×
20.12.2013
216.012.8e69

Результат интеллектуальной деятельности: РЕАКТОРНО-ЛАЗЕРНАЯ УСТАНОВКА С ПРЯМОЙ НАКАЧКОЙ ОСКОЛКАМИ ДЕЛЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области преобразования ядерной энергии. Реакторно-лазерная установка с прямой накачкой осколками деления состоит из подкритического лазерного блока с активным веществом (1) и запального импульсного ядерного реактора, окруженного подкритическим лазерным блоком. Активное вещество (1) включает лазерную среду (4), не пороговый делящийся ядерный материал (7) и замедлитель (3) нейтронов. Запальный импульсный ядерный реактор состоит из активной зоны, содержащей делящийся ядерный материал, и модулятора реактивности (5). В качестве делящегося ядерного материала в запальном импульсном ядерном реакторе используют пороговый делящийся ядерный материал (9). В подкритическом лазерном блоке в качестве не порогового делящегося ядерного материала (7) используют, например, уран-233, уран-235, плутоний-239. В запальном импульсном ядерном реакторе в качестве порогового делящегося ядерного материала (9) используют, например, нептуний-237, плутоний-240 и, по меньшей мере, одну активную зону. Технический результат состоит в повышении энергии и мощности импульса накачки лазерной среды. 5 з.п. ф-лы, 5 ил.

Изобретение относится к области преобразования ядерной энергии и может быть использовано в реакторно-лазерной установке с прямой накачкой осколками деления.

Известна лазерная термоядерная установка для получения электрической энергии, содержащая камеру, бланкет, термоядерную мишень, задающий генератор, предварительный усилитель, элементы транспортировки пучка, усилители мощности, фокусирующие элементы, блок управления, контур теплоносителя, парогенератор и электротурбогенератор [А.с. СССР №1626954. Лазерная термоядерная установка для получения электрической энергии. Заявка №4398587, 28.03.1988].

Недостатком известного устройства является то, что в запальном быстром реакторе усилителя мощности используют не пороговые делящиеся элементы, которые не позволяют в полной мере реализовать, заключенную в ядерном источнике накачки энергию и мощность из-за наличия в нем сильной обратной нейтронной связи в системе «лазерный блок - запальный реактор».

Для исключения указанного недостатка в реакторно-лазерной установке с прямой накачкой осколками деления, состоящей из подкритического лазерного блока с активным веществом и запального импульсного ядерного реактора, окруженного подкритическим лазерным блоком, в которой активное вещество включает лазерную среду, не пороговый делящийся ядерный материал и замедлитель нейтронов, а запальный импульсный ядерный реактор состоит из активной зоны, содержащей делящийся ядерный материал, и модулятора реактивности, предлагается в качестве делящегося ядерного материала в запальном импульсном ядерном реакторе использовать пороговый делящийся ядерный материал.

В частных случаях в реакторно-лазерной установке с прямой накачкой осколками деления предлагается:

- в подкритическом лазерном блоке в качестве не порогового делящиеся ядерного материала использовать, например, уран-233, уран-235, плутоний-239;

- в запальном импульсном ядерном реакторе в качестве порогового делящегося ядерного материала использовать, например, нептуний-237, плутоний-240;

- запальный импульсный ядерный реактор выполнить, по меньшей мере, из одной активной зоны;

- подкритический лазерный блок выполнить в виде пучка дистанционируемых решетками цилиндрических труб, представляющих собой лазерно-активные элементы и отражатель нейтронов, расположенных соответственно в его центральной и периферийной частях, соответствующие лазерно-активным элементам цилиндрические трубы снабдить торцевыми оптическими окнами и изнутри покрыть не пороговым делящимся материалом, объем лазерно-активных элементов заполнить лазерной средой, а замедлитель нейтронов разместить в межтрубном пространстве;

- подкритический лазерный блок выполнить в виде коаксиального расположенных наружной и внутренней цилиндрических труб, ограниченных торцевыми оптическими окнами, образованный ими замкнутый объем заполнить активным веществом в виде гомогенной смеси из лазерной среды с не пороговым делящимся ядерным материалом и замедлителя нейтронов, а внешнюю поверхность наружной цилиндрической трубы окружить отражателем нейтронов.

