×
10.12.2013
216.012.889c

Результат интеллектуальной деятельности: СОСТАВ СЫРЬЕВОЙ СМЕСИ ДЛЯ ИЗГОТОВЛЕНИЯ НЕАВТОКЛАВНОГО ЯЧЕИСТОГО БЕТОНА ЕСТЕСТВЕННОГО ТВЕРДЕНИЯ И СПОСОБ ПОЛУЧЕНИЯ СЫРЬЕВОЙ СМЕСИ ДЛЯ ИЗГОТОВЛЕНИЯ НЕАВТОКЛАВНОГО ЯЧЕИСТОГО БЕТОНА ЕСТЕСТВЕННОГО ТВЕРДЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу изготовления изделий из ячеистого бетона и к составу сырьевой смеси для изготовления неавтоклавного теплоизоляционного ячеистого бетона. Состав сырьевой смеси для изготовления неавтоклавного ячеистого бетона естественного твердения содержит, мас.%: портландцемент 63,03-66,06, синтетический пенообразователь 0,15-0,21, газообразователь, содержащий 80% активного алюминия с размером частиц не более 100 нм и 20% полиэтиленгликоля, 0,68-0,74, вода 33,04-36,07. Состав дополнительно содержит модифицирующую нанокристаллическую добавку - корунд в количестве 0,02-0,3 мас.% от массы портландцемента. Способ получения состава по п.1 включает подачу и перемешивание в смесителе миксерного типа сначала пенообразователя с частью воды и портландцемента, а затем в полученную массу при перемешивании - суспензии из указанного газообразователя и части воды. В указанную суспензию дополнительно вводят модифицирующую нанокристаллическую добавку - корунд в количестве 0,02-0,3 мас.% от массы портландцемента. Технический результат - повышение прочности при снижении плотности и теплопроводности, получение ячеистого бетона с оптимизированной поровой структурой. 2 н. и 2 з.п. ф-лы, 2 пр., 7 табл.

Изобретение относится к способу изготовления изделий из ячеистого бетона и к составу сырьевой смеси для изготовления неавтоклавного теплоизоляционного ячеистого бетона. Изобретение может найти применение в промышленности строительных материалов, в качестве теплоизоляционных стеновых материалов.

Известна смесь для производства ячеистого бетона содержащая по мас.%: вяжущее 27,7, наполнитель 27,7, пенообразователь «пеностром» 0,4, суперпластификатор «С-3» 0,2, вода 44,0.

RU 22536370, 7 С04В 38/02

Недостатком известной смеси является усадочные деформации ячеисто-бетонной смеси, связанные с высокой влажностью смеси и применением наполнителя.

Известна смесь для производства ячеистого бетона, следующего состава, в мас.%: цемент 70, пудра алюминиевая пигментная 12, пудра алюминиевая водорастворимая 12, пластификатор морозостойкий 2, вода 4, в количестве 0,31-1,25% от массы цемента.

Недостатком такого способа является наличие отходов (горбушки), на образование которых расходуется до 10% сырьевых материалов, включая цемент, алюминиевую пудру.

Наиболее близким прототипом является ячеисто-бетонная смесь, содержащая кремнеземистый компонент 40%, вяжущее 40%, газообразователь в виде алюминиевой пудры составляет 10%, с кратностью пены равной 10 единицам

[Завадский В.Ф., Косач А.Ф., Дерябин П.П. Технология получения пеногазобетона // Строительные материалы. 2003. №6. С.12-13].

Недостатком данного прототипа является применение газообразователя: алюминиевой пудры, не в полной мере способствующего увеличению прочности ячеисто-бетонных изделий, так как при его введении в пеномассу происходят разрывы пенной структуры газовыделением. К тому же алюминиевая пудра характеризуется нестабильностью вспучивания, что приводит к колебаниям его плотности. Еще более неприятным следствием нестабильности вспучивания является вынужденное искусственное снижение практически всех эксплуатационных характеристик ячеистого бетона.

Известен способ приготовления ячеистобетонной смеси в котором растворную часть перемешивают в течение 1-2 мин с технической пеной, взбитой в скоростном смесителе при 600-800 мин-1, с температурой воды 20-25°С, затем вводят в полученную смесь газообразователь и вновь перемешивают до однородного состояния в течение 1-2 мин.

