×
10.12.2013
216.012.89a1

Результат интеллектуальной деятельности: УСТРОЙСТВО ИЗМЕРЕНИЯ ИОННОГО ТОКА В СИСТЕМЕ РАДИОЧАСТОТНОГО ЗАЖИГАНИЯ ДЛЯ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ

Вид РИД

Изобретение

№ охранного документа
0002500915
Дата охранного документа
10.12.2013
Аннотация: Изобретение относится к устройству радиочастотного зажигания двигателя внутреннего сгорания, содержащему схему (2) питания, содержащую трансформатор (Т), вторичная обмотка которого соединена по меньшей мере с одним резонатором (1), имеющим резонансную частоту, превышающую 1 МГц и содержащим два электрода, выполненные с возможностью генерирования искры для инициирования воспламенения горючей смеси в цилиндре двигателя в ответ на команду зажигания. Устройство содержит измерительный конденсатор (C); последовательно подключенный между вторичной обмоткой трансформатора и резонатором; схему (40) измерения тока (I) на контактах указанного измерительного конденсатора, при этом указанный ток представляет собой электрическую характеристику развития горения; защитную схему (30), подключенную между измерительным конденсатором и схемой измерения и выполненную с возможностью предохранения времени считывания измерения указанного тока (I) от электрических влияний, сопутствующих команде зажигания. Технический результат - сокращение периода маскирования измерения и независимость измерения относительно типа генерируемого разряда. 9 з.п. ф-лы, 7 ил.

Настоящее изобретение относится к области резонансного радиочастотного зажигания для двигателя внутреннего сгорания. В частности, оно касается устройства, выполненного с возможностью измерения тока ионизации газов в цилиндрах двигателя.

Измерение тока ионизации газов в цилиндрах двигателя обычно осуществляют после завершения зажигания и впоследствии используют для диагностики, касающейся хода горения, например, для обнаружения угла, соответствующего максимуму давления в камере сгорания, детонации или для идентификации перебоев горения.

Известны схемы измерения ионного тока для классической системы зажигания, работа которой состоит в поляризации смеси воздух/топливо, присутствующей в камере сгорания, после генерирования искры между электродами свечи зажигания, чтобы измерить ток, получаемый в результате распространения пламени.

Однако эти схемы предусмотрены для характеристик классического зажигания и сами по себе не могут быть адаптированы для систем зажигания с генерированием плазмы, в которых применяют свечи зажигания типа радиочастотных свечей-катушек (ВМЕ), что подробно описано в следующих патентных заявках, поданных на имя заявителя: FR 03-10766, FR 03-10767 и FR-03-10768.

Действительно, специфические особенности радиочастотного зажигания предопределяют различные императивные условия для измерения тока в результате горения.

Прежде всего, сигнал управления зажиганием наводит большие токи, которые отличаются по амплитуде более чем на 120 дБ по отношению к ионному току, связанному с горением горючей смеси. Поскольку измерение этого тока производят после завершения зажигания, происходит временное ослепление, во время которого схема измерения не может считывать слабый ток.

Кроме того, поскольку схема измерения входит в состав системы зажигания, то необходимо, чтобы ее присутствие не приводило к значительному снижению производительности системы зажигания.

Наконец, этот тип радиочастотного зажигания позволяет получать разряды двух типов, разветвленную искру и шнуровую дугу, которые напрямую влияют на систему зажигания. Поэтому трудно гарантировать независимость измерения ионного тока от типа генерируемого разряда.

Настоящее изобретение призвано предложить устройство измерения ионного тока в системе радиочастотного зажигания, отвечающее вышеуказанным условиям, в частности, позволяющее максимально сократить период маскирования измерения и обеспечивающее независимость измерения относительно типа генерируемого разряда.

