×
10.12.2013
216.012.8a60

Результат интеллектуальной деятельности: СПОСОБ ДЕЗАКТИВАЦИИ МАТЕРИАЛОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к ядерной технике и технологии, к дезактивации различных материалов, загрязненных радионуклидами. В заявленном способе дезактивацию проводят в две стадии: на первой стадии в разогретую до 110°C камеру дезактивации с загрязненными материалами подают пар, активированный химическими реагентами, на второй стадии охлаждают камеру дезактивации и проводят обработку дезактивируемого материала растворами органических растворителей и комплексообразователей в среде сжиженных газов или низкокипящих растворителей. Способ может включать использование последовательно нескольких циклов обработки, чередуя первую и вторую стадии. Технический результат изобретения заключается в повышении эффективности дезактивации, увеличении коэффициентов очистки в 4-30 раз по сравнению с одностадийным способом дезактивации в сверхкритических флюидах, в уменьшении рабочего давления, объема жидких радиоактивных отходов и сокращении времени дезактивации в 1,5 раза. 2 з.п. ф-лы, 1 ил., 6 табл.

Изобретение относится к ядерной технике и технологии, преимущественно к дезактивации материалов от радиоактивного загрязнения.

Дезактивация поверхности материалов основана, как правило, на растворении поверхностных загрязнений и отложений в электролитах (водных растворах кислот и щелочей), а также на процессах экстракции элементов, загрязняющих поверхность, различными экстрагентами.

Известны способы сверхкритической экстракции различных металлов (Wai С.М., Smart N.G., Phelps С. US Patent 5606724 А. Опубл. 25 Feb., 1997; Beckman Е.J., Russel A. J. US Patent 5641887 А. Опубл. 24 Июня 1997 г.; Wai C.M. Patent PCT International, WO 9533541 Al. Опубл. 14 декабря 1995 г.), позволяющие проводить сверхкритическую экстракцию различных металлов, таких как уран, редкоземельные элементы, а также железо, ртуть и кобальт. По предлагаемым способам матрицу, содержащую металлы (песок, бумага, поверхность нержавеющей стали и т.п.), обрабатывают комплексоном, растворенным в сверхкритическом флюиде, как правило, в сверхкритическом диоксиде углерода. В качестве комплексонов использовали различные органические соединения, наилучшие результаты наблюдали для фторированных β-дикетонов.

Известен малоотходный способ сверхкритической флюидной экстракции цезия и трансурановых элементов (ТУЭ) с помощью смеси краун-эфиров и ди-2-этилгексилфосфорной кислоты (Мурзин А.А., Старченко В.А., Smart N.G. etc. Доклад "Decontamination of Real World Contaminated Stainless Steel Using Supercritical CO2" Spectrum′98, Denver, Colorado, USA, September 13-18, 1998, Proceedings, American Nuclear Society Inc., USA, 1998, p.94-98), выбранный нами в качестве прототипа. По этому способу матрица с высокой удельной поверхностью, содержащая цезий (песок, бумага, поверхность нержавеющей стали и т.п.) обрабатывается смесью краун-эфира и ди-2-этилгексилфосфорной кислоты, растворенной в сверхкритическом углекислом газе. Способ позволяет экстрагировать ТУЭ и частично цезий с различных матриц.

Его недостатком является использование для экстракции дорогих и во многих случаях токсичных краун-эфиров.

Общим недостатком всех предлагавшихся ранее способов является то, что используются в них растворители в сверхкритическом состоянии при сверхвысоких рабочих давлениях (например, углекислый газ при давлении выше 71,6 МПа), а также с их помощью не удается количественно экстрагировать такие металлы, как цезий и стронций, особенно из прочнофиксированных отложений. Экстракция этих металлов очень важна, т.к. их изотопы - цезий-137 и стронций-90 - дают основной вклад в радиоактивность отработавшего ядерного топлива и загрязненность поверхностей оборудования, которое необходимо дезактивировать. В отличие от классической жидкостной экстракции использование в сверхкритической экстракции в качестве модификаторов селективных экстрагентов на стронций или цезий - различных краун-эфиров - не приносит ожидаемого эффекта и не обеспечивает эффективной экстракции и дезактивации. Для повышения эффективности и уменьшения времени дезактивации зачастую необходимо повышать температуру дезактивируемой поверхности, однако при использовании сверхкритической экстракции и органических растворителей это сделать сложно, т.к. происходит значительное увеличение рабочего давления и деструкция органических комплексообразователей и растворителей.