[Патент РФ №2001117430, МПК 7 С04В 38/10, 2003].

Недостатками данного способа также являются высокие энергозатраты при получении ячеистого бетона, так как техническую пену получают отдельно и далее перемешивают с растворной частью, что увеличивает себестоимость готовых строительных изделий.

В заявляемом составе и способе получения сырьевой смеси для изготовления неавтоклавного ячеистого бетона естественного твердения ставились задачи:

- получить ячеистый материал с оптимизированной поровой структурой при использовании комплексной системы поризации

- осуществить возможность использования в смеси газообразователя с содержанием активного алюминия до 80% и размером частиц не более 100 нм

- повышения прочности ячеистого бетона при снижении плотности и теплопроводности

- производить получение пеносмеси одновременно без разделения на приготовления пены и смеси.

Разработка также направлена на повышение конкурентоспособности ячеисто-бетонных изделий на рынке теплоизоляционных материалов, совершенствование существующих линий по производству пенобетона.

Указанные задачи достигаются тем, что состав сырьевой смеси для изготовления неавтоклавного ячеистого бетона естественного твердения, включающий портландцемент, синтетический пенообразователь, газообразователь алюминиевый и воду, газообразователь содержит 80% активного алюминия с размером частиц не более 100 нм и 20% полиэтиленгликоля, при следующем соотношении компонентов, мас.%: портландцемент 63,03-66,06, указанный пенообразователь 0,15-0,21, указанный газообразователь 0,68-0,74, вода 33,04-36,07. Указанный состав дополнительно содержит модифицирующую нанокристаллическую добавку - корунд в количестве 0,02-0,3 мас.% от массы портландцемента. Способ получения состава сырьевой смеси для изготовления неавтоклавного ячеистого бетона естественного твердения включает подачу и перемешивание в смесителе миксерного типа сначала пенообразователя с частью воды и портландцемента, затем в полученную массу при перемешивании - суспензии из указанного газообразователя и части воды. В указанную суспензию дополнительно вводят модифицирующую нанокристаллическую добавку - корунд в количестве 0,02-0,3 мас.% от массы портландцемента.

Анализируя проведенные лабораторные исследованиях мы можем сделать вывод о том, что при использовании алюминия активированного в связи с его высокой дисперсностью процесс газовыделения происходит более равномерно и такой же объем газа выделяется в 2-2,5 раза дольше, что обеспечивает отсутствие механических нарушений и как следствие более высокие прочностные показатели системы в целом. При сравнении газообразующей способности алюминия активированного и алюминиевой пудры, при одинаковой массе, было отмечено, что процесс выделения газа у алюминиевой пудры проходит в течение 2,5 минут, характер течения реакции скачкообразный. Алюминий активированный показал более стабильное выделение газа, в течение 6,5 минут, это приводит к тому, что газовыделение происходит равномерно в течение длительного времени без ярко выраженных пиков, поэтому при использовании алюминия активированного реакция газоовыделения протекает равномерно и заканчивается до момента кристаллизации вяжущего, что обеспечивает отсутствие механических нарушений и как следствие более высокие прочностные показатели системы в целом.

Предлагаемое изобретение решает задачу повышения прочности ячеистого бетона при снижении плотности и теплопроводности. Примеры конкретного выполнения. Пример конкретного выполнения 1.

Для получения ячеисто-бетонной смеси и испытания ее пригодности для производства теплоизоляционных ячеистых бетонов был выполнен ряд операций в соответствии с заявляемым способом приготовления сырьевой смеси для изготовления неавтоклавного ячеистого бетона естественного твердения.

В качестве вяжущего для получения ячеисто-бетонной смеси использовали цемент ПЦ 500 Д 0 ОАО «Белцемент» соответствующий ГОСТ 31108 - 2003 основные характеристики приведены в таблице 1. В качестве комплексного поризатора использовали синтетический пенообразователь «Пеностром» ТУ 2481-001-22299560-99 основные характеристики приведены в таблице 2 и газообразователь - алюминий активированный, включающий в себя 80 мас.% активного алюминия с размером частиц не более 100 нм и 20 мас.% полиэтиленгликоля. Вода удовлетворяющая требования ГОСТ 23732-79.

Необходимое расчетное количество составляющих компонентов на 1 кг формовочной смеси приведено в таблице 3.