В связи с этим объектом настоящего изобретения является устройство радиочастотного зажигания для двигателя внутреннего сгорания, содержащее схему питания, содержащую трансформатор, вторичная обмотка которого соединена, по меньшей мере, с резонатором, имеющим резонансную частоту, превышающую 1 МГц, и содержащим два электрода, выполненные с возможностью генерирования искры для инициирования воспламенения горючей смеси в цилиндре двигателя в ответ на команду зажигания, отличающееся тем, что содержит:

- измерительный конденсатор, последовательно подключенный между вторичной обмоткой трансформатора и резонатором,

- схему измерения тока на контактах указанного измерительного конденсатора, при этом указанный ток представляет собой электрическую характеристику протекания горения,

- защитную схему, подключенную между измерительным конденсатором и схемой измерения, выполненную с возможностью предохранения времени считывания измерения указанного тока от электрических влияний, сопутствующих команде зажигания.

Согласно варианту выполнения, измерительный конденсатор последовательно подключают между вторичной обмоткой трансформатора и резонатором на уровне провода заземления трансформатора и резонатора.

Предпочтительно устройство в соответствии с настоящим изобретением содержит средства поляризации горючей смеси, выполненные с возможностью приложения напряжения поляризации между электродом резонатора и массой двигателя.

Согласно варианту выполнения, защитная схема содержит диодный мостик, поляризуемый резисторами при напряжении питания, пропорциональном напряжению поляризации.

Предпочтительно схема измерения содержит преобразователь ток-напряжение, выполненный при помощи операционного усилителя.

Согласно варианту выполнения, операционный усилитель содержит неинвертирующий вход, связанный с напряжением поляризации, и инвертирующий вход, связанный с контактом измерительного конденсатора через защитную схему.

Предпочтительно преобразователь ток-напряжение содержит резистор отрицательной обратной связи и конденсатор отрицательной обратной связи, соединенный параллельно с резистором отрицательной обратной связи.

Предпочтительно входное сопротивление преобразователя ток-напряжение, по меньшей мере, в сто раз ниже, чем сопротивление измерительного конденсатора.

Согласно варианту выполнения, первичную обмотку трансформатора соединяют, с одной стороны, с промежуточным напряжением питания и, с другой стороны, со стоком, по меньшей мере, одного транзисторного прерывателя, управляемого командным сигналом, при этом транзисторный прерыватель подает напряжение питания на контакты первичной обмотки с частотой, определяемой командным сигналом.

Предпочтительно трансформатор имеет переменный коэффициент трансформации.

Другие отличительные признаки и преимущества настоящего изобретения будут более очевидны из нижеследующего описания, представленного в качестве не ограничительного примера, со ссылками на прилагаемые чертежи, на которых:

фиг.1 - схема резонатора, моделирующая радиочастотную свечу-катушку с генерированием плазмы;

фиг.2 - известная схема питания, позволяющая подавать переменное напряжение в радиочастотном диапазоне на контакты свечи-катушки, показанной на фиг.1;

фиг.3 - вариант схемы, показанной на фиг.2;

фиг.4 - схема питания в соответствии с настоящим изобретением, выполненная с возможностью измерения ионного тока и напряжения на контактах электродов свечи во время подачи команды на зажигание;

фиг.5 - вариант выполнения схемы измерения ионного тока;

фиг.5-1 - первая версия варианта выполнения, показанного на фиг.5;

фиг.5-2 - вторая версия варианта выполнения, показанного на фиг.5.

Свеча-катушка, применяемая в рамках управляемого радиочастотного зажигания, является электрическим эквивалентом резонатора 1 (см. фиг.1), резонансная частота Fc которого превышает 1 МГц и, как правило, близка к 5 МГц. Резонатор содержит последовательно соединенные резистор Rs, катушку индуктивности Ls и конденсатор, обозначенный Cs. Электроды зажигания 11 и 12 свечи-катушки соединены с контактами конденсатора Cs резонатора, обеспечивая генерирование многошнуровых разрядов для инициирования воспламенения смеси в камерах сгорания двигателя при подаче питания на резонатор.

Действительно, когда на резонатор подают высокое напряжение с его резонансной частотой амплитуда на контактах конденсатора Cs усиливается таким образом, чтобы многошнуровые разряды распространялись между электродами на расстояниях порядка сантиметра с высоким давлением и при пиковых напряжениях, превышающих 20 кВ.