Наиболее близким по своей сущности и назначению к заявляемому, является способ дезактивации материалов (патент 2168779 G21F 9/28), основанный на том, что загрязненную радионуклидами матрицу выдерживают в камере высокого давления в среде сверхкритического растворителя в присутствии воды, органической кислоты и комплексона. После выдержки проводят прокачку камеры сверхкритическим углекислым газом для обеспечения полноты экстракции и собирают экстрагированный металл в раствор.

Недостатком данного прототипа является низкая эффективность дезактивации по отношению к прочнофиксированным и «застарелым» загрязнениям, а также большая продолжительность дезактивации.

Цель изобретения - разработка эффективного малоотходного способа, позволяющего дезактивировать материалы с высокой удельной поверхностью ипрочнофиксированными радиоактивными загрязнениями при давлениях ниже критических для используемых в процессе дезактивации растворителей.

Цель достигается тем, что поверхность дезактивируемого материала предварительно обрабатывают активированным химическими реагентами паром, а затем органическими растворителями и комплексообразователями, растворенными в сжиженных газах или низкокипящих растворителях при давлениях ниже критических.

От прототипа изобретение отличается тем, что дезактивируемую поверхность предварительно обрабатывают активированным химическими реагентами паром при этом:

1. увеличивается эффективность процесса дезактивации за счет одновременного воздействия на дезактивируемую поверхность нагретых химических реагентов и растворения отложений в сконденсировавшейся парогазовой фазе;

2. появляется возможность постоянного поддерживания повышенной температуры дезактивирующего раствора на дезактивируемой поверхности, вплоть до его температуры кипения;

3. осуществляется непрерывная смена дезактивирующего раствора на поверхности дезактивируемого материала;

4. повышается химическая активность парогазовой фазы и дезактивирующего раствора, образующегося при конденсации парогазовой фазы;

5. увеличиваются коэффициенты дезактивации в 4-30 раз по сравнением с прототипом;

6. сокращается время дезактивации в 1,5 раза

7. упрощается требования и улучшается безопасность применения способа в производстве.

Применение для дезактивации сначала активированного пара, а затем органических растворителей и комплексообразователей в сжиженных газах или низкокипящих растворителях позволяет не только повысить эффективность дезактивации, но и удалить и сконцентрировать в небольшом объеме удаленные с обрабатываемой поверхности радионуклиды.

На фиг.1 показана схема устройства дезактивации различных материалов.

Устройство для дезактивации различных материалов, загрязненных радионуклидами, включает камеру дезактивации 1, смеситель 2, емкость для дезактивирующих растворов 3, 6, ресивер сжатого воздуха 4, конденсатор 5, смотровое окно 7, испаритель 8, адсорбер 9.

Порядок использования предложенного способа заключается в следующем: в паровом смесителе 2, куда поступает химический реагент из емкости 3 в виде концентрированного водного раствора, происходит одновременно его диспергирование и разбавление за счет конденсации пара на поверхности дисперсий. Объединенная смесь поступает в камеру -дезактивации 1, предварительно разогретую до 110°С, на дезактивируемый материал. Поверхность материала нагревается паром, а дисперсии дезактивирующего раствора конденсируются на дезактивируемой поверхности. Камера дезактивации охлаждается до 8-10°С и заполняется смесью сжиженного газа из конденсатора 5, смешанного с органическими растворителями и/или комплексообразователями из емкости 6. Визуальное наблюдение за процессом заполнения смесью и циркуляцию процесса осуществляют через смотровое окно 7. Отработавшие дезактивируемые растворы и CO2 (на регенерацию) поступают в испаритель 8 и далее на регенерацию. Сброс газообразной фазы осуществляется через адсорбер 9.

Примеры конкретного выполнения способа дезактивации.

1 Дезактивация образцов нержавеющей стали марки 12Х18Н10Т по способу прототипа и предлагаемому способу

Характеристика радиоактивного загрязнения образцов нержавеющей стали с прочнофиксированным загрязнением представлена в таблице 1.

