×
27.12.2013
216.012.9175

Результат интеллектуальной деятельности: СТРУЙНЫЙ ТЕПЛООБМЕННИК ТИПА ТРУБА В ТРУБЕ

Вид РИД

Изобретение

Аннотация: Заявленное изобретение относится к теплообменной аппаратуре и может быть использовано в различных отраслях промышленности, сельского и коммунального хозяйств. Теплообменник типа труба в трубе для жидких и газообразных сред, содержащий концентрично расположенные в цилиндрическом корпусе теплообменную трубу и наружный турбулизатор, делящий межтрубное пространство на входную и выходную полости. На поверхности турбулизатора выполнены отверстия, служащие вводом среды в полость между теплообменной трубой и наружным турбулизатором. Внутри теплообменной трубы концентрично расположен внутренний турбулизатор, делящий межтрубное пространство на входную и выходную полости и имеющий на поверхности отверстия, служащие вводом среды в полость между теплообменной трубой и внутренним турбулизатором. Использование изобретения позволит интенсифицировать теплообмен за счет практически полного удаления пограничного слоя с наружной и внутренней поверхностей теплопроводной трубы с нагреваемой (или охлаждаемой) средой. Это влечет за собой увеличение коэффициента теплопередачи между теплоносителем и нагреваемой (или охлаждаемой) средой до 10 и более раз, соответствующее этому уменьшение необходимой теплообменной поверхности, длины струйных теплообменников, их массы и габаритных размеров. 2 ил.
Основные результаты: Теплообменник типа труба в трубе для жидких и газообразных сред, содержащий концентрично расположенные в цилиндрическом корпусе теплообменную трубу и наружный турбулизатор, делящий межтрубное пространство на входную и выходную полости и имеющий на поверхности отверстия, служащие вводом среды в полость между теплообменной трубой и наружным турбулизатором, отличающийся тем, что в теплообменной трубе концентрично расположен внутренний турбулизатор, делящий межтрубное пространство на входную и выходную полости и имеющий на поверхности отверстия, служащие вводом среды в полость между теплообменной трубой и внутренним турбулизатором.

Заявленное изобретение относится к теплообменной аппаратуре и может быть использовано в различных отраслях промышленности, сельского и коммунального хозяйств.

Известны теплообменники типа «труба в трубе», представляющие из себя две трубы, одна из которых, меньшего диаметра, концентрично расположена внутри другой, большего диаметра, с кольцевым зазором, называемым межтрубным пространством (Бажан П.И. и др. Справочник по теплообменным аппаратам. М. Машиностроение, 1989, с.56, рис.1.15, б). По внутренней трубе прокачивается жидкость, например, более высокой температуры (горячая), а по межтрубному пространству - жидкость с меньшей температурой (холодная). При этом стенка внутренней трубы нагревается и передает тепло холодной жидкости, у которой вследствие этого температура повышается. Направление передачи тепла может быть таким, как указано выше, или в противоположном направлении в зависимости от соотношения температур во внутренней трубе и в межтрубном пространстве.

Примечание. Под термином «жидкость» здесь и далее понимается среда в жидком или газообразном состоянии.

Эффективность теплообмена зависит в основном от толщины пограничного слоя жидкости, т.е. слоя, непосредственно примыкающего к стенке, имеющего сравнительно с основным потоком небольшую толщину и остающегося практически неподвижным относительно стенки. До 95% и более термического сопротивления при передаче тепла от жидкости к стенке (или наоборот) составляет термическое сопротивление именно пограничного слоя. И если его каким-либо образом убрать или хотя бы существенно уменьшить его толщину, термическое сопротивление передаче тепла от жидкости к стенке уменьшится во много раз и станет сопоставимым с термическим сопротивлением стенки. Поскольку трубы в теплообменниках обычно изготовляют из металлов, то термическое сопротивление их стенок близко к нулю и при толщине стенки в несколько миллиметров при расчетах общего коэффициента теплопередачи его (термическое сопротивление стенки) обычно не учитывают.