В этом случае говорят о разветвленных искрах, поскольку они предполагают одновременное генерирование, по меньшей мере, нескольких линий или путей ионизации в данном объеме, причем их разветвления являются всенаправленными.

Это приложение для радиочастотного зажигания требует использования схемы питания, способной генерировать импульсы напряжения, как правило, порядка 100 не, которые могут достигать амплитуд порядка 1 кВ, на частоте, очень близкой к резонансной частоте резонатора генерирования плазмы радиочастотной свечи-катушки.

На фиг.2 схематично показана такая схема 2 питания. В схеме питания радиочастотной свечи-катушки классически применяют монтажную схему, называемую «силовым усилителем псевдо класса Е». Эта монтажная схема позволяет создавать импульсы напряжения с вышеуказанными характеристиками.

Эта монтажная схема содержит источник промежуточного постоянного напряжения Vinter, которое может меняться от 0 до 250 В, силовой полевой МОП-транзистор М и параллельную резонирующую схему 4, содержащую катушку Lp, параллельно соединенную с конденсатором Ср. Транзистор М используют как прерыватель для управления переключениями на контактах параллельной резонирующей схемы и резонатора 1 генерирования плазмы, предназначенного для подключения к выходному интерфейсу OUT схемы питания.

На своем затворе транзистор М управляется логическим командным сигналом V1, поступающим от каскада 3 управления, с частотой, которая должна быть установлена по существу по резонансной частоте резонатора 1.

Промежуточное постоянное напряжение питания Vinter предпочтительно поступает от источника высокого напряжения, как правило, от преобразователя постоянный ток/постоянный ток.

Таким образом, в области своей резонансной частоты параллельный резонатор 4 преобразует промежуточное постоянное напряжения питания Vinter в усиленное периодическое напряжение, соответствующее напряжению питания, умноженному на коэффициент повышения напряжения параллельного резонатора, и подаваемое на выходной интерфейс схемы питания на уровне стока транзисторного прерывателя М.

При этом транзисторный прерыватель М направляет усиленное напряжение питания на выход питания на частоте, определяемой командным сигналом V1, которую следует сделать максимально близкой к резонансной частоте свечи-катушки, чтобы генерировать высокое напряжение на контактах электродов свечи-катушки, необходимое для развития и поддержания многошнурового разряда.

Таким образом, транзистор коммутирует сильные токи с частотой примерно 5 МГц и с напряжением сток-исток, которое может достигать 1 кВ.

Согласно версии, показанной на фиг.3, параллельную катушку Lp заменили трансформатором Т, имеющим коэффициент трансформации в пределах от 1 до 5. Первичная обмотка LM трансформатора соединена, с одной стороны, с источником промежуточного напряжения питания Vinter и, с другой стороны, со стоком транзисторного прерывателя М, управляющего подачей промежуточного напряжения Vinier на контакты первичной обмотки с частотой, определяемой командным сигналом V1.

Вторичная обмотка LN трансформатора соединена, с одной стороны, с массой через провод 6 заземления, который выполнен с возможностью соединения со свечой-катушкой. Таким образом, резонатор 1 свечи-катушки, соединенной с контактами вторичной обмотки при помощи соединительных проводов 5 и 6, из которых один провод 6 является заземляющим, получает питание от вторичной обмотки трансформатора.

Адаптация коэффициента трансформации позволяет уменьшить напряжение сток-исток транзистора. Понижение напряжения на первичной обмотке приводит, тем не менее, к повышению тока, проходящего через транзистор. Это повышение можно компенсировать, например, за счет установки двух параллельно соединенных транзисторов, управляемых одним каскадом 3 управления.

Во время зажигания необходимо, чтобы разветвленная искра развивалась объемно, чтобы обеспечивать оптимальное воспламенение и оптимальную работу двигателя. Для данного приложения наличие горения символизируется переменным сопротивлением RION между контактами конденсатора CS.