Таблица 1
Характеристика радиоактивного загрязнения образцов нержавеющей стали
Образец Удельная активность, Бк/см2
Pu239 Am241 Sb125 Eu155 Cs137 Се144 Co60 Ru106
Сталь марки 12Х18Н10Т 3300 8110 15100 654 347000 110000 750 265000

Дезактивацию по способу прототипа проводили комплекеообразователем - полиэтиленгликоль с содержанием 8 г на литр жидкого диоксида углерода. Дезактивацию по предлагаемому способу проводили путем обработки образца нержавеющей стали на стадии дезактивации активированным растворами перманганата калия и азотной кислоты паром с содержанием 0,79 г/л пара и 0,35 г/л пара, соответственно. Дезактивацию в среде сжиженных газов и низкокипящих растворителей проводили составом ГФА - пиридин - вода, растворенными в диоксиде углерода. Значения коэффициентов дезактивации по контролируемым элементам для дезактивации по способу прототипа и предлагаемому способу представлены в таблице 2.

Таблица 2
Результаты опыта по дезактивации образцов нержавеющей стали
Образец Коэффициент дезактивации образца
Pu239 Am241 Sb125 Eu155 Cs137 Се144 Co60 Ru106
Сталь марки 12Х18Н10Т (по способу прототипа) 960 20,4 - - 7,3 36,9 45,2 5,9
Сталь марки 12Х18Н10Т (по предлагаемому способу) 29000 612 - - 29,3 147,8 226 59

Показано, что дезактивация по предлагаемому способу протекает наиболее эффективно для редкоземельных элементов, а также для Pu239, Am241, Со60. Причем значения коэффициентов дезактивации от всех контролируемых радионуклидов выше в 4-30 раз, чем по способу прототипа.

2 Дезактивация по предлагаемому способу образцов латуни, загрязненных радионуклидами

Характеристика загрязненных образцов приведена в табл.3.

Таблица 3
Характеристика радиоактивного загрязнения образцов латуни
Образец Удельная активность, Бк/см2
Pu239 Am241 Sb125 Eu155 Cs137 Се144 Со60 Ri106
латунь 460 11300 831 509 20300 64200 14,6 16000

Образцы латуни обрабатывали растворами, содержащими щавелевую кислоту 0,72 г/л пара и лимонную кислоту - 1,73 г/л пара. Дезактивацию в среде сжиженных газов и низкокипящих растворителей проводили составом ГФА - Пиридин - Вода, растворенным в диоксиде углерода. Значения суммарных коэффициентов дезактивации по контролируемым элементам для дезактивации по предлагаемому способу, приведены в таблице 4.

Таблица 4
Результаты опыта по дезактивации образцов латуни
Образец Коэффициент дезактивации образца
Pu239 Am241 Sb125 Eu155 Cs137 Се144 Со60 Ru106
латунь 5,2 5,5 2,3 3,7 3,2 4,4 16,2 9,3

3 Дезактивация пористых материалов

В качестве высокопористого материала были использованы реально загрязненные образцы лавсановой ткани. Величины радиоактивного загрязнения образца представлены в таблице 5.

Таблица 5
Величины радиоактивного загрязнения образца ткани
Образец Удельная активность образца, Бк/см2
Pu239 Am241 Sb125 Eu155 Cs137 Се144 Co60 Ru106
ткани 473 11600 621 385 19100 58900 не опеределяли 14500

Обработку ткани из лавсана на стадии дезактивации активированным паром проводили растворами щавелевой кислоты с содержанием 0,72 г/л пара и лимонной кислоты - 0,35 г/л пара. Дезактивацию образцов в среде сжиженных газов проводили смесью комплексонов ГФА-пиридин - вода, растворенной в CO2.

Таблица 6
Дезактивация образцов лавсановой ткани
Образец Коэффициент дезактивации образца
Pu239 Am241 Sb125 Eu155 Cs137 Се144 Co60 Ru106
ткани 185 39,1 1,9 73,3 4,1 34,6 6,1 3,2

Для повышения коэффициентов дезактивации можно проводить обработку дезактивируемой поверхности в среде активированного пара и в растворах комплексообразователей в сжиженных газах и растворителях циклично: чередуя обработку в паре и в сжиженных растворителях.

Общее количество жидких отходов, образующихся при дезактивации комбинированным методом, составило 0,5-0,8 мл на 1 дм2 площади поверхности дезактивируемого материала. Количество отходов, образующихся на стадии паровой дезактивации, составило 8-19% от общего количества отходов. Органическая и водная фазы в жидких отходах находятся приблизительно в соотношении 1:3. Органические отходы образуются только на стадии дезактивации в среде жидкого диоксида углерода. Полученное количество жидких радиоактивных отходов позволяет отнести комбинированный метод дезактивации к маловодным технологиям.