Для повышения эффективности теплообмена стремятся тем или иным способом уменьшить толщину пограничного слоя.

Наиболее простой и доступный способ - повышение турбулентности жидкостей с обеих сторон стенки (т.е. со стороны теплоносителя и нагреваемой (или охлаждаемой) средой).

При увеличении турбулентности частицы жидкости из основного потока проникают внутрь той части пограничного слоя, которая примыкает к основному потоку, и некоторая доля его вовлекается в общее хаотическое движение. В результате уменьшается толщина неподвижной или малоподвижной части пограничного слоя, что приводит к уменьшению термического сопротивления пограничного слоя и к росту общего коэффициента теплопередачи, т.е. к росту эффективности теплообмена.

Увеличение турбулентности может быть достигнуто увеличением скорости жидкостей, созданием различной формы и величины выступов и впадин на стенках, разделяющих потоки жидкостей, установкой на внутренние и наружные трубы турбулизующих элементов.

Следует отметить, что повышение скорости имеет свои отрицательные стороны.

Во-первых, рост турбулентности в первом приближении пропорционален росту скорости, а гидравлическое сопротивление возрастает при этом пропорционально квадрату роста скорости. Т.е. имеется определенный предел, после достижения которого, становится невыгодным, а то и невозможным, дальнейшее увеличение скорости.

Во-вторых, уменьшается время контакта жидкостей при теплообмене, что делает необходимым в ряде случаев увеличить поверхность теплообмена.

Поэтому стремятся для повышения турбулентности потоков жидкостей не повышать скорости, а применять другие, упомянутые выше способы турбулизации.

Известны теплообменники типа «труба в трубе», в которых на внутреннюю трубу намотана проволока, имеющая различные шаги навивки и конфигурацию. Недостатком таких теплообменников является незначительное повышение турбулентности с опережающим ростом гидравлического сопротивления (патент RU №2121122).

Известны также теплообменники, на внутреннюю трубу которых установлены, например, на сварке винтообразные ребра, высота которых почти равна расстоянию от внутренней трубы до наружной. Такие ребра в большей степени повышают турбулентность в межтрубном пространстве по сравнению с намоткой проволоки. Кроме того, они увеличивают площадь теплового контакта стенки внутренней трубы с жидкостью межтрубного пространства, т.е. повышается эффективность теплообмена (патент SU №800566).

Недостатками таких теплообменников являются следующие:

- не вся жидкость в межтрубной полости вовлекается в винтовое движение - значительная часть ее протекает сквозь кольцевой зазор между винтовыми ребрами и стенкой наружной трубы;

- увеличение скорости жидкости, ее турбулентности происходит всего на несколько процентов, в крайнем случае, на несколько десятков процентов, поскольку угол подъема винтовой линии ребер невелик. А с увеличением угла подъема гидравлическое сопротивление возрастает значительно быстрее роста турбулентности и все большее количество жидкости начинает протекать сквозь кольцевой зазор;

- теплоотдача от жидкости во внутренней трубе к ее стенке остается на прежнем, сравнительно низком уровне, что и определяет эффективность теплопередачи в целом.

Известен теплообменник «труба в трубе» патент SU №1222207. В этом теплообменнике внутрь внутренней трубы установлена турбулизирующая вставка в виде закрученной по винтовой линии полосы из металлического листа с турбулизирующими лепестками вдоль ее продольных кромок. Эта вставка вызывает закручивание жидкости по винтовой линии, существенно увеличивает турбулентность жидкости в трубе и теплоотдачу от жидкости к стенке.

Однако данный аналог имеет следующие недостатки:

- не вся жидкость в трубе вовлекается в винтовое движение (ориентировочно только 20-30%), что не позволяет существенно повысить турбулентность жидкости, а следовательно, и величину теплоотдачи;

- в связи с недостаточным развитием турбулентности уменьшение толщины турбулентного слоя происходит на незначительную величину (несколько процентов). Его термическое сопротивление остается высоким, и теплоотдача повышается незначительно.