Сигнал ионизации, характеризующий развитие горения, имеет амплитуду в пределах от 0.1 мкА до 1 мкА в зависимости от условий камеры сгорания (температура, давление, состав смеси и т.д.). Следовательно, необходимо измерить сигнал с отношением амплитуд, которое может достигать 120 дБ относительно сигнала зажигания.

Сигнал ионизации является низкочастотным сигналом, и дискретизация по 100 кГц позволяет извлечь из него максимум полезной информации. В случае радиочастотного зажигания резонатором с генерированием плазмы RSLSCS управляют на частоте, превышающей 1 МГц, и, как правило, составляющей от 4 МГц до 6 МГц. Таким образом, используют частотное отклонение примерно в две декады, которое можно применить для компенсации разности уровней амплитуды.

Осуществление измерения ионного тока требует использования такого компонента, который не ухудшает энергетической эффективности зажигания.

Предлагаемое для этого решение показано на фиг.4 и состоит в последовательном подключении измерительного конденсатора CMES между вторичной обмоткой трансформатора Т и резонатором 1 на заземляющем проводе 6. Таким образом, предпочтительно измерительный конденсатор устанавливают в схеме в месте, где разность потенциала относительно массы является максимальной низкой.

Конденсатор емкостью в десяток нанофарад позволяет избежать помех в системе зажигания и в то же время сохранить возможность низкочастотного измерения ионного тока.

Таким образом, основной интерес выбора этого измерительного компонента связан с его поведением на радиочастоте. Действительно, на высоких частотах, как известно, эквивалентная высокочастотная схема конденсатора содержит последовательный резонатор. Однако резонатор имеет сопротивление, которое меняется в зависимости от частоты сигнала, поступающего на его вход, и является минимальным на резонансной частоте резонатора. Эта характеристика изменения сопротивления резонатора в зависимости от частоты позволяет конденсатору иметь очень низкое сопротивление вблизи резонансной частоты зажигания и более высокое сопротивление в частотном диапазоне, используемом для сигнала ионизации (FION<15кГц). Таким образом, измерительный конденсатор выбирают таким образом, чтобы он имел более низкое сопротивление в частотном диапазоне, используемом для сигнала управления зажиганием. Это позволяет минимизировать напряжение на контактах измерительного конденсатора, чтобы защитить схему измерения, что будет описано ниже со ссылками на фиг.5.

Не показанный источник постоянного напряжения, выдающий напряжение Vpolar, предусмотрен для поляризации высоковольтного электрода свечи-катушки, подключенной на выходе схемы питания относительно головки блок двигателя, что позволяет поляризовать горючую смесь после завершения зажигания.

Действительно, ток ионизации IION, характеризующий горение, является сигналом, измеряемым после завершения зажигания, то есть после формирования искры. Следовательно, кроме всего прочего, его амплитуда зависит от напряжения поляризации, подаваемого между электродом свечи-катушки и массой двигателя.

Напряжение поляризации является однополярным и, как правило, составляет от 1 В до 100 В. При этом говорят о положительной поляризации, когда высоковольтный электрод поляризуют по потенциалу, превышающему потенциал массы двигателя.

Вместе с тем, можно осуществлять отрицательную поляризацию горючей смеси. В этом случае потенциал центрального электрода свечи меньше потенциала массы двигателя. В этом случае, как правило, напряжение поляризации составляет от -100 В до -1 B.

Схема 40 измерения ионного тока IION на контактах конденсатора CMES для получения электрической характеристики развития горения, описана со ссылками на фиг.5. Как показано на этой фигуре, схема 40 измерения выполнена в виде преобразователя ток-напряжение, выполненного с возможностью выдачи напряжения Vs на выходе, пропорционального току на входе.

Преобразователь содержит операционный усилитель MN1 и резистор RR отрицательной обратной связи.