СПОСОБ ДЕЗАКТИВАЦИИ МАТЕРИАЛОВ
Источник поступления информации: Роспатент

Showing 251-260 of 611 items.
20.10.2015
№216.013.853d

Способ получения нанокристаллических порошков гафната диспрозия и керамических материалов на их основе

Изобретение может быть использовано при изготовлении нейтронопоглощающих материалов для стержней регулирования систем управления и защиты ядерных реакторов. Способ получения керамических материалов на основе нанокристаллических порошков гафната диспрозия включает изготовление смешанного...
Тип: Изобретение
Номер охранного документа: 0002565712
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.87aa

Дифференциальный измерительный преобразователь

Изобретение относится к области измерительной техники, а именно к измерительным преобразователям с частотной формой выходных сигналов. Технический результат - уменьшение погрешности и повышение быстродействия дифференциального измерительного преобразователя. Для этого предложен...
Тип: Изобретение
Номер охранного документа: 0002566333
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.87ad

Способ исправления ошибок при передаче информации биимпульсным кодом манчестер-ii и устройство его осуществления

Изобретение относится к вычислительной технике и может быть использовано для обнаружения и исправления ошибок при передаче информации между частями распределенных вычислительных систем. Техническим результатом является повышение надежности передачи данных. Устройство содержит контроллер...
Тип: Изобретение
Номер охранного документа: 0002566336
Дата охранного документа: 20.10.2015
27.10.2015
№216.013.87ee

Датчик перемещений

Изобретение относится к контрольно-измерительной технике и может быть использовано для измерений перемещений элементов конструкции. Сущность: датчик снабжен двумя диэлектрическим основаниями, подвижно соединенными между собой двумя упругими элементами, между которыми вдоль продольных осей...
Тип: Изобретение
Номер охранного документа: 0002566401
Дата охранного документа: 27.10.2015
27.10.2015
№216.013.87ef

Способ определения глубины проникания объекта в грунт

Изобретение относится к области измерительной техники и может быть использовано для определения глубины проникания объекта в грунт. Способ включает сбрасывание объекта с носителя и регистрацию параметров его проникания, по крайней мере, двумя сейсмическими датчиками, расположенными на...
Тип: Изобретение
Номер охранного документа: 0002566402
Дата охранного документа: 27.10.2015
10.11.2015
№216.013.8afb

Отражательная линия задержки

Изобретение относится к устройствам акустоэлектроники, в частности к отражательным линиям задержки, функционирующим на поверхностных акустических волнах. Техническим результатом предлагаемой конструкции ОЛЗ является увеличение амплитуды информационного сигнала и расширение ее функциональных...
Тип: Изобретение
Номер охранного документа: 0002567186
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8ed9

Способ механических испытаний и стенд для его реализации

Изобретение относится к испытательной технике и может быть использовано для испытаний объектов на воздействие перегрузок. Способ заключается в размещении в полости ствола контейнера со столом с установленным на нем ОИ. При воздействии на контейнер продуктов взрыва происходит его ускоренное...
Тип: Изобретение
Номер охранного документа: 0002568178
Дата охранного документа: 10.11.2015
20.11.2015
№216.013.8fb9

Стенд для испытания объекта на удар

Изобретение относится к испытательной технике, а именно к стендам для испытаний изделий на удар. Стенд содержит силовую раму с вертикальными стойками, устройство подъема, соединенное через устройство удержания и сброса с приспособлением для закрепления объекта испытания (ОИ), наковальню,...
Тип: Изобретение
Номер охранного документа: 0002568409
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.90c3

Спиральный взрывомагнитный генератор и способ кумуляции импульса тока

Изобретение относится к физике высоких плотностей энергии, в частности к преобразованию энергии взрывчатого вещества в электромагнитную энергию, и может быть использовано для кумуляции импульсов электрического тока мегаамперного уровня. Технический результат состоит в повышении мощности...
Тип: Изобретение
Номер охранного документа: 0002568675
Дата охранного документа: 20.11.2015
27.11.2015
№216.013.937b

Способ гетерогенного каталитического разложения комплексонов и поверхностно-активных веществ в технологических растворах радиохимических производств на никель-феррицианидном катализаторе

Изобретение относится к способу гетерогенного каталитического разложения комплексонов и поверхностно-активных веществ в технологических растворах радиохимических производств на никель-феррицианидном катализаторе. При этом феррицианид никеля, нанесенный на анионообменную смолу, используют в...
Тип: Изобретение
Номер охранного документа: 0002569374
Дата охранного документа: 27.11.2015
Showing 251-260 of 507 items.
20.10.2015
№216.013.853d