Сущность изобретения поясняется фигурами, где на фиг.1 и 2 представлены продольные и поперечное сечения реакторно-лазерной установки с прямой накачкой осколками деления с подкритическим лазерным блоком, выполненным с использованием наружной и внутренней цилиндрических труб; на фиг.3 и 4 представлены продольные и поперечное сечения реакторно-лазерной установки с прямой накачкой осколками деления с подкритическим лазерным блоком, выполненным с использованием пучка лазерно-активных элементов и отражателя нейтронов; на фиг.5 - поперечное сечение лнзерно-активного элемента.

На фигурах приняты следующие обозначения: 1 - активное вещество; 2 - внутренняя цилиндрическая труба; 3 - замедлитель нейтронов; 4 - лазерная среда; 5 - модулятор реактивности; 6 - наружная цилиндрическая труба; 7 - не пороговый делящийся ядерный материал; 8 - отражатель нейтронов; 9 - пороговый делящийся ядерный материал; 10 - решетка; 11 - торцевое оптическое окно; 12 - цилиндрическая труба.

Реакторно-лазерная установка с прямой накачкой осколками деления состоит из подкритического лазерного блока с активным веществом 1 и запального импульсного ядерного реактора, окруженного подкритическим лазерным блоком.

Активное вещество 1 включает лазерную среду 4, не пороговый делящийся ядерный материал 7 и замедлитель 3 нейтронов.

Запальный импульсный ядерный реактор содержит активную зону из порогового делящегося ядерного материала 9 и модулятор 5 реактивности.

Модулятор 5 реактивности - система управления реактором, включающая, в частности, регулятор реактивности, стоп-стержень, стержень тонкой регулировки, импульсный стержень, блок безопасности.

В частных случаях реализации устройства предусмотрено следующее.

В подкритическом лазерном блоке в качестве не порогового делящиеся ядерного материала 7 используют, например, уран-233, уран-235, плутоний-239.

В запальном импульсном ядерном реакторе в качестве порогового делящегося ядерного материала 9 используют, например, нептуний-237, плутоний-240.

Запальный импульсный ядерный реактор выполнен, по меньшей мере, из одной активной зоны.

Подкритический лазерный блок выполнен в виде пучка дистанционируемых решетками 10 цилиндрических труб 12, представляющих собой лазерно-активные элементы и элементы отражателя 8 нейтронов, расположенных соответственно в его центральной и периферийной частях. Соответствующие лазерно-активным элементам цилиндрические трубы 12 снабжены торцевыми оптическими окнами 11 и изнутри покрыты не пороговым делящимся материалом 7, объем лазерно-активных элементов заполнен лазерной средой 4, а замедлитель 3 нейтронов размещен в межтрубном пространстве.

Подкритический лазерный блок выполнен в виде коаксиального расположенных наружной 6 и внутренней 2 цилиндрических труб, ограниченных торцевыми оптическими окнами 11. Образованный ими замкнутый объем заполнен активным веществом 1 в виде гомогенной смеси из лазерной среды 4 с не пороговым делящимся ядерным материалом 7 и замедлителя 3 нейтронов, а внешняя поверхность наружной цилиндрической трубы 6 окружена отражателем 8 нейтронов.

Устройство в режиме оптического квантового усилителя работает следующим образом.

С помощью модулятора 5 реактивности генерируется импульс делений в запальном импульсном ядерном реакторе. Образовавшиеся нейтроны попадают в Подкритический лазерный блок, замедляются в результате взаимодействия с ядрами замедлителя 3 нейтронов и, вызывая деление ядер не порогового делящегося ядерного материала, находящегося в подкритическом лазерном блоке, размножаются. Возникающие при этом осколки деления тормозятся в лазерной среде 4 и создают в ней ядерно-возбуждаемую плазму с инверсной заселенностью лазерных уровней. Энергия, накопленная в инверсии, выводится из подкритического лазерного блока следующим образом. На вход подкритического лазерного блока подают лазерный пучок задающего генератора. В результате энергия, запасенная в инверсии, снимается в виде фотонов вынужденного излучения и энергия лазерного пучка, проходящего через Подкритический лазерный блок, многократно увеличивается.

Пример конкретного исполнения устройства.

Реакторно-лазерная установка с прямой накачкой осколками деления имеет следующую конструкцию.

Подкритический лазерный блок выполнен в виде пучка дистанционируемых решетками 10 цилиндрических труб 12, представляющих собой лазерно-активные элементы и элементы отражателя 8 нейтронов, расположенных соответственно в его центральной и периферийной частях. Соответствующие лазерно-активным элементам цилиндрические трубы 12 снабжены торцевыми оптическими окнами 11 толщиной 10 мм и изнутри покрыты не пороговым делящимся ядерным материалом 7 - уран-235 с 90% обогащением, толщина слоя которого составляет 5 мкм. Торцевые оптические окна 11 выполнены из кварцевого стекла с просветлением.