Операционный усилитель MN1 содержит неинвертирующий вход (+), соединенный с напряжением поляризации Vpolar, и инвертирующий вход (-), соединенный с контактом конденсатора CMES через защитную схему 30, выполненную с возможностью защиты времени считывания измерения от влияния формирования искры, что будет более подробно описано ниже.

Резистор RR устанавливают между инвертирующим входом (-) и выходом операционного усилителя MN1.

В версии выполнения, показанной на фиг.5bis, в случае, когда горючую смесь подвергают отрицательной поляризации, неинвертирующий вход (+) соединяют с напряжением отрицательной поляризации Vpolar, и инвертирующий вход (-) соединяют с контактом измерительного конденсатора через защитную схему 30, тогда как резистор RR подключают между инвертирующим входом (-) и выходом операционного усилителя MN1.

Согласно другой версии, показанной на фиг.5ter, можно также выбирать любую поляризацию горючей смеси с напряжением поляризации Vpolar, отвечающим условию:

VEE<Vpolar<VCC при VEE<0 и VCC>0

Такая монтажная схема ток/напряжение может точно измерять очень слабые токи.

Вход операционного усилителя эквивалентен катушке индуктивности со значением Le. Это приводит к появлению псевдопериодических колебаний с частотой Fosc, превышающей 100 кГц, после завершения зажигания, которые связаны со схемой, образованной входным резистором с сопротивлением преобразователя ток-напряжение и измерительным конденсатором CMES, и которые сокращают время снижения насыщения измерительной схемы. Следовательно, необходимо добавить конденсатор CR отрицательной обратной связи параллельно с резистором RR отрицательной обратной связи, чтобы ослабить эти колебания. Поэтому выбирают конденсатор с емкостью, отвечающий условию:

Таким образом, емкостью отрицательной обратной связи можно пренебречь для полезного частотного диапазона измеряемого сигнала, характеризующего развитие горения (как правило, меньше 100 кГц), и одновременно оптимизировать время снижения насыщения схемы измерения.

Кроме того, необходимо правильно выбрать сопротивление отрицательной обратной связи, чтобы напряжение VS на выходе схемы измерения было пропорционально току IION, связанному с горением.

Как правило, измерительный конденсатор CMES заряжается во время фазы генерирования искры. Необходимо, чтобы входное сопротивление ZE преобразователя ток-напряжение было низким (как минимум, в 100 раз ниже) по сравнению с сопротивлением ZMES измерительного конденсатора. Это условие гарантирует, что именно преобразователь ток-напряжение, а не измерительный конденсатор выдает ток, характеризующий ход горения. Иначе говоря, необходимо, чтобы сопротивление конденсатора CMES было выше по сравнению с входным сопротивлением усилителя, чтобы весь ионный ток IION оказался в усилителе MN1.

Известно, что преобразователь имеет входное сопротивление, соответствующее следующему отношению:

,

где G является собственным коэффициентом усиления операционного усилителя.

При этом:

Для всех частот ниже 100 кГц должно проверяться следующее отношение:

,

где α≥100

Таким образом, при соблюдении вышеуказанных условий получают:

VS=RR·IION+VPOLAR

Далее рассмотрим более подробно защитную схему 30, позволяющую избегать влияний зажигания и выполняющую функцию защиты от ослепления описанной выше схемы 40 измерения. Благодаря ей, считывание измерения тока IION, характеризующего развитие горения, можно осуществлять независимо от эффектов формирования искры.

Действительно, полезную информацию о горении можно извлечь из ионного сигнала сразу после завершения зажигания.

Однако, как было указано выше, сильные токи, индуцируемые сигналом управления зажиганием, которые имеют отклонение амплитуды примерно в 120 дБ относительно тока, характеризующего горение, или период маскирования, во время которого невозможно осуществлять считывание слабого тока.

Поэтому, чтобы максимально избавиться от эффектов, связанных с управлением зажиганием, предусматривают подключение защитной схемы 30 между измерительным конденсатором и преобразователем ток-напряжение, образующими схему 40 измерения. Действительно, преобразователь ток-напряжение должен сохранять наилучшую динамику и предпочтительно иметь время понижения насыщения менее 300 мкс, чтобы обеспечивать надежное измерение горения в максимальном режиме.