Способ получения нанокристаллических порошков гафната диспрозия и керамических материалов на их основе

Изобретение может быть использовано при изготовлении нейтронопоглощающих материалов для стержней регулирования систем управления и защиты ядерных реакторов. Способ получения керамических материалов на основе нанокристаллических порошков гафната диспрозия включает изготовление смешанного...
Тип: Изобретение
Номер охранного документа: 0002565712
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.87aa

Дифференциальный измерительный преобразователь

Изобретение относится к области измерительной техники, а именно к измерительным преобразователям с частотной формой выходных сигналов. Технический результат - уменьшение погрешности и повышение быстродействия дифференциального измерительного преобразователя. Для этого предложен...
Тип: Изобретение
Номер охранного документа: 0002566333
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.87ad

Способ исправления ошибок при передаче информации биимпульсным кодом манчестер-ii и устройство его осуществления

Изобретение относится к вычислительной технике и может быть использовано для обнаружения и исправления ошибок при передаче информации между частями распределенных вычислительных систем. Техническим результатом является повышение надежности передачи данных. Устройство содержит контроллер...
Тип: Изобретение
Номер охранного документа: 0002566336
Дата охранного документа: 20.10.2015
27.10.2015
№216.013.87ee

Датчик перемещений

Изобретение относится к контрольно-измерительной технике и может быть использовано для измерений перемещений элементов конструкции. Сущность: датчик снабжен двумя диэлектрическим основаниями, подвижно соединенными между собой двумя упругими элементами, между которыми вдоль продольных осей...
Тип: Изобретение
Номер охранного документа: 0002566401
Дата охранного документа: 27.10.2015
27.10.2015
№216.013.87ef

Способ определения глубины проникания объекта в грунт

Изобретение относится к области измерительной техники и может быть использовано для определения глубины проникания объекта в грунт. Способ включает сбрасывание объекта с носителя и регистрацию параметров его проникания, по крайней мере, двумя сейсмическими датчиками, расположенными на...
Тип: Изобретение
Номер охранного документа: 0002566402
Дата охранного документа: 27.10.2015
10.11.2015
№216.013.8afb

Отражательная линия задержки

Изобретение относится к устройствам акустоэлектроники, в частности к отражательным линиям задержки, функционирующим на поверхностных акустических волнах. Техническим результатом предлагаемой конструкции ОЛЗ является увеличение амплитуды информационного сигнала и расширение ее функциональных...
Тип: Изобретение
Номер охранного документа: 0002567186
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8ed9

Способ механических испытаний и стенд для его реализации

Изобретение относится к испытательной технике и может быть использовано для испытаний объектов на воздействие перегрузок. Способ заключается в размещении в полости ствола контейнера со столом с установленным на нем ОИ. При воздействии на контейнер продуктов взрыва происходит его ускоренное...
Тип: Изобретение
Номер охранного документа: 0002568178
Дата охранного документа: 10.11.2015
20.11.2015
№216.013.8fb9

Стенд для испытания объекта на удар

Изобретение относится к испытательной технике, а именно к стендам для испытаний изделий на удар. Стенд содержит силовую раму с вертикальными стойками, устройство подъема, соединенное через устройство удержания и сброса с приспособлением для закрепления объекта испытания (ОИ), наковальню,...
Тип: Изобретение
Номер охранного документа: 0002568409
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.90c3

Спиральный взрывомагнитный генератор и способ кумуляции импульса тока

Изобретение относится к физике высоких плотностей энергии, в частности к преобразованию энергии взрывчатого вещества в электромагнитную энергию, и может быть использовано для кумуляции импульсов электрического тока мегаамперного уровня. Технический результат состоит в повышении мощности...
Тип: Изобретение
Номер охранного документа: 0002568675
Дата охранного документа: 20.11.2015
27.11.2015
№216.013.937b

Способ гетерогенного каталитического разложения комплексонов и поверхностно-активных веществ в технологических растворах радиохимических производств на никель-феррицианидном катализаторе

Изобретение относится к способу гетерогенного каталитического разложения комплексонов и поверхностно-активных веществ в технологических растворах радиохимических производств на никель-феррицианидном катализаторе. При этом феррицианид никеля, нанесенный на анионообменную смолу, используют в...
Тип: Изобретение
Номер охранного документа: 0002569374
Дата охранного документа: 27.11.2015
+ добавить свой РИД