×
27.12.2013
216.012.920f

Результат интеллектуальной деятельности: СПОСОБ ФОРМИРОВАНИЯ МОНОКРИСТАЛЛИЧЕСКИХ НАНОПРОВОДНИКОВ В МАТРИЦЕ ИЗ СОБСТВЕННОГО ОКСИДА

Вид РИД

Изобретение

№ охранного документа
0002503084
Дата охранного документа
27.12.2013
Аннотация: Изобретение относится к технологии создания сложных проводящих структур и может быть использовано в нанотехнологии, микроэлектронике для создания сверхминиатюрных приборов, интегральных схем и запоминающих устройств. Изобретение направлено на обеспечение формирование монокристаллических нанопроводников заданной геометрии в матрице собственного оксида. Способ формирования монокристаллических нанопроводников в матрице из собственного оксида включает нанесение на поверхность монокристаллической пластины маски с требуемой топологией формируемого монокристаллического нанопровода, травление открытых участков монокристаллической пластины с обеспечением отрицательных углов наклона стенок вытравливаемых углублений к исходной поверхности без нарушения сплошности материала пластины и последующее окисление монокристаллической пластины до смыкания оксида вокруг сохраненного в виде выступа проводящего вещества. Указанный результат достигается также тем, что перед проведением процесса окисления производится полное или частичное удаление маски. 1 з.п. ф-лы, 2 ил.

Изобретение относится к технологии создания сложных проводящих структур и может быть использовано в нанотехнологиях, микроэлектронике для создания сверхминиатюрных приборов, интегральных схем, биодатчиков и запоминающих устройств.

Известен способ формирования решетки нанокластеров кремния на структурированной подложке (RU 2214359[1]). Сущность изобретения заключается в очистке кремниевой подложки, ее маскировании, нанолитографии, осуществляемой таким образом, что границы маскирующих участков ориентированы под углом 45° к базовому срезу [110] подложки, структурировании поверхности подложки травлением, формируя при этом решетку из столбиков кремния, удалении маскирующего слоя, формировании решетки из нанокластеров на структурированной подложке путем термического окисления ее структурированной поверхности с постоянным ростом температуры в приповерхностной области до температуры не ниже 900°C с градиентом роста температуры не менее 106 К/см с образованием решетки из нанокластеров кремния внутри двуокиси кремния, охлаждении подложки до комнатной температуры с тем же постоянным градиентом не менее 106 К/см, повторении цикла нагрева и охлаждения до образования замкнутой оболочки двуокиси кремния и окончательном отжиге подложки с решеткой из нанокластеров кремния в замкнутой оболочке из двуокиси кремния длительностью не менее 20 мин в атмосфере азота. Изобретение позволяет создавать однородные по своим электрическим и оптическим свойствам дискретные наноэлементы, на базе которых строятся все приборы квантовой электроники и оптоэлектроники. Однако их использование имеет ограничения связанные с тем, что при создании приборов квантовой электроники и оптоэлектроники зачастую требуется соединение их отдельных компонентов протяженными проводниками, в то время как в соответствии с известным способом создается по сути точечный элемент проводника, окруженного собственным оксидом.

Известен способ формирования нанопроводов из тонких пленок кремния US 2006286788 [2] (патенты - аналоги US 7217946, WO 2004032182, FR 2845519, EP 1547136).

В соответствии с предложением, первоначально тонкая пленка легированного монокристаллического кремния (обычно между 15 и 20 нм) наносится методом литографии на относительно тонкую подложку из диоксида кремния (SiO2), которая в свою очередь формируется на достаточно толстом слое кремния. К краям пленки подсоединяют электроды, подключенные к источнику постоянного тока. В результате прохождения тока пленка преобразуется в гребенчатую структуру с линейными выступами, ориентированными вдоль линий тока. Диапазон плотности тока, который может привести к образованию такой структуры, зависит от полупроводника. После травления полученной структуры тонкая пленка растворяется, а сохраненные гребни представляют собой нанопровода из кремния на подложке из диоксида кремния с характерным поперечным размером около 7 нм. Недостатком известного способа является то, что он не позволяет создавать провода со сложной топологией, так как их формирование осуществляется по линиям тока, что приводит к получению только прямолинейных отрезков (гребней).