Защитная схема 30 содержит диодный мостик 31, поляризуемый резисторами RH и RB при напряжении питания VALIM, предпочтительно близком к напряжению поляризации VPOLAR.

Эта архитектура является стабильной и не мешает измерению, если ток поляризации ID, циркулирующий в диодах защитной схемы, является большим по сравнению с током, выдаваемым преобразователем.

Можно проверить, чтобы:

где Rdyn является динамичным сопротивлением диода.

Следовательно:

,

то есть при VALIM=12В и RB=RH=1 кОм получаем:

ID=3 мА>IIONmax=500 мА.

Это уравнение позволяет найти хороший компромисс между стабильностью монтажной схемы и средним потреблением защитной схемы. Как правило, резисторы RB и RH могут иметь значение сопротивления в пределах от 100 Ом до 50 кОм и могут иметь разное сопротивление.

Таким образом, оптимальное значение поляризации VPOLAR получают при помощи:

Напряжение VPOLAR можно, например, получить из напряжения VALIM при помощи хорошо известной резистивной схемы-делителя.

Таким образом, защитная схема 30 играет двойную роль. Она позволяет поддерживать небольшое время понижения насыщения схемы измерения при любых условиях генерирования искры. Кроме того, она обеспечивает надежность схемы измерения при каждом типе искры, которую может генерировать резонансная система зажигания.


УСТРОЙСТВО ИЗМЕРЕНИЯ ИОННОГО ТОКА В СИСТЕМЕ РАДИОЧАСТОТНОГО ЗАЖИГАНИЯ ДЛЯ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ
УСТРОЙСТВО ИЗМЕРЕНИЯ ИОННОГО ТОКА В СИСТЕМЕ РАДИОЧАСТОТНОГО ЗАЖИГАНИЯ ДЛЯ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ
УСТРОЙСТВО ИЗМЕРЕНИЯ ИОННОГО ТОКА В СИСТЕМЕ РАДИОЧАСТОТНОГО ЗАЖИГАНИЯ ДЛЯ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ
УСТРОЙСТВО ИЗМЕРЕНИЯ ИОННОГО ТОКА В СИСТЕМЕ РАДИОЧАСТОТНОГО ЗАЖИГАНИЯ ДЛЯ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ
УСТРОЙСТВО ИЗМЕРЕНИЯ ИОННОГО ТОКА В СИСТЕМЕ РАДИОЧАСТОТНОГО ЗАЖИГАНИЯ ДЛЯ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ
УСТРОЙСТВО ИЗМЕРЕНИЯ ИОННОГО ТОКА В СИСТЕМЕ РАДИОЧАСТОТНОГО ЗАЖИГАНИЯ ДЛЯ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ
УСТРОЙСТВО ИЗМЕРЕНИЯ ИОННОГО ТОКА В СИСТЕМЕ РАДИОЧАСТОТНОГО ЗАЖИГАНИЯ ДЛЯ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ
Источник поступления информации: Роспатент

Showing 161-170 of 238 items.
28.09.2018
№218.016.8c6a

Способ и система защищенного дистанционного запуска транспортного средства

Изобретение относится к способу и системе защищенного дистанционного запуска транспортного средства. При осуществлении способа активируют запуск двигателя транспортного средства. Обнаруживают событие. При обнаружении события определяют изменение (Vc) крутящего момента за интервал времени...
Тип: Изобретение
Номер охранного документа: 0002668139
Дата охранного документа: 26.09.2018
19.10.2018
№218.016.9409

Люк для закрывания доступа к интерфейсу питания автомобиля

Изобретение относится к люку (1) для закрывания доступа к установленному в полости (3) автомобиля интерфейсу (2) питания. Люк (1) содержит откидную крышку (4), установленную на петле (5) с возможностью поворота вокруг оси (Р) между закрытым положением, в котором полость (3) закрыта, и открытым...
Тип: Изобретение
Номер охранного документа: 0002669911
Дата охранного документа: 16.10.2018
23.10.2018
№218.016.9510