Известен теплообменник типа «труба в трубе» патент SU №510634.

Теплообменник содержит цилиндрический корпус, размещенную по его оси теплообменную трубу с волнистым турбулизатором, имеющим радиальные отверстия. Выступы турбулизатора направлены вдоль продольной оси трубы. На концах турбулизатора установлены торцовые заглушки.

При подаче жидкости в межтрубное пространство, она проходит через отверстия в турбулизаторе и поступает в виде отдельных струек на наружную поверхность стенки теплообменной трубы, тем самым интенсивно смывая пограничный слой на участке воздействия струй. За счет этого в несколько раз повышается теплоотдача от жидкости к стенке теплообменной трубы.

Этот теплообменник принят за прототип.

Однако он имеет следующие недостатки:

- турбулизатор сложен в изготовлении, особенно для малого диаметра (10-30) мм;

- теплоотдача от жидкости, протекающей внутри теплообменной трубы, остается на прежнем невысоком уровне, а это не позволяет существенно повысить эффективность теплопередачи в целом, (не более чем в два раза, поскольку в обычном теплообменнике типа «труба в трубе» эффективность теплоотдачи от жидкости, заполняющей межтрубное пространство, к стенке теплообменной трубы и от жидкости внутри теплообменной трубы к ее стенке примерно одинаковы).

Целью настоящего изобретения является более существенное увеличение коэффициента теплопередачи - в несколько раз. Это в свою очередь позволит во столько же раз сократить длину теплообменника и, следовательно, также, в разы уменьшить его габариты и массу, хотя и в меньшей степени, чем уменьшение длины.

Поставленная цель достигается за счет того, что теплообменник типа труба в трубе, для жидких и газообразных сред, содержащий концентрично расположенные в цилиндрическом корпусе теплообменную трубу и наружный турбулизатор, делящий межтрубное пространство на входную и выходную полости. На поверхности турбулизатора выполнены отверстия, служащие вводом среды в полость между теплообменной трубой и наружным турбулизатором. Внутри теплообменной трубы концентрично расположен внутренний турбулизатор, делящий межтрубное пространство на входную и выходную полости и имеющий на поверхности отверстия, служащие вводом среды в полость между теплообменной трубой и внутренним турбулизатором.

Устройство предлагаемого теплообменника схематически показано на фиг.1 и фиг.2.

На фиг.1 показан продольный разрез теплообменника, на фиг.2 - сечение А-А фиг.1.

Теплообменник типа труба в трубе, для жидких и газообразных сред, содержит: цилиндрический корпус 4, концентрично расположенные в нем теплообменную трубу 8 и наружный турбулизатор 6, делящий межтрубное пространство на входную 7 и выходную 3 полости. На поверхности наружного турбулизатора 6 выполнены отверстия 5, служащие вводом среды в полость 3 между теплообменной трубой 8 и наружным турбулизатором 6. Внутри теплообменной трубы 8 концентрично расположен внутренний турбулизатор 2, делящий межтрубное пространство на входную 1 и выходную 9 полости и имеющий на поверхности отверстия 12, служащие вводом среды в полость между теплообменной трубой 8 и внутренним турбулизатором 2. Величины кольцевых зазоров межтрубного пространства, а также диаметры отверстий 12, 5, расположенных на внутреннем и наружном турбулизаторах 2 и 6 определяются тепловым и гидравлическим расчетами. Ориентировочно суммарная площадь отверстий 12 должна быть на 10-20% меньше площади поперечного сечения кольцевого зазора межтрубного пространства между теплообменной трубой 8 и внутренним турбулизатором 2. При этом суммарная площадь отверстий 5 должна быть на 10-20% меньше площади поперечного сечения кольцевого зазора межтрубного пространства между теплообменной трубой 8 и наружным турбулизатором 6. Для достижения максимального коэффициента теплопередачи перфорированные участки внутреннего и наружного турбулизаторов 2 и 6 должны быть расположены по длине напротив друг - друга, на участке интенсивного (рабочего) теплообмена. Позиции 10, 11, 13, 14, 15, 16 - уплотнения.