Наиболее близким к заявляемому способу по своей технической сущности и достигаемому результату является способ изготовления наноразмерных проволочных кремниевых структур, известный из описания к RU 2435730[3]. В соответствии со способом изготовления наноразмерных проволочных кремниевых структур на кремниевой подложке последовательно создают слой SiO2, слой кремния и затем опорный слой, на котором методами фотолитографии и ионно-плазменным травлением формируют рельеф с вертикальными стенками в местах будущего расположения наноразмерных элементов, на полученном рельефе конформно создают слой материала для формирования спейсера, который анизотропным травлением удаляют с горизонтальных поверхностей, а его часть, прилегающую к вертикальным стенкам рельефа, используют в качестве маски при анизотропном травлении наноразмерных кремниевых структур. В качестве опорного слоя используют рельеф с вертикальными стенками в кремнии, конформный слой создают термическим окислением поверхности кремния, а в качестве маски при травлении наноразмерных кремниевых структур используют окисленную вертикальную поверхность рельефа конформного слоя на кремнии.

Недостатком известного способа является его относительная сложность (большое количество промежуточных операций), а также то, что в результате получают провод без полной изоляции в виде собственного оксида.

Заявляемый способ направлен на формирование монокристаллических нанопроводников заданной геометрии в матрице собственного оксида. Указанный результат достигается тем, что способ формирования монокристаллических нанопроводников в матрице из собственного оксида, включает нанесение на поверхность монокристаллической пластины маски с требуемой топологией формируемого монокристаллического нанопровода, травление открытых участков монокристаллической пластины с обеспечением отрицательных углов наклона стенок вытравливаемых углублений к исходной поверхности без нарушения сплошности материала пластины и последующее окисление монокристаллической пластины до смыкания оксида вокруг сохраненного в виде выступа проводящего вещества.

Указанный результат достигается также тем, что перед проведением процесса окисления производится полное или частичное удаление маски.

Формирование заготовок нанопроводников с заданным рисунком путем удаления части вещества исходной монокристаллической пластины с образованием отрицательных углов наклона стенок углублений к исходной поверхности без нарушения сплошности материала пластины позволяет при осуществлении последующих операций обеспечить формирования монокристаллических нанопроводников в матрице из собственного оксида.

Последующее окисление монокристаллической пластины до смыкания оксида вокруг сохраненного в виде выступа проводящего вещества позволяет завершить процесс формирования монокристаллических нанопроводников в матрице из собственного оксида.

Удаление части вещества исходной монокристаллической пластины с образованием отрицательных углов наклона стенок углублений к исходной поверхности может осуществляться различными путями.

В одном из частных случаев реализации удаление части вещества исходной монокристаллической пластины осуществляют травлением не закрытых маской участков монокристаллической пластины.

Нанесение на поверхность монокристаллической пластины маски с требуемой топологией формируемого монокристаллического нанопровода обеспечивает в дальнейшем, при травлении, сохранение в нужных местах исходного материала монокристаллической пластины. Травление открытых участков монокристаллической пластины без нарушения сплошности материала пластины необходимо для того, чтобы исключить отделение сформированного нанопровода от исходной пластины и, соответственно, матрицы оксида. Последующее окисление монокристаллической пластины до смыкания оксида вокруг сохраненного под маской проводящего вещества позволяет завершить процесс формирования монокристаллических нанопроводников в матрице из собственного оксида.

Сущность заявляемого способа поясняется примерами его реализации и графическими материалами, показывающими отдельные стадии процесса. На фиг.1 показан вариант реализации способа с использованием для удаления части вещества исходной монокристаллической пластины травления не закрытых маской участков монокристаллической пластины. На фиг.2 показан вариант реализации способа когда перед проведением процесса окисления производится полное или частичное удаление маски.

Пример 1. В самом общем случае способ реализуется следующим образом.

На поверхности монокристаллической пластины 1 из исходного материала по известной технологии создается маска 2 требуемой топологии формируемого монокристаллического нанопровода. Производится травление открытых участков монокристаллической пластины таким образом, чтобы профиль травления монокристаллического материала характеризовался отрицательным углом наклона к поверхности. Режимы травления и травитель подбираются экспериментальным путем или на основе справочных данных. При этом, глубина травления, величина отрицательного угла и ширина закрытого маской участка монокристалла должны обеспечить сплошность материала пластины непосредственно под маской с материалом монокристаллической пластины (т.е. в сечении структуры должен остаться перешеек в основании формирующейся трапециевидной балки, соединяющий ее с основной пластиной). Проводится процесс окисления монокристалла на постоянную глубину таким образом, чтобы перешеек, соединяющий нижнее основание сформированной трапециевидной балки с монокристаллической пластиной был полностью преобразован в оксид 3. Другими словами, глубина равномерного окисления должна быть больше, чем половина ширины перешейка, но меньше половины ширины трапециевидной балки в широкой (верхней) части. Окисление может быть проведено любым известным способом: нагрев в атмосфере окислителя; ионно-плазменное окисление и т.п. Перед проведением процесса окисления маска может быть сохранена, а может быть и удалена. Поскольку ширина трапециевидной балки вверху больше ее ширины внизу (перешейка), в верхней части балки остается неокисленный материал, представляющий собой монокристалл, геометрическая форма которого задается рисунком маски на поверхности пластины, электрически изолированный от материала подложки.