Временное отключение дополнительного оборудования при трогании с места автотранспортного средства

Изобретение относится к способу управления автотранспортным средством, содержащим минимум один приводной двигатель с выходным валом. Приводной вал соединен с кинематической цепью привода автотранспортного средства. Способ управления включает в себя этап перехода от первого состояния ко второму...
Тип: Изобретение
Номер охранного документа: 0002670327
Дата охранного документа: 22.10.2018
24.11.2018
№218.016.a0f7

Конструкция передней технической стороны автотранспортного средства из пластического материала

Группа изобретений относится к области транспортного машиностроения. Конструкция передней технической стороны автотранспортного средства содержит моноблочную раму из пластического материала прямоугольной формы. Моноблочная рама имеет переднюю и заднюю стороны, верхний бортик и металлический...
Тип: Изобретение
Номер охранного документа: 0002673178
Дата охранного документа: 22.11.2018
28.11.2018
№218.016.a16e

Устройство защиты доступа к транспортному средству при помощи мобильного телефона

Изобретение относится к области доступа к транспортному средству. Технический результат – обеспечение защищенного доступа к транспортному средству за счет аутентификации лица, запрашивающего доступ через телефон, и возможность дистанционного контроля транспортного средства. Для этого предложен...
Тип: Изобретение
Номер охранного документа: 0002673391
Дата охранного документа: 26.11.2018
12.12.2018
№218.016.a590

Способ управления гидростатической трансмиссией транспортного средства с четырьмя ведущими колесами

Изобретение относится к трансмиссиям транспортных средств. В способе управления гидростатической трансмиссией транспортного средства с четырьмя ведущими колесами на смешанной механической и гидравлической тяге управление гидростатической трансмиссией определяется выбором водителя между...
Тип: Изобретение
Номер охранного документа: 0002674396
Дата охранного документа: 07.12.2018
15.12.2018
№218.016.a7e9

Конструкция для монтажа элемента обшивки автотранспортного средства

Группа изобретений относится к конструкции для монтажа внутренней обшивки 5 элемента кузова автотранспортного средства вблизи задней боковой панели 2 транспортного средства и автотранспорному средству. Конструкция включает в себя заднее боковое окно 1. Указанную внутреннюю обшивку 5 крепят...
Тип: Изобретение
Номер охранного документа: 0002675099
Дата охранного документа: 14.12.2018
19.12.2018
№218.016.a8fd

Конструкция двери, содержащая элемент для локального закрывания поперечного сечения усиливающего профильного элемента панели

Группа изобретений относится к области транспортного машиностроения. Конструкция двери автомобиля содержит конструкционный отсек двери и усиливающий профильный элемент панели, установленный на конструкционном отсеке двери. Конструкция двери также содержит закрывающий элемент, расположенный...
Тип: Изобретение
Номер охранного документа: 0002675292
Дата охранного документа: 18.12.2018
26.12.2018
№218.016.aba7

Способ управления и устройство управления для двигателя внутреннего сгорания с прямым впрыском

Изобретение относится к управлению впрыском топлива для двигателя внутреннего сгорания с прямым (непосредственным) впрыском. Технический результат заключается в выполнении впрыска топлива устойчиво без ограничения объема продувки. Предложен двигатель внутреннего сгорания с прямым впрыском,...
Тип: Изобретение
Номер охранного документа: 0002675804
Дата охранного документа: 25.12.2018
29.12.2018
№218.016.ad03

Устройство торможения и внутреннего привода задней передачи для коробки передач

Изобретение относится к устройству торможения задней передачи для коробки передач с параллельными валами. Коробка передач содержит ось задней передачи, установленной в картере коробки передач. На ней установлена промежуточная шестерня задней передачи, постоянно зацепляющаяся с первичной...
Тип: Изобретение
Номер охранного документа: 0002676193
Дата охранного документа: 26.12.2018
Showing 141-148 of 148 items.
20.01.2018
№218.016.1d67