Работает теплообменник следующим образом. Во внутренний турбулизатор 2, через входную полость 1, поступает среда, например горячая жидкость, заполняя пространство внутреннего турбулизатора 2, проходит до отверстий 12 и выходит через них в выходную полость 9 теплообменной трубы 8. Скорость жидкости в отверстиях зависит от давления во внутреннем турбулизаторе 2. Например, при давлении 0,5 МПа скорость будет около 30 м/с. При изменении давления скорость будет изменяться пропорционально корню квадратному из величины изменения давления.

Струи жидкости при скорости, приведенной для примера выше, достигая стенки теплообменной трубы 8, интенсивно смывают пограничный слой в зоне действия струй (это пятно в виде круга диаметром равным примерно 4-6 диаметрам струи). Горячая жидкость при этом вступает в контакт непосредственно со стенкой теплообменной трубы 8, а местный коэффициент теплоотдачи возрастает в десятки раз. При достаточно частом расположении отверстий на внутреннем турбулизаторе 2, пограничный слой на внутренней поверхности стенки теплообменной трубы 8 в зоне действия струй из отверстий оказывается практически полностью удаленным. И на этом участке в целом коэффициент теплоотдачи также возрастет в десятки раз. Из этого следует соответствующее сокращение поверхности теплообмена (т.е. длины труб).

Аналогичная картина наблюдается при поступлении холодной жидкости в качестве теплоносителя через входную полость 7 в цилиндрический корпус 4. Только холодный теплоноситель поступает сначала в кольцевой зазор межтрубного пространства между наружным турбулизатором 6 и цилиндрическим корпусом 4, а потом, проходя через отверстия 5 в наружном турбулизаторе 6, омывает наружную поверхность теплообменной трубы 8.

В результате коэффициент теплопередачи от теплоносителя к нагреваемой (или охлаждаемой) среде в целом также возрастает в десятки раз, приближаясь по своей величине к коэффициенту теплопередачи теплопроводностью через стенку теплообменной трубы 8.

Использование изобретения позволит интенсифицировать теплообмен за счет практически полного удаления пограничного слоя с наружной и внутренней поверхностей теплопроводной трубы с нагреваемой (или охлаждаемой) средой. Это влечет за собой увеличение коэффициента теплопередачи между теплоносителем и нагреваемой (или охлаждаемой) средой до 10 и более раз, соответствующее этому уменьшение необходимой теплообменной поверхности, длины струйных теплообменников, их массы и габаритных размеров.

Теплообменник типа труба в трубе для жидких и газообразных сред, содержащий концентрично расположенные в цилиндрическом корпусе теплообменную трубу и наружный турбулизатор, делящий межтрубное пространство на входную и выходную полости и имеющий на поверхности отверстия, служащие вводом среды в полость между теплообменной трубой и наружным турбулизатором, отличающийся тем, что в теплообменной трубе концентрично расположен внутренний турбулизатор, делящий межтрубное пространство на входную и выходную полости и имеющий на поверхности отверстия, служащие вводом среды в полость между теплообменной трубой и внутренним турбулизатором.
СТРУЙНЫЙ ТЕПЛООБМЕННИК ТИПА ТРУБА В ТРУБЕ
СТРУЙНЫЙ ТЕПЛООБМЕННИК ТИПА ТРУБА В ТРУБЕ
Источник поступления информации: Роспатент

Showing 81-90 of 94 items.
04.04.2018
№218.016.354e

Солнечно-ветровая энергетическая установка

Изобретение относится к области возобновляемых источников энергии: ветровой и солнечной энергетики. Солнечно-ветровая энергетическая установка содержит неподвижную платформу, на которой в подшипниковой опоре установлен вертикальный вращающийся вал, на верхнем конце которого жестко закреплена...
Тип: Изобретение
Номер охранного документа: 0002645891
Дата охранного документа: 28.02.2018
20.02.2019
№219.016.c157

