×
10.12.2013
216.012.8873

СПОСОБ СТАБИЛИЗАЦИИ ЩЕЛОЧНОГО РАСТВОРА ПЕРОКСИДА ВОДОРОДА

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к способам стабилизации щелочного раствора пероксида водорода, используемого для синтеза пероксидных соединений щелочных металлов или их композитных смесей. Способ стабилизации щелочного раствора пероксида водорода заключается в последовательном добавлении в раствор пероксида водорода стабилизаторов. В качестве стабилизаторов используют перхлорат магния и силикаты натрия или калия, при этом перхлорат магния и силикаты натрия или калия вводят в раствор пероксида водорода перед добавлением гидроксида в следующих количествах, моль вещества/моль пероксида водорода: а добавление гидроксида в стабилизированный раствор пероксида водорода осуществляют двумя порциями, при этом вторую порцию гидроксида добавляют после образования коллоида. Технический результат - упрощение технологического процесса и обеспечение стабильности щелочного раствора пероксида водорода в течение длительного времени. 1 табл., 7 пр.
Основные результаты: Способ стабилизации щелочного раствора пероксида водорода, заключающийся в последовательном добавлении в раствор пероксида водорода стабилизаторов, отличающийся тем, что в качестве стабилизаторов используют перхлорат магния и силикаты натрия или калия, при этом перхлорат магния и силикаты натрия или калия вводят в раствор пероксида водорода перед добавлением гидроксида в следующих количествах, моль вещества/моль пероксида водорода: а добавление гидроксида в стабилизированный раствор пероксида водорода осуществляют двумя порциями, при этом вторую порцию гидроксида добавляют после образования коллоида.
Реферат Свернуть Развернуть

Изобретение относится к способам стабилизации щелочных растворов пероксида водорода, используемых при синтезе из пероксида водорода и соответствующих гидроксидов пероксидных соединений щелочных металлов или их композитных смесей. Перечисленные выше пероксидные соединения используются как основа продуктов для регенерации воздуха в средствах защиты органов дыхания человека.

Способы получения пероксидных соединений щелочных металлов или их композитных смесей из пероксида водорода и соответствующих гидроксидов заключаются во взаимодействии раствора пероксида водорода и соответствующего гидроксида (или смеси гидроксидов) с последующей дегидратацией полученного раствора или суспензии. Процесс дегидратации протекает в два этапа - на первом этапе удаляются только химически несвязанные молекулы воды, содержащиеся в жидкой фазе. На втором этапе происходит кристаллизация и дегидратация промежуточных аддуктов различного химического состава. Последний процесс может быть схематично представлен следующими химическими уравнениями:

В зависимости от концентрации компонентов в исходном растворе или суспензии возможен различный маршрут протекания процесса, т.е. в зависимости от условий (температура, химическая природа и концентрационные границы исходных компонентов в жидкой фазе) возможна кристаллизация промежуточных аддуктов различного химического состава, что существенно сказывается на качественном составе получаемых пероксидов щелочных металлов. Чем меньшее количество гидратных и пероксогидратных молекул входит в состав промежуточного аддукта, тем меньше вероятность взаимодействия получаемых пероксидных соединений щелочных металлов с водяным паром на стадии дегидратации, приводящая к их разложению (т.е. к снижению содержания целевого вещества в продукте синтеза). Кроме того, данный аспект позволяет снизить время производственного цикла и энергозатраты на единицу конечного продукта.

Для кристаллизации промежуточного аддукта необходимого состава требуется строго фиксированные значения температуры и химического состава жидкой фазы (при изменении данных параметров вследствие довольно высокой растворимости образующихся аддуктов происходит смещение фигуративных точек по кривой растворимости в область кристаллизации твердых фаз другого химического состава).

Необходимо отметить, что взаимодействие пероксида водорода и гидроксида при нормальных условиях - ярко выраженный экзотермический процесс, сопровождающийся под воздействием гидроксид - анионов каталитическим разложением пероксидных продуктов [У. Шамб, Ч. Сеттерфилд, Р. Вентворс. Перекись водорода, - М.: Иностранная литература, - 1958. - 578 с.] и выделением атомарного кислорода. Это не только приводит к нарушению температурных и концентрационных параметров жидкой фазы, необходимых для кристаллизации твердой фазы требуемого состава, но и создает дополнительную угрозу возникновения «кислородного» пожара, локализовать который практически невозможно. Поэтому для предотвращения разложения пероксидных соединений в процессе синтеза и хранения полученного щелочного раствора пероксида водорода надо или охлаждать зону реакции до требуемых температур (как правило, не выше 30°С) и поддерживать полученный раствор при этой же температуре, что связано с дополнительными затратами, или использовать вещества, выступающие в качестве стабилизаторов (ингибиторов) реакции. Под стабильностью различных растворов пероксидных соединений понимается их способность сохранять свой активный кислород (уменьшение абсолютного содержания активного кислорода в растворе менее 1,0% массовых) в течение длительного времени, т.е. максимальная неизменность химического состава жидкой фазы.

До настоящего времени не существует строго научных основ для выбора стабилизаторов различных растворов пероксидных соединений, препятствующих их разложению [Г.А. Серышев. Химия и технология перекиси водорода, - Л.: Химия, - 1984. - С.182.]. Поэтому их выбор проводят преимущественно эмпирическим путем в зависимости от состава конкретного раствора и его последующего применения. Так как щелочной раствор пероксида водорода в дальнейшем используется для синтеза пероксидных соединений щелочных металлов и далее на их основе регенеративных продуктов для защиты органов дыхания человека, на применяемые в качестве стабилизаторов вещества накладывается ряд ограничений (по токсичности, химической устойчивости к воздействию атомарного кислорода и др.).

Известен способ стабилизации щелочных растворов пероксида водорода [патент РФ №2352522, МПК С01В 15/037, 2009 г.], включающий поэтапное добавление к водному раствору пероксида водорода стабилизаторов. В качестве стабилизаторов используют сульфат магния (MgSO4) и моногидрат пероксида лития (Li2O2·H2O). На первом этапе осуществляют введение в раствор пероксида водорода сульфата магния. После его полного растворения осуществляют добавление части гидроксида. При достижении значения рН раствора, равного примерно 10, в него вводят моногидрат пероксида лития. Затем добавляют оставшееся количество гидроксида. Стабилизаторы вводятся в следующих количествах, моль вещества/моль пероксида водорода: сульфат магния (MgSO4) 0,0001-0,017; моногидрат пероксида лития (Li2O2·H2O) 0,0001-0,028.

Такой прием обеспечивает стабильность щелочного раствора пероксида водорода в течение длительного времени. Это позволяет снизить расход ресурсов при дальнейшем получении из полученного таким образам щелочного раствора пероксида водорода пероксидных соединений щелочных металлов или их композитных смесей и повысить содержание основного компонента в продукте синтеза.

Однако такой способ является технологически сложным. Это обусловлено, во-первых, многостадийностью процесса, заключающегося в последовательном введении в раствор пероксида водорода сначала одного стабилизатора (сульфата магния), затем добавления гидроксида до достижения строго фиксированного значения рН, затем введении второго стабилизатора и только после этого добавлении оставшегося количества гидроксида.

При этом существенное значение имеют постоянный контроль