Устройство визуальной сигнализации для автотранспортного средства

Группа изобретений относится к устройству визуальной сигнализации для автотранспортного средства. Устройство (1) визуальной сигнализации для автотранспортного средства содержит источник (5) света, световод (3) и диффузионный рассеиватель (4). Источник света выполнен с возможностью излучения...
Тип: Изобретение
Номер охранного документа: 0002640678
Дата охранного документа: 11.01.2018
13.02.2018
№218.016.1ff0

Способ оценки давления в вакуумном резервуаре сервотормоза

Объектом изобретения является способ оценки давления (Pass) в вакуумном резервуаре (28) вакуумного сервотормоза (26) автотранспортного средства (10), при этом транспортное средство (10) содержит: тормозное устройство (16); сервотормоз (26); датчик (23) давления. При осуществлении способа на...
Тип: Изобретение
Номер охранного документа: 0002641364
Дата охранного документа: 17.01.2018
13.02.2018
№218.016.21ee

Система управления электромагнитным моментом электрической машины, в частности, для автотранспортного средства

Изобретение относится к области электротехники и транспорта и может быть использовано для управления моментом трансмиссии автотранспортного средства, в частности гибридной трансмиссии автотранспортного средства, оборудованного двигателем внутреннего сгорания и приводной электрической машиной....
Тип: Изобретение
Номер охранного документа: 0002641723
Дата охранного документа: 22.01.2018
13.02.2018
№218.016.23db

Вставка для опоры автотранспортного средства, устройство, использующее вставку, и автотранспортное средство, содержащее устройство

Изобретение относится к вставке (1) для опоры (6) автотранспортного средства и направлено на повышение надежности фиксации вставки в ее заблокированном состоянии. Вставка содержит головку, от которой отходит удлиненное тело вдоль продольной оси Z, и выполнена с возможностью менять свое...
Тип: Изобретение
Номер охранного документа: 0002642540
Дата охранного документа: 25.01.2018
17.02.2018
№218.016.29fa

Система для смазки двух смежных и вертикально расположенных друг над другом зубчатых передач

Изобретение относится к смазочным устройствам зубчатых передач. Система для смазки двух смежных зубчатых передач (12, 13) с горизонтальными осями (А, В), установленных с возможностью вращения в герметичном картере, дно которого образует первый резервуар, называемый главным, содержащий смазочный...
Тип: Изобретение
Номер охранного документа: 0002643086
Дата охранного документа: 30.01.2018
17.02.2018
№218.016.2e54

Соединение между коленчатым валом и блоком цилиндров

Изобретение может быть использовано в двигателях внутреннего сгорания, предназначенных для автотранспортных средств. Двигатель внутреннего сгорания автотранспортного средства содержит масляный картер (13), над которым закреплен блок (10) цилиндров. Блок (10) цилиндров содержит шатунную камеру...
Тип: Изобретение
Номер охранного документа: 0002643909
Дата охранного документа: 06.02.2018
04.04.2018
№218.016.3568

Способ диагностики двигателя с наддувом и соответствующий двигатель

Способ диагностики двигателя внутреннего сгорания с наддувом, оборудованного турбокомпрессором фиксированной геометрии, содержащим компрессор, через который проходит воздух, поступающий во впускную систему двигателя, и турбину, которая связана во вращении с компрессором через общий вал и через...
Тип: Изобретение
Номер охранного документа: 0002645856
Дата охранного документа: 28.02.2018
29.06.2019
№219.017.a1b2

Диагностика состояния загрязнения свечей системы радиочастотного зажигания

Изобретение относится к системам генерирования плазмы между двумя электродами свечи. Техническим результатом является усовершенствование диагностики состояния загрязнения электродов радиочастотной катушки-свечи. Устройство радиочастотного зажигания содержит средства (5) управления, выполненные...
Тип: Изобретение
Номер охранного документа: 0002461730
Дата охранного документа: 20.09.2012
+ добавить свой РИД