Формовочную смесь пеногазобетона готовили в лабораторных условиях следующим способом: путем подачи в лабораторный смеситель миксерного типа и совместного перемешивания в течение 3-4 мин. пенообразователя «Пеностром» ТУ 2481-001-22299560-99, части воды, портландцемента, затем в полученную массу при перемешивании - суспензии из указанного газообразователя - алюминий активированный и части воды. Далее смесь заливали в металлические формы-кубы 10×10×10 см заполняя их на 2/3 от объема. Образцы твердели в нормальных условиях в течение 28 суток.

Далее образцы-кубы испытывались на прочность, плотность и теплопроводность.

Результаты испытаний представлены в таблице 4.

Пример конкретного выполнения 2.

Для получения ячеисто-бетонной смеси и испытания ее пригодности для производства теплоизоляционных ячеистых бетонов был выполнен ряд операций в соответствии с заявляемым способом приготовления сырьевой смеси для изготовления неавтоклавного ячеистого бетона естественного твердения.

В качестве вяжущего для получения ячеисто-бетонной смеси использовали цемент ПЦ 500 Д 0 ОАО «Белцемент» соответствующий ГОСТ 31108 - 2003 основные характеристики приведены в таблице 1. В качестве модификатора структуры использовали нанокристаллический модификатор -корунд, основные характеристики приведены в таблице 5. В качестве комплексного поризатора использовали синтетический пенообразователь «Морпен» ТУ 0258-001-01013393-94 основные характеристики приведены в таблице 2 и газообразователь - алюминий активированный, включающий в себя 80 мас.% активного алюминия с размером частиц не более 100 нм и 20 мас.% полиэтиленгликоля. Вода, удовлетворяющая требования ГОСТ 23732-79.

Необходимое расчетное количество составляющих компонентов на 1 кг формовочной смеси приведено в таблице 6.

Формовочную смесь пеногазобетона готовили в лабораторных условиях следующим способом: путем подачи в лабораторный смеситель миксерного типа и совместного перемешивания в течение 3-4 мин пенообразователя «Морпен» ТУ 0258-001-01013393-94, части воды, портландцемента, затем в полученную массу при перемешивании - суспензии из указанного газообразователя - алюминий активированный, части воды и модифицирующей нанокристаллической добавки - корунд. Далее смесь заливали в металлические формы-кубы 10×10×10 см заполняя их на 2/3 от объема. Образцы твердели в нормальных условиях в течение 28 суток.

Далее образцы-кубы испытывались на прочность, плотность и теплопроводность.

Результаты испытаний представлены в таблице 7.

С учетом проведенные в данной работе исследований, можно сделать вывод о высокой технологичности и конкурентоспособности полученных материалов. Изделия на основе разработанных составов могут изготавливаться как непосредственно на строительной площадке, так и на производственных площадях. Полученный материал твердеет в нормальных условия, при любых размерах массива, практически не проявляя усадочных деформаций.

За счет реальной возможности сочетания в предлагаемом способе преимуществ получения ячеистого бетона по газо- и пено- методу, получаемый материал имеет оптимальную поровую структуру, а именно на 15-20% низкую теплопроводность, на 15-25% более высокие прочностные характеристики, чем существующие аналоги.

Таблица 1
Вид цемента Нормальная густота цементного теста, % Сроки схватывания цементного теста нормальной густоты, мин Предел прочности МПа, нормальное твердение
начало конец Rизг/ Rсж
3 сут 28 сут
ЗАО «Белгородский цемент» 24,10 130 185 5,5/35,4 8,3/53,7

Таблица 2
Характеристики продуктов Морпен Пеностром
Внешний вид Однородная жидкость без осадка и расслоения Темно-коричневая жидкость
Плотность при 20°C, кг/м3, в пределах 1050 -1200 1010-1030
Кинематическая вязкость при 20°C, Мм2 с-1, не более 200 40
Температура застывания, °C, не выше -10 -3
Водородный показатель (pH), в пределах 7,0-10,0 7,5-10,0
Кратность: - 4
Низкая, не более 20 -
Средняя, не менее 60 -
Концентрация рабочего раствора, % (об.) не менее: 4,0 0,1 -2,0
Устойчивость пены, с, не менее: - 240
Разрушение 50% объема пены средней кратности в 200 дм3 емкости 1200 -
Выделение 50% объема жидкости из пены, полученной на стендовой установке 180 -
Показатель смачивающей способности, с - -
Гарантийный срок хранения, мес 36 12