Пример 2. На поверхности монокристаллической пластины 1 из кремния (Si) по технологии фотолитографии была создана маска 2 из оксида кремния (SiO2) требуемой топологии формируемого монокристаллического нанопровода. Произведено плазмохимическое травление открытых участков монокристаллической пластины травителем SF6 при температуре 25°C в течение 30 секунд. В результате профиль травления монокристаллического материала характеризовался отрицательным углом в 7,6 градусов наклона к поверхности. Глубина травления составила 75 нм, ширина верхней части сформированной трапециевидной балки составила 50 нм, а перешейка 30 нм.

Затем проводился процесс окисления монокристалла при помощи обработки в кислородной плазме на глубину 15 нм. В результате перешеек, соединяющий нижнее основание сформированной трапециевидной балки с монокристаллической пластиной был полностью преобразован в оксид 3. В верхней части балки остался неокисленный материал, представляющий собой монокристалл, геометрическая форма которого была задана рисунком маски на поверхности пластины, электрически изолированный от материала подложки собственным оксидом.

Пример 3. На поверхности монокристаллической пластины 1 из кремния (Si) по технологии фотолитографии была создана маска 2 из фоторезиста толщиной 50 нм требуемой топологии формируемого монокристаллического нанопровода. Произведено плазмохимическое травление открытых участков монокристаллической пластины травителем SF6 при температуре 25°C в течение 30 секунд. В результате профиль травления монокристаллического материала характеризовался отрицательным углом в 7,6 градусов наклона к поверхности. Глубина травления составила 75 нм, ширина верхней части сформированной трапециевидной балки составила 50 нм, а перешейка 30 нм.

После этого производилось полное удаление маски с поверхности балки при помощи травления в водородной плазме при температуре 25°C в течение 90 секунд. В результате удаления маски балка представляет собой выступ 4 в монокристаллической пластине 1.

Затем проводился процесс окисления монокристалла при помощи обработки в кислородной плазме на глубину 15 нм. В результате перешеек, соединяющий нижнее основание сформированной трапециевидной балки с монокристаллической пластиной был полностью преобразован в оксид 3. В средней части балки остался неокисленный материал, представляющий собой монокристалл, геометрическая форма которого была задана рисунком маски на поверхности пластины, электрически изолированный от материала подложки собственным оксидом, покрытый сверху слоем оксида толщиной 15 нм.


СПОСОБ ФОРМИРОВАНИЯ МОНОКРИСТАЛЛИЧЕСКИХ НАНОПРОВОДНИКОВ В МАТРИЦЕ ИЗ СОБСТВЕННОГО ОКСИДА
СПОСОБ ФОРМИРОВАНИЯ МОНОКРИСТАЛЛИЧЕСКИХ НАНОПРОВОДНИКОВ В МАТРИЦЕ ИЗ СОБСТВЕННОГО ОКСИДА
Источник поступления информации: Роспатент

Showing 191-200 of 263 items.
29.03.2019
№219.016.f7ff

Устройство для подачи пара цезия в термоэммисионный преобразователь

Изобретение касается термоэмиссионного преобразования тепловой энергии в электрическую и относится к устройствам подачи пара цезия в межэлектродный зазор термоэмиссионного преобразователя (ТЭП). Технический результат - повышенная емкость по цезию достигается за счет того, что предложено...
Тип: Изобретение
Номер охранного документа: 0002464668
Дата охранного документа: 20.10.2012
04.04.2019
№219.016.fca0

Способ получения сверхтонких пленок кремния на сапфире

Изобретение относится к микроэлектронике. Сущность изобретения: в способе получения сверхтонких пленок кремния на сапфире в объектах, содержащих сапфировую подложку и исходный слой кремния, толщина которого значительно больше толщины получаемых тонких пленок кремния, производят аморфизацию...
Тип: Изобретение
Номер охранного документа: 0002427941
Дата охранного документа: 27.08.2011
01.05.2019
№219.017.47cd