Способ автоматического построения трехмерных геометрических моделей электрорадиоизделий в системе геометрического моделирования

Изобретение относится к области информационных технологий и может быть использовано при проектировании на компьютере сложных электротехнических изделий. Техническим результатом является сокращение временных и вычислительных ресурсов, затрачиваемых на проектирование электротехнических изделий....
Тип: Изобретение
Номер охранного документа: 0002413305
Дата охранного документа: 27.02.2011
20.02.2019
№219.016.c452

Способ изготовления развертываемой крупногабаритной двухзеркальной антенны космического аппарата

Изобретение относится к космической технике, в частности к системе изготовления развертываемых (раскрываемых) крупногабаритных двухзеркальных антенн (диаметром раскрыва рефлектора порядка 12 м и более) с высокоточными отражающими поверхностями главного зеркала и контррефлектора. Способ...
Тип: Изобретение
Номер охранного документа: 0002468479
Дата охранного документа: 27.11.2012
23.02.2019
№219.016.c6ae

Способ работы электропривода с трехступенчатым планетарным редуктором

Изобретение относится к машиностроению и может быть использовано в качестве способа работы при реализации его в трехступенчатом планетарном редукторе. Способ реализован для примера в электроприводе с трехступенчатым планетарным редуктором, в котором передачу крутящего момента от быстроходного...
Тип: Изобретение
Номер охранного документа: 0002465496
Дата охранного документа: 27.10.2012
08.03.2019
№219.016.d5af

Высокоточный космический акселерометр

Изобретение относится к области космической техники и может быть использовано для определения ускорения поступательного движения космического аппарата. Акселерометр содержит инерционную массу, корпус и электрическую схему переключателя и фиксации времени, внутреннюю полую сферу, имеющую...
Тип: Изобретение
Номер охранного документа: 0002468374
Дата охранного документа: 27.11.2012
11.03.2019
№219.016.d891

Способ и устройство осушения воздуха для дегидрации волновода антенны

Предлагаемое изобретение относится к радиотехнике и предназначено для защиты волновода антенны от воздействия факторов окружающей среды, в частности от влаги и пыли, путем подачи в защищаемые полости осушенного воздуха под избыточным давлением. Согласно изобретению устройство содержит воздушную...
Тип: Изобретение
Номер охранного документа: 0002395138
Дата охранного документа: 20.07.2010
29.03.2019
№219.016.f14d

Устройство для измерения угловых перемещений

Изобретение относится к измерительной технике. Технический результат: повышение точности измерения за счет уменьшения погрешности, вызванной смещением оси вращения преобразования устройства для измерения угловых перемещений, снижение требований к точности исполнения и жесткости механических...
Тип: Изобретение
Номер охранного документа: 0002397440
Дата охранного документа: 20.08.2010
19.04.2019
№219.017.33d9

Силовой ключ на мдп-транзисторе

Изобретение относится к импульсной технике и может быть применено в различных коммутационных устройствах. Технический результат заключается в повышении надежности работы силового ключа. Для этого предложен силовой ключ на МДП-транзисторе, содержащий трансформатор, конец вторичной обмотки...
Тип: Изобретение
Номер охранного документа: 0002469474
Дата охранного документа: 10.12.2012
09.06.2019
№219.017.7f65

Способ формирования испытательных тестов электронных устройств

Изобретение относится к способам испытаний электронных устройств различного назначения путем использования испытательных тестов (наборы испытательных воздействий и соответствующих им допустимых отклонений контролируемых параметров устройств), сформированных по результатам математического...
Тип: Изобретение
Номер охранного документа: 0002469372
Дата охранного документа: 10.12.2012
19.06.2019
№219.017.85ef

Способ изготовления жидкостного тракта системы терморегулирования космического аппарата