Соответствующие лазерно-активным элементам и элементам отражателя нейтронов 8 цилиндрические трубы 12 имеют следующие общие конструктивные характеристики: длину - 2500 мм, наружный диаметр - 49 мм, толщину стенки - 0,5 мм, шаг расположения в треугольной решетке пучка - 52 мм. В подкритическом лазерном блоке использовано 700 лазерно-активных элементов и 200 элементов отражателя нейтронов 8. Причем 60 элементов отражателя нейтронов 8 выполнены из графита и по 70 элементов - из парафина и полиэтилена.

Объем лазерно-активных элементов заполнен лазерной средой 4 в виде гомогенной смеси газов: гелия (600 объемных частей), аргона (200 объемных частей) и ксенона (1 объемная часть). При этом давление в указанном объеме составляет 2 атм.

В межтрубном пространстве в качестве замедлителя 3 нейтронов используют цельные вставки из полиэтилена.

В запальном импульсном ядерном реакторе в качестве порогового делящегося ядерного материала 9 используют нептуний-237 и две активные зоны.

Габаритные размеры установки: описанный диаметр 1,7 м и длина 2,5 м.

Расчетные исследования рассмотренного в примере конкретного исполнения устройства показали, что замена не порогового делящегося материала в запальном импульсном ядерном реакторе на пороговый делящийся ядерный материал в качестве топлива позволяет на пять порядков уменьшить обратную нейтронную связь в системе «лазерный блок-запальный реактор» и в результате, повысить энергию и мощность импульса накачки примерно в 20 раз (энергию с 7 МДж до 120 МДж, мощность с 4 ГВт до 100 ГВт).

Технический результат состоит в повышении энергии и мощности импульса накачки лазерной среды.


РЕАКТОРНО-ЛАЗЕРНАЯ УСТАНОВКА С ПРЯМОЙ НАКАЧКОЙ ОСКОЛКАМИ ДЕЛЕНИЯ
РЕАКТОРНО-ЛАЗЕРНАЯ УСТАНОВКА С ПРЯМОЙ НАКАЧКОЙ ОСКОЛКАМИ ДЕЛЕНИЯ
РЕАКТОРНО-ЛАЗЕРНАЯ УСТАНОВКА С ПРЯМОЙ НАКАЧКОЙ ОСКОЛКАМИ ДЕЛЕНИЯ
РЕАКТОРНО-ЛАЗЕРНАЯ УСТАНОВКА С ПРЯМОЙ НАКАЧКОЙ ОСКОЛКАМИ ДЕЛЕНИЯ
РЕАКТОРНО-ЛАЗЕРНАЯ УСТАНОВКА С ПРЯМОЙ НАКАЧКОЙ ОСКОЛКАМИ ДЕЛЕНИЯ
Источник поступления информации: Роспатент

Showing 11-20 of 24 items.
27.02.2015
№216.013.2d3f

Устройство для получения стронция-82

Изобретение относится к устройству для получения стронция-82. Заявленное устройство содержит нагреватель (9) и изолирующую камеру (4), заполняемую газом, не взаимодействующим с металлическим рубидием, в которой установлены облученная в потоке ускоренных заряженных частиц мишень (10),...
Тип: Изобретение
Номер охранного документа: 0002543051
Дата охранного документа: 27.02.2015
20.04.2015
№216.013.41ec

Твердоэлектролитный датчик концентрации кислорода в газовых средах

Изобретение относится к измерительной технике. Твердоэлектролитный датчик концентрации кислорода в газовых средах содержит керамический чувствительный элемент (3), герметично размещенный в металлическом корпусе (4), электрод сравнения (8), потенциалосъемный вывод (5), измерительный электрод...
Тип: Изобретение
Номер охранного документа: 0002548374
Дата охранного документа: 20.04.2015
20.03.2019
№219.016.e53c

Термоэмиссионный преобразователь

Изобретение относится к области преобразования тепловой энергии в электрическую. Термоэмиссионный преобразователь содержит токоподводы (16), катод со средствами подвода тепла (7) и перфорированный анод (12) со средствами отвода тепла, разделенные межэлектродным зазором (8), систему подачи пара...
Тип: Изобретение
Номер охранного документа: 0002390872
Дата охранного документа: 27.05.2010
20.03.2019
№219.016.e653