Способ и устройство для оптимизации рециклинга рабочего газа в токамаке

Изобретение относится к способу оптимизации рециклинга рабочего газа в токамаке. Способ предусматривает поступление в плазму молекул и атомов рабочего газа с поверхностей стенок вакуумной камеры, подвижного и неподвижного лимитеров, и системы газонапуска с трубопроводом. Причем одновременно...
Тип: Изобретение
Номер охранного документа: 0002686478
Дата охранного документа: 29.04.2019
08.05.2019
№219.017.490f

Автономная энергетическая установка

Изобретение относится энергетике, а именно к автономным системам энергоснабжения объектов, удаленных от центрального энергоснабжения. Автономная энергетическая установка содержит аппаратный и топливный отсек, расположенные внутри корпуса, первичный источник энергии в виде источника...
Тип: Изобретение
Номер охранного документа: 0002686844
Дата охранного документа: 06.05.2019
09.05.2019
№219.017.4ee4

Жидкий органический сцинтиллятор

Изобретение относитcя к области ядерной физики и может быть использовано в атомной технике и промышленности, биофизике и медицине, физике космических лучей, в частности для создания высокоэффективных детекторов больших объемов и для решения задач по обеспечению безопасности работы ЯР и ЯЭУ....
Тип: Изобретение
Номер охранного документа: 0002424537
Дата охранного документа: 20.07.2011
09.05.2019
№219.017.4ee7

Устройство для терапии онкологических заболеваний

Изобретение относится к медицинской технике, а именно к устройствам для получения терапевтических и диагностических пучков тепловых и промежуточных нейтронов различной геометрической конфигурации, спектрального состава и интенсивности, применяемых при нейтронной терапии злокачественных опухолей...
Тип: Изобретение
Номер охранного документа: 0002424832
Дата охранного документа: 27.07.2011
09.05.2019
№219.017.4ee9

Жидкий органический сцинтиллятор

Изобретение относится к области ядерной физики и может быть использовано в атомной технике и промышленности, биофизике и медицине, физике космических лучей, в частности для создания высокоэффективных детекторов больших объемов и для решения задач по обеспечению безопасности работы ЛР и ЯЭУ....
Тип: Изобретение
Номер охранного документа: 0002424536
Дата охранного документа: 20.07.2011
09.05.2019
№219.017.4ef1

Способ управления ядерным реактором

Изобретение относится к области управления ядерными реакторами. Способ управления ядерным реактором заключается в регулировании мощности по сигналам датчиков мощности путем управления по каналу введения положительной реактивности и по каналу введения отрицательной реактивности рабочими органами...
Тип: Изобретение
Номер охранного документа: 0002470392
Дата охранного документа: 20.12.2012
09.05.2019
№219.017.4f1f

Способ очистки теплоносителя тяжеловодного реактора от трития

Изобретение относится к области ядерной энергетики, в частности к очистке теплоносителя тяжеловодных реакторов от трития. Техническим результатом является поддержание содержания трития в тяжеловодном теплоносителе ядерного реактора на низком уровне, что позволит снизить радиационную опасность и...
Тип: Изобретение
Номер охранного документа: 0002456690
Дата охранного документа: 20.07.2012
09.05.2019
№219.017.4ffe

Способ диагностики резонансных пульсаций давления в напорном тракте рбмк при помощи первичного преобразователя шарикового расходомера шторм-32м

Изобретение относится к способам измерения динамики давления в напорном тракте РБМК в различных режимах его эксплуатации, в частности к способам диагностики резонансных пульсаций давления в напорном тракте РБМК. В системах, имеющих средства регулирования, подключенные к входам вычислительного...
Тип: Изобретение
Номер охранного документа: 0002448377
Дата охранного документа: 20.04.2012
Showing 151-160 of 160 items.
13.02.2018
№218.016.264e

Тепловой узел установки для выращивания галоидных кристаллов методом горизонтальной направленной кристаллизации

Изобретение относится к области техники, связанной с выращиванием кристаллов из расплавов методом горизонтально направленной кристаллизации (ГНК), которые широко используются в качестве сцинтилляторов для детекторов ионизирующего излучения, лазерных кристаллов и элементов оптических приборов,...
Тип: Изобретение
Номер охранного документа: 0002643980
Дата охранного документа: 06.02.2018
17.02.2018
№218.016.2aa3