Таблица 3
Состав ячеисто-бетонной смеси на 1 м3
Цемент, кг (мас.%) Пенообразователь, кг (мас.%) Газообразователь, кг (мас.%) Вода, кг (мас.%)
200 (66,06) 0,58 (0,19) 2,15(0,71) 100 (33,04)
активный алюминий - 1,72 (80) 1 этап - 80 (26,43)
полиэтиленгликоль - 0,43 (20) 2 этап - 20 (6,61)

Таблица 4
Свойства теплоизоляционного неавтоклавного пеногазобетона
№ образца Концентрация порообразователя (пено+газо), по мас.% Плотность, кг/м теплопроводность, Прочность, МПа
Контрольный состав на алюминиевой пудре
1 365 0,08 1,1
2 0,18+0,71 390 0,07 0,9
3 394 0,08 1,1
Среднее 383 0,077 1,03
Составы на алюминии активированном
1 394 0,07 1,2
2 0,15+0,74 421 0,08 1,3
3 408 0,07 1,5
Среднее 407,7 0,073 1,33
Составы на алюминии активированном
1 365 0,058 1,2
2 0,18+0,71 370 0,07 1,6
3 377 0,062 1,6
Среднее 370,6 0,063 1,46
Составы на алюминии активированном
1 389 0,07 1,1
2 0,21+0,68 397 0,076 0,9
3 405 0,06 1,3
Среднее 397 0,068 1,1

Таблица 5
Основные свойства Показатели
Количество примесей, % Не более 0,01
Размер кристаллов, нм Не более 50
Размер частиц, мм Не более 10
Удельная поверхность, м2/кг 100-600
Плотность, кг/м3 3000

Таблица 6
Цемент, Корунд, Пенообразователь, Газообразователь, Вода,
кг (мас.%) кг (мас.%) кг (мас.%) кг (мас.%) кг (мас.%)
200 0,3 0,58 2,15 (0,7) активный алюминий - 1,72 (80) 103,04 (33,97) 1 этап-80,1 (26,4)
(65,04) (0,1) (0,19) полиэтиленгликоль - 0,43 (20) 2 этап - 22,94 (7,57)

Таблица 7
№ образца Модификатор, в % от массы вяжущего Концентрация порообразователя (пено+газо), % Плотность, кг/м3 теплопроводность, Прочность МПа
Контрольный состав на алюминиевой пудре
1 0,16 0,18+0,71 385 0,1 1,0
2 390 0,09 0,9
3 390 0,08 1,1
Среднее 388 0,09 1,0
Составы на алюминии активированном
1 390 0,09 1,5
2 0,02 0,15+0,74 432 0,08 1,4
3 420 0,09 1,6
Среднее 414 0,08 1,5
Составы на алюминии активированном
1 333 0,06 1,8
2 0,16 0,18+0,71 350 0,052 1,6
3 341 0,055 1,5
Среднее 341,3 0,056 1,63
Составы на алюминии активированном
1 388 0,09 1,1
2 0,3 0,21+0,68 400 0,076 1,5
3 398 0,08 1,3
Среднее 395 0,082 1,3

Источник поступления информации: Роспатент

Showing 1-10 of 11 items.
20.01.2013
№216.012.1c49

Способ получения композиционного вяжущего, композиционное вяжущее для производства прессованных изделий автоклавного твердения, прессованное изделие

Изобретение относится к строительной индустрии и может быть использовано для получения силикатного кирпича и прессованных стеновых материалов автоклавного твердения. Способ получения композиционного вяжущего для производства прессованных изделий включает предварительное гашение высокоактивной...
Тип: Изобретение
Номер охранного документа: 0002472735
Дата охранного документа: 20.01.2013
27.12.2013
№216.012.9085

Гранулированный наноструктурирующий заполнитель на основе высококремнеземистых компонентов для бетонной смеси, состав бетонной смеси для получения бетонных строительных изделий и бетонное строительное изделие

Изобретение относится к промышленности строительных материалов и может быть использовано для получения бетонных строительных изделий в промышленном и гражданском строительстве. Технический результат - устранение агрегации при помоле, снижение плотности и теплопроводности при повышении и...
Тип: Изобретение
Номер охранного документа: 0002502690
Дата охранного документа: 27.12.2013
10.02.2014
№216.012.9e52

Способ получения минерального порошка для асфальтобетонной смеси

Изобретение относится к области дорожного строительства, а именно к производству дорожно-строительных материалов, и может быть использовано при устройстве и ремонте покрытий автомобильных дорог. Технический результат: расширение номенклатуры сырьевых материалов для производства наполнителей...
Тип: Изобретение
Номер охранного документа: 0002506238
Дата охранного документа: 10.02.2014
20.03.2014
№216.012.abf6

Сырьевая смесь для ячеистых изделий автоклавного твердения

Изобретение относится к строительной индустрии и может быть использовано для изготовления теплоизоляционных, конструкционно-теплоизоляционных, конструкционных изделий автоклавного твердения. Сырьевая смесь для ячеистых изделий автоклавного твердения содержит, мас.%: известь кальциевую комовую...
Тип: Изобретение
Номер охранного документа: 0002509737
Дата охранного документа: 20.03.2014
20.05.2014
№216.012.c2d0

Теплоизоляционно-конструкционная кладочная смесь на основе легкого заполнителя

Изобретение относится к строительным материалам и может быть использовано при возведении зданий и сооружений, использующих в качестве основных стеновых материалов изделия теплоизоляционно-конструкционного назначения. Теплоизоляционно-конструкционная кладочная смесь на основе легкого заполнителя...
Тип: Изобретение
Номер охранного документа: 0002515631
Дата охранного документа: 20.05.2014
10.06.2014
№216.012.ce7a

Гранулированный наноструктурирующий заполнитель на основе высококремнеземистых компонентов для бетонной смеси, состав бетонной смеси для получения бетонных строительных изделий (варианты) и бетонное строительное изделие

Изобретение относится к промышленности строительных материалов и может быть использовано для получения бетонных строительных изделий. Технический результат - снижение плотности заполнителя и изделия, снижение теплопроводности при сохранении прочности. Гранулированный наноструктурирующий...
Тип: Изобретение
Номер охранного документа: 0002518629
Дата охранного документа: 10.06.2014
10.10.2014
№216.012.fdc6

Мелкозернистый цементобетон на основе модифицированного базальтового волокна

Изобретение относится к конструкционным материалам и может использоваться в различных отраслях промышленности, например в дорожном и гражданском строительстве. Технический результат заключается в повышении трещиностойкости, прочности, стойкости микроармирующего компонента к воздействию...
Тип: Изобретение
Номер охранного документа: 0002530812
Дата охранного документа: 10.10.2014
13.01.2017
№217.015.89ca

Гидрофобизирующий гранулированный заполнитель на основе кремнеземистого сырья для бетонной смеси, состав бетонной смеси для получения бетонных строительных изделий, способ получения бетонных строительных изделий и бетонное строительное изделие

Группа изобретений относится к производству строительных материалов и может быть использована для получения бетонных строительных изделий, подвергающихся тепловлажностной обработке при твердении. Гидрофобизирующий гранулированный заполнитель для бетонной смеси выполнен в виде гранул размером...
Тип: Изобретение
Номер охранного документа: 0002602436
Дата охранного документа: 20.11.2016
25.08.2017
№217.015.b1dd

Асфальтобетонная смесь на основе модифицированного битума для устройства покрытий автомобильных дорог

Изобретение относится к дорожно-строительным материалам и может быть использовано для устройства покрытий автомобильных дорог. Технический результат - повышение качества дорожного покрытия за счет улучшения физико-механических характеристик, снижение набухания и водонасыщения, повышение...
Тип: Изобретение
Номер охранного документа: 0002613211
Дата охранного документа: 15.03.2017
25.08.2017
№217.015.b234

Асфальтобетонная смесь на основе модифицированного битума для устройства покрытий автомобильных дорог

Изобретение относится к дорожно-строительным материалам и может быть использовано для устройства покрытий автомобильных дорог. Технический результат - повышение качества дорожного покрытия за счет улучшения физико-механических характеристик асфальтобетонной смеси на основе модифицированного...
Тип: Изобретение
Номер охранного документа: 0002613068
Дата охранного документа: 15.03.2017
+ добавить свой РИД