Способ и газоанализатор для определения локальных объемных концентраций водорода, водяного пара и воздуха в парогазовой среде с использованием ультразвука

Использование: для определения локальных объемных концентраций водорода, водяного пара и воздуха в парогазовой среде с использованием ультразвука. Сущность: заключается в том, что осуществляют измерение парциального давления водорода, при этом в зоне контроля параметров парогазовой среды...
Тип: Изобретение
Номер охранного документа: 0002374636
Дата охранного документа: 27.11.2009
20.03.2019
№219.016.e6e8

Устройство для нанесения изотопа йода на серебряный поверхностный слой изделий

Изобретение относится к радиохимии и может быть использовано для производства закрытых источников излучения йода-125. Устройство для нанесения изотопа йода на серебряный поверхностный слой изделий состоит из потенциостата (5) и электролизера, состоящего из ванны (1), внутренняя поверхность...
Тип: Изобретение
Номер охранного документа: 0002364665
Дата охранного документа: 20.08.2009
20.03.2019
№219.016.e951

Способ получения препарата на основе радия-224

Изобретение относится к радиохимии и может быть использовано для получения применяемого в ядерной медицине препарата на основе радия-224. Способ получения препарата на основе радия-224 включает сорбцию тория-228 из водного кислого раствора тория-228 и радия-224 на сорбенте, селективно...
Тип: Изобретение
Номер охранного документа: 0002441687
Дата охранного документа: 10.02.2012
09.05.2019
№219.017.5015

Способ очистки изолированного газом высоковольтного устройства

Изобретение относится к области электротехники и касается способа очистки изолированного газом высоковольтного устройства. Способ включает воздействие электрическим полем на твердые частицы, изменение плотности изоляционного газа путем изменения давления, очистку изоляционного газа с помощью...
Тип: Изобретение
Номер охранного документа: 0002443031
Дата охранного документа: 20.02.2012
09.06.2019
№219.017.7942

Термоэмиссионный электрогенерирующий модуль активной зоны ядерного реактора с прямым преобразованием энергии

Изобретение относится к области преобразования тепловой энергии в электрическую и может быть использовано в качестве источника электропитания в составе космической ядерной энергетической установки. Термоэмиссионный электрогенерирующий модуль ядерного реактора с прямым преобразованием энергии...
Тип: Изобретение
Номер охранного документа: 0002347291
Дата охранного документа: 20.02.2009
09.06.2019
№219.017.7a4d

Фильтр-сорбер

Изобретение относится к сорбционным фильтрам для очистки технологических воздушных сред. Фильтр-сорбер состоит из цилиндрического корпуса, днища, крышки, нижней и верхней кассетных плит, входного и выходного патрубков. Фильтр-сорбер содержит, по меньшей мере, одну цилиндрическую обечайку,...
Тип: Изобретение
Номер охранного документа: 0002381054
Дата охранного документа: 10.02.2010
09.06.2019
№219.017.7a8a

Способ получения препарата на основе иттрия-90

Изобретение относится к способу получения иттрия-90 высокой степени чистоты, который включает разделение находящихся в азотнокислом растворе стронция-90 и иттрия-90 и дальнейшую очистку иттрия-90 от следов стронция-90 на экстракционно-хроматографических колонках с твердым экстрагентом на основе...
Тип: Изобретение
Номер охранного документа: 0002385754
Дата охранного документа: 10.04.2010
Showing 11-12 of 12 items.
27.02.2015
№216.013.2d3f

Устройство для получения стронция-82

Изобретение относится к устройству для получения стронция-82. Заявленное устройство содержит нагреватель (9) и изолирующую камеру (4), заполняемую газом, не взаимодействующим с металлическим рубидием, в которой установлены облученная в потоке ускоренных заряженных частиц мишень (10),...
Тип: Изобретение
Номер охранного документа: 0002543051
Дата охранного документа: 27.02.2015
20.04.2015
№216.013.41ec

Твердоэлектролитный датчик концентрации кислорода в газовых средах

Изобретение относится к измерительной технике. Твердоэлектролитный датчик концентрации кислорода в газовых средах содержит керамический чувствительный элемент (3), герметично размещенный в металлическом корпусе (4), электрод сравнения (8), потенциалосъемный вывод (5), измерительный электрод...
Тип: Изобретение
Номер охранного документа: 0002548374
Дата охранного документа: 20.04.2015
+ добавить свой РИД