Устройство для стационарной генерации ионного пучка

Изобретение относится к области создания ионных источников, предназначенных для работы инжекторов быстрых атомов водорода в стационарном режиме (атомные пучки большой мощности - до 2 мегаватт), которые могут использоваться для нагрева плазмы в магнитных ловушках. Технический результат -...
Тип: Изобретение
Номер охранного документа: 0002642852
Дата охранного документа: 29.01.2018
04.04.2018
№218.016.31b9

Способ создания интегрированного криогенного адаптера питания на одном чипе в одном технологическом процессе

Изобретение относится к области сверхпроводниковой микроэлектроники, в частности к способу создания интегрированного криогенного адаптера питания на одном чипе. Способ включает нанесение на подложку слоя сверхпроводника и формирование из него методом электронной литографии сверхпроводящих...
Тип: Изобретение
Номер охранного документа: 0002645167
Дата охранного документа: 16.02.2018
04.04.2018
№218.016.3482

Способ получения гранулированного биокатализатора на основе иммобилизованных клеток дрожжей для проведения реакции переэтерификации

Изобретение относится к области биохимии. Предложен способ получения гранулированного биокатализатора на основе иммобилизованных клеток дрожжей. Способ включает наращивание биомассы дрожжей Yarrowia lipolytica ВКПМ Y-3600, отделение биомассы, лиофильную сушку биомассы, приготовление суспензии...
Тип: Изобретение
Номер охранного документа: 0002646104
Дата охранного документа: 01.03.2018
06.12.2018
№218.016.a40f

Способ перевода сверхпроводника в элементах логики наноразмерных электронных устройств из сверхпроводящего состояния в нормальное

Использование: для создания функциональных переключаемых электронных устройств различного назначения. Сущность изобретения заключается в том, что способ перевода сверхпроводника в электронных функциональных наноразмерных устройствах из сверхпроводящего состояния в нормальное осуществляют путем...
Тип: Изобретение
Номер охранного документа: 0002674063
Дата охранного документа: 04.12.2018
20.02.2019
№219.016.bfec

Устройство энергонезависимой памяти

Изобретение к устройствам энергонезависимой электрически перепрограммируемой памяти, реализуемы с помощью методов микро- и нанотехнологии. Техническим результатом является снижение энергозатрат на считывание хранящейся информации и ее перезапись. Устройство содержит немагнитную матрицу и...
Тип: Изобретение
Номер охранного документа: 0002374704
Дата охранного документа: 27.11.2009
19.07.2019
№219.017.b665

Способ формирования сверхпроводящих функциональных элементов электронных устройств, имеющих области с различными значениями плотности критического тока

Использование: для создания функциональных переключаемых электронных устройств. Сущность изобретения заключается в том, что способ формирования сверхпроводящих функциональных элементов электронных устройств, имеющих области с различными значениями плотности критического тока, включает...
Тип: Изобретение
Номер охранного документа: 0002694800
Дата охранного документа: 16.07.2019
19.07.2019
№219.017.b699

Способ уменьшения критического тока перехода наноразмерного сверхпроводника из сверхпроводящего состояния в нормальное

Использование: для применения в процессорах с высокой плотностью функциональных элементов на основе сверхпроводящих нанопроводов. Сущность изобретения заключается в том, что способ уменьшения критического тока перехода наноразмерного сверхпроводника из сверхпроводящего состояния в нормальное...
Тип: Изобретение
Номер охранного документа: 0002694799
Дата охранного документа: 16.07.2019
10.10.2019
№219.017.d476

Сверхпроводниковый дискретный счетный компонент

Использование: для создания счетного компонента в наноразмерных цифровых устройствах в различных областях науки и техники. Сущность изобретения заключается в том, что сверхпроводниковый дискретный счетный компонент, характеризующийся дискретным набором равновесных состояний, содержит...
Тип: Изобретение
Номер охранного документа: 0002702402
Дата охранного документа: 08.10.2019
21.05.2023
№223.018.6922

Способ снижения величины гистерезиса по току перехода сверхпроводящих нанопроводов из сверхпроводящего состояния в нормальное и обратно

Изобретение относится к микроэлектронике и может быть использовано при создании функциональных переключаемых электронных устройств различного назначения, в том числе, для применения в процессорах с высокой плотностью функциональных элементов на основе сверхпроводящих нанопроводов. Способ...
Тип: Изобретение
Номер охранного документа: 0002794493
Дата охранного документа: 19.04.2023
+ добавить свой РИД