при температуре, не превышающей 30-35°С, обезвоживание полученных гидроксидов циркония и гафния, растворение...
Тип: Изобретение
Номер охранного документа: 0002493105
Дата охранного документа: 20.09.2013
20.09.2013
№216.012.6d05

Система контроля кислорода и водорода в газовых средах

Изобретение относится к устройствам для контроля параметров газовых сред, в частности к контролю газовых смесей, содержащих кислород и водород, и может быть использовано в атомной энергетике, транспортном, химическом машиностроении и других отраслях техники, например, для контроля водородной...
Тип: Изобретение
Номер охранного документа: 0002493560
Дата охранного документа: 20.09.2013
20.09.2013
№216.012.6d5a

Генератор акустических шумов

Изобретение относится к электронным устройствам и может быть использовано для защиты информации по акустическим каналам. Достигаемым техническим результатом является возможность формирования низкочастотного сигнала с расширенным частотным диапазоном и улучшенными характеристиками...
Тип: Изобретение
Номер охранного документа: 0002493645
Дата охранного документа: 20.09.2013
27.09.2013
№216.012.70a8

Лазерный источник ионов с активной системой инжекции

Изобретение относится к источникам ионов, предназначенным для ускорителей заряженных частиц. Заявленное изобретение характеризуется подачей на ускоряющий электрод ионно-оптической системы, размещенный между выходом пролетного канала и другим ускоряющим электродом, установленным в системе...
Тип: Изобретение
Номер охранного документа: 0002494491
Дата охранного документа: 27.09.2013
10.10.2013
№216.012.71fc

Способ очистки порошка титана от примеси кислорода

Изобретение относится к области порошковой металлургии металлов IVB подгруппы, в частности к способам очистки порошков металлов от примеси кислорода. Способ очистки порошка титана от примеси кислорода включает насыщение порошка титана водородом с получением порошкообразного гидрида титана и...
Тип: Изобретение
Номер охранного документа: 0002494837
Дата охранного документа: 10.10.2013
10.10.2013
№216.012.727b

Способ получения фторида бериллия

Изобретение может быть использовано в химической промышленности. Фторид бериллия получают растворением материалов, содержащих бериллий, в плавиковой кислоте. В исходный раствор перед выпариванием вносят фторид аммония в количестве, обеспечивающем мольное отношение фтора к бериллию в пределах...
Тип: Изобретение
Номер охранного документа: 0002494964
Дата охранного документа: 10.10.2013
10.10.2013
№216.012.729f

Плавленолитой хромсодержащий огнеупорный материал

Изобретение относится к огнеупорной промышленности и может быть использовано для изготовления хромсодержащих огнеупорных материалов для футеровки стекловаренных печей при утилизации радиоактивных отходов. Плавленолитой хромсодержащий огнеупорный материал содержит компоненты в следующем...
Тип: Изобретение
Номер охранного документа: 0002495000
Дата охранного документа: 10.10.2013
+ добавить свой РИД