Изобретение относится к системам терморегулирования космических аппаратов, в жидкостном тракте которых применяется гидроаккумулятор с герметизированной газовой полостью, заправленной двухфазным рабочим телом. Способ включает сборку жидкостного тракта и контроль степени его герметичности. После...
Тип: Изобретение
Номер охранного документа: 0002398718
Дата охранного документа: 10.09.2010
Showing 81-88 of 88 items.
04.04.2018
№218.016.354e

Солнечно-ветровая энергетическая установка

Изобретение относится к области возобновляемых источников энергии: ветровой и солнечной энергетики. Солнечно-ветровая энергетическая установка содержит неподвижную платформу, на которой в подшипниковой опоре установлен вертикальный вращающийся вал, на верхнем конце которого жестко закреплена...
Тип: Изобретение
Номер охранного документа: 0002645891
Дата охранного документа: 28.02.2018
11.03.2019
№219.016.d80d

Сотовая панель

Изобретение относится к конструкции систем терморегулирования космических аппаратов, преимущественно телекоммуникационных спутников с длительным сроком эксплуатации. Панель содержит два независимых встроенных параллельных тракта теплоносителя, приклеенных своими полками к параллельно...
Тип: Изобретение
Номер охранного документа: 0002346860
Дата охранного документа: 20.02.2009
11.03.2019
№219.016.d95f

Способ компоновки космического аппарата

Изобретение относится преимущественно к телекоммуникационным спутникам с мощностью энергопотребления на уровне 1-2,5 кВт. Согласно изобретению космический аппарат (спутник) выполняют из двух модулей: полезной нагрузки и служебных систем. Приборы устанавливают на внутренних обшивках их...
Тип: Изобретение
Номер охранного документа: 0002353553
Дата охранного документа: 27.04.2009
09.05.2019
№219.017.4c3b

Мембранный компрессор

Устройство предназначено для использования в области машиностроения, преимущественно для перекачивания дорогих и редких газов высокой чистоты с одновременным повышением их давления. Мембранный компрессор состоит из корпуса и крышки, от которых отходят трубки входа газа низкого давления, выхода...
Тип: Изобретение
Номер охранного документа: 0002398132
Дата охранного документа: 27.08.2010
29.06.2019
№219.017.9cbe

Система наддува топливного бака

Изобретение относится к области топливных систем летательных аппаратов, преимущественно беспилотных. Система наддува топливного бака имеет топливный бак (5), топливная полость которого сообщена с линией (6) подачи топлива в двигатель, и газовый баллон (1) с заправочным клапаном (2), сообщенный...
Тип: Изобретение
Номер охранного документа: 0002311318
Дата охранного документа: 27.11.2007
06.07.2019
№219.017.a81a

Ветродвигатель с ветроколесом крыльчатого типа

Изобретение относится к области энергетики и может быть использовано для преобразования энергии ветра в другие виды энергии. Ветродвигатель содержит ветроколесо крыльчатого типа, ось которого расположена вертикально. Наружные концы его крыльев жестко связаны между собой и закреплены каждый в...
Тип: Изобретение
Номер охранного документа: 0002387870
Дата охранного документа: 27.04.2010
06.07.2019
№219.017.a8cd

Подвесная дорога с грузонесущей нитью

Изобретение относится к подвесной дороге. Подвесная дорога с грузонесущей нитью характеризуется тем, что в качестве грузонесущей нити используется тяговая цепь для цепных передач, например втулочно-роликовая, в незамкнутом и развернутом в одну линию состоянии, длиной, равной длине всей...
Тип: Изобретение
Номер охранного документа: 0002421356
Дата охранного документа: 20.06.2011
10.07.2019
№219.017.aeaf

Траверса для переносов и проведения монтажно-стыковочных работ крупногабаритных изделий

Изобретение относится к подъемно-перегрузочным устройствам для проведения операций по переносу и монтажно-стыковочным работам. Траверса содержит несущую балку с установленной на ней серьгой и стропы, снабженные такелажными узлами и регулируемыми винтовыми вставками. Стропы имеют общие точки...
Тип: Изобретение
Номер охранного документа: 0002323870
Дата охранного документа: 10.05.2008
+ добавить свой РИД