×
10.12.2013
216.012.889b

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ НАНОДИСПЕРСНОЙ ШИХТЫ ДЛЯ ИЗГОТОВЛЕНИЯ НИТРИДНОЙ КЕРАМИКИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области порошковых технологий и может быть использовано в электронной промышленности для изготовления нитридной керамики. Способ получения нанодисперсной шихты для изготовления нитридной керамики заключается в том, что в герметичном реакторе в среде газообразного азота при его избыточном давлении производят электрические взрывы алюминиевого проводника с покрытием, содержащим оксид иттрия. При увеличении зарядного напряжения емкостного накопителя энергии от 15 до 25 кВ снижается средний объёмно-поверхностный размер наночастиц от 94 до 75 нм, но при этом также снижается содержание нитрида алюминия от 19,0 до 12,3 мас. %. Технический результат: упрощение технологического процесса. 1 табл.
Основные результаты: Способ получения нанодисперсной шихты для изготовления нитридной керамики в реакторе с газообразным азотом, отличающийся тем, что в герметичном реакторе в среде газообразного азота при его избыточном давлении производят электрические взрывы алюминиевого проводника с покрытием, содержащим оксид иттрия.

Изобретение относится к области порошковых технологий и может быть использовано в электронной промышленности для изготовления нитридной керамики.

Известен способ получения шихты [RU 2433108 С1, МПК С04В 35/581 (2006/01), опубл. 10.11.2011 г.] на основе нитрида алюминия со средним размером частиц менее одного микрометра, содержащих не менее 10% кубической фазы нитрида алюминия с частицами менее 100 нм. Приготовление литейного шликера включает последовательно: перемешивание компонентов шихты, в которую добавляют не более 65 об.% органической составляющей, полуфабрикат в виде заготовки спекают под давлением 0,1-1,0 МПа в атмосфере азотсодержащего газа при температуре 1650-1820°С в течение 1-3 часов.

Недостатком способа являются высокие энергозатраты, связанные с нагреванием заготовки выше 1650°С в течение 1-3 часов, а также с многостадийностью приготовления заготовок для спекания.

Известен способ получения шихты для изготовления нитридной керамики [RU 2428376 С1, МПК С01В 21/072 (2006.01), В82В 3/00 (2006.01), опубл. 10.09.2011 г.), взятый нами за прототип, включающий приготовление порошка алюминия, его помещение в проточный реактор с газообразным азотом, нагрев и последующее извлечение целевого продукта, при этом в качестве азотируемого порошка используют напопорошок алюминия, процесс азотирования проводят в одну стадию при 530-620°С.

Недостатком этого способа является его сложность, связанная с необходимостью нагрева нанопорошка до высоких температур в течение одного часа, что приводит к значительным энергозатратам.

Задачей изобретения является упрощение способа получения нанодисперсной шихты для изготовления нитридной керамики.

Поставленная задача решена за счет того, что способ получения нанодисперсной шихты для изготовления нитридной керамики, также как в прототипе, осуществляют в реакторе с газообразным азотом.

Согласно изобретению в герметичном реакторе в среде газообразного азота при его избыточном давлении производят электрические взрывы алюминиевого проводника с покрытием, содержащим оксид иттрия.

При осуществлении заявляемого способа достигается упрощение технологии по сравнению с прототипом: синтез нанодисперсной шихты производят из алюминиевой проволоки с покрытием, содержащим оксид иттрия в одну стадию, при этом затрачивается гораздо меньшая энергия, так как азот не надо нагревать до высоких температур в несколько сот градусов Цельсия.

В таблице 1 представлены результаты анализа полученных образцов шихты.

Для получения шихты была взята алюминиевая проволока с содержанием алюминия 99.6%, диаметром 0.20 мм с нанесенным на нее равномерным покрытием, содержащим высохший бакелитовый лак и оксид иттрия. Массовое содержание оксида иттрия в системе взрываемый проводник - непроводящее покрытие составляло 2.6% (содержание иттрия составляло ~0,6 ат.%, учитывая только металлические элементы). Отрезок проволоки с покрытием намотали на катушку механизма подачи установки УДП-4Г и зафиксировали ее в рабочем положении механизма подачи проводника. После вакуумирования рабочего объема установки УДП-4Г до давления 2·10-3 Па и последующего заполнения его газообразным азотом до давления 3-105 Па провели серию электрических взрывов путем непрерывной подачи проволоки с покрытием в межэлектродный промежуток реактора, где и происходили электрические взрывы проводника в атмосфере азота и таким образом получили нанодисперсную шихту для изготовления нитридной керамики. Параметры разрядного контура генератора импульсного тока использовали следующие: зарядная емкость составила 1.21 мкФ, индуктивность - 0.61 мкГн, активное сопротивление - 0.12 Ом. Зарядное напряжение емкостного накопителя энергии было 15 кВ, межэлектродное расстояние - 40 мм.

Аналогично были получены еще два образца нанодисперсной шихты с использованием зарядных напряжений емкостного накопителя 20 кВ и 25 кВ.

После осаждения конечных продуктов электровзрыва и их выгрузки, образцы подвергали рентгенофазовому анализу, рентгеновской фотоэлектронной спектроскопии, определению среднего объемно-поверхностного размера частиц с использованием метода низкотемпературной десорбции азота (метод БЭТ) и определению связанного азота по методу Кьельдаля. Результаты анализа приведены в таблице 1.

В результате электрических взрывов в газообразном азоте алюминиевого проводника с покрытием, содержащим оксид иттрия, сформирована нанодисперсная шихта, содержащая нитрид алюминия и оксид иттрия. Результаты анализов показывают, что при увеличении зарядного напряжения емкостного накопителя энергии от 15 до 25 кВ снижается средний объемно-поверхностный размер наночастиц от 94 до 75 нм, но при этом также снижается и содержание нитрида алюминия от 19,0 до 12.3 мас.%.

Таблица 1
Способ получения нанодисперсной шихты для изготовления нитридной керамики
№пп Зарядное напряжение емкостного накопителя энергии, кВ Содержание нитрида алюминия в нанодисперсной шихте, мас.% Содержание иттрия в поверхностных и приповерхностных слоях наночастиц шихты, ат.% Средний объемноповерхностный размер частиц, определенный по
методу БЭТ, нм
1 25 12,3 1,18 75
2 20 12,6 0,90 83
3 15 19,0 0,74 94

Способ получения нанодисперсной шихты для изготовления нитридной керамики в реакторе с газообразным азотом, отличающийся тем, что в герметичном реакторе в среде газообразного азота при его избыточном давлении производят электрические взрывы алюминиевого проводника с покрытием, содержащим оксид иттрия.
Источник поступления информации: Роспатент

Showing 1-7 of 7 items.
27.10.2013
№216.012.78bc

Способ получения сорбента для очистки воды от ионов железа и марганца

Изобретение относится к получению неорганических сорбентов. Способ получения сорбента включает обработку диоксида титана, состоящего из кристаллических фаз анатаза и рутила, ультразвуком в 0,2 н. растворе NaOH или НСl в течение 10 мин. Сорбент промывают декантацией не менее 3 раз и сушат при...
Тип: Изобретение
Номер охранного документа: 0002496570
Дата охранного документа: 27.10.2013
27.01.2014
№216.012.9beb

Способ нанесения медного покрытия

Изобретение относится к получению медных покрытий и может быть использовано для коррозионной защиты, декоративной обработки различных материалов, а также в электронной технике. Способ включает очистку и обезжиривание поверхности изделия, нанесение на нее механическим способом медьсодержащей...
Тип: Изобретение
Номер охранного документа: 0002505621
Дата охранного документа: 27.01.2014
27.03.2014
№216.012.ae67

Способ получения высокочистого водорода

Изобретение относится к области химии. Горячий водород, образующийся в результате реакции термохимического окисления алюминия водой, пропускают через слой пленки сверхвысокомолекулярного полиэтилена при давлении 1 атм. Изобретение позволяет повысить чистоту водорода. 2 ил.
Тип: Изобретение
Номер охранного документа: 0002510362
Дата охранного документа: 27.03.2014
10.12.2014
№216.013.0e6c

Способ получения нанопорошков металлов с повышенной запасенной энергией

Изобретение относится к порошковой металлургии, в частности к получению нанопорошков металлов с повышенной запасенной энергией. Может использоваться для повышения реакционной способности нанопорошков при спекании, горении, в энергосберегающих технологиях. Образец нанопорошка металла облучают...
Тип: Изобретение
Номер охранного документа: 0002535109
Дата охранного документа: 10.12.2014
27.05.2015
№216.013.4e1b

Способ получения нитрида алюминия

Изобретение относится к технологии получения керамических порошков нитрида алюминия, которые могут быть использованы в электронике, электротехнике, в частности, в качестве материала подложек мощных силовых и СВЧ-полупроводниковых приборов. Нитрид алюминия получают путем сжигания...
Тип: Изобретение
Номер охранного документа: 0002551513
Дата охранного документа: 27.05.2015
25.08.2017
№217.015.c703

Способ получения нанодисперсного порошка диоксида титана со структурой рутила

Изобретение относится к неорганической химии и может быть использовано при изготовлении керамических материалов, сегнетоэлектриков, наполнителей лакокрасочных и полимерных материалов. Способ получения нанодисперсного рутильного диоксида титана включает осаждение его из раствора, содержащего...
Тип: Изобретение
Номер охранного документа: 0002618879
Дата охранного документа: 11.05.2017
29.12.2017
№217.015.f4e5

Способ активации нанопорошка алюминия

Изобретение относится к активации нанопорошка алюминия, полученного электрическим взрывом алюминиевой проволоки, и может быть использовано при приготовлении твердых ракетных топлив, пиротехнических составов, интерметаллидов алюминия и порошковых сплавов. Пассиваируют нанопорошок алюминия...
Тип: Изобретение
Номер охранного документа: 0002637732
Дата охранного документа: 06.12.2017
Showing 131-140 of 234 items.
27.08.2014
№216.012.ed3d

Способ получения наноразмерных оксидов металлов из металлоорганических прекурсоров

Изобретение может быть использовано в химической промышленности. Наноразмерные оксиды металлов получают химической реакцией окисления металлоорганического соединения при инициировании процессов энергетическим воздействием, в качестве которого используют импульсный электронный пучок энергией...
Тип: Изобретение
Номер охранного документа: 0002526552
Дата охранного документа: 27.08.2014
27.08.2014
№216.012.ee4a

Способ количественного определения молочной кислоты методом вольтамперометрии на стеклоуглеродном электроде

Изобретение относится к области аналитической химии, в частности к вольтамперометрическому способу определения молочной кислоты, используемой во многих областях пищевой промышленности, ветеринарии, косметологии и играющей огромную роль в физиологическом процессе человека. Задачей заявляемого...
Тип: Изобретение
Номер охранного документа: 0002526821
Дата охранного документа: 27.08.2014
27.08.2014
№216.012.eec8

Способ разрушения многокомпонентных изделий

Изобретение относится к области переработки и утилизации вторичного сырья. Способ разрушения многокомпонентных изделий, состоящих из металлических элементов с прикрепленными к ним изоляционными элементами, включающий создание в них поля механических напряжений, превышающих предел их...
Тип: Изобретение
Номер охранного документа: 0002526947
Дата охранного документа: 27.08.2014
10.09.2014
№216.012.f1fc

Способ диагностики острого токсического повреждения печени

Изобретение относится к медицине и касается диагностики острого токсического повреждения печени крыс. Способ заключается в выделении липидов, а именно в том, что добавляют 25 мкг 10% раствора тезита при одновременном перемешивании смеси с помощью шейкера при 20°C и частоте колебаний 120 в...
Тип: Изобретение
Номер охранного документа: 0002527770
Дата охранного документа: 10.09.2014
20.09.2014
№216.012.f51f

Способ определения глутатиона в модельных водных растворах методом циклической вольтамперометрии на графитовом электроде, модицифированном коллоидными частицами золота

Изобретение относится к электроаналитической химии, направлено на определение глутатиона и может быть использовано в анализе модельных водных растворов методом циклической вольтамперометрии по высоте анодного максимума на анодной кривой. Способ определения глутатиона заключается в определении...
Тип: Изобретение
Номер охранного документа: 0002528584
Дата охранного документа: 20.09.2014
20.09.2014
№216.012.f523

Устройство для определения амплитудно-частотных и фазочастотных характеристик токовых шунтов

Изобретение относится к области электроизмерительной техники и может быть использовано для контроля и определения динамических метрологических характеристик при производстве и эксплуатации токовых шунтов. Устройство содержит источник импульсного тока, в котором к первому выводу вторичной...
Тип: Изобретение
Номер охранного документа: 0002528588
Дата охранного документа: 20.09.2014
10.10.2014
№216.012.fcb9

Устройство для защиты двух параллельных линий

Изобретение относится к электротехнике, а именно к технике релейной защиты, и может быть использовано для защиты двух параллельных линий. Технический результат заключается в повышении надежности устройства. Для этого заявленное устройство содержит с первого по третье реле тока, подключенные к...
Тип: Изобретение
Номер охранного документа: 0002530543
Дата охранного документа: 10.10.2014
10.10.2014
№216.012.fcbc

Способ улавливания и локализации летучих форм радиоактивного йода из газообразных выбросов

Изобретение относится к атомной энергетике и экологии и может быть использовано при авариях на АЭУ, сопровождающихся нарушением целостности защитной оболочки и самого реактора, когда в окружающее воздушное пространство происходит выброс радионуклидов, продуктов деления ядерного топлива, когда...
Тип: Изобретение
Номер охранного документа: 0002530546
Дата охранного документа: 10.10.2014
10.10.2014
№216.012.fd79

Способ генерации ускоренных позитронов

Изобретение относится к области ускорительной техники и предназначено для генерации позитронов с большой энергией для последующего использования в дефектоскопии, томографии, радиационных испытаниях стойкости материалов, лучевой терапии и др. Способ генерации ускоренных позитронов включает...
Тип: Изобретение
Номер охранного документа: 0002530735
Дата охранного документа: 10.10.2014
10.11.2014
№216.013.0411

Комплекс для проверки скважинных инклинометров на месторождении

Изобретение относится к области исследования и испытания инклинометров в полевых условиях. Техническим результатом является повышение точности и оперативности проверки магнитных и гироскопических скважинных инклинометров в полевых условиях. Предложен комплекс для проверки скважинных...
Тип: Изобретение
Номер охранного документа: 0002532439
Дата охранного документа: 10.11.2014
+ добавить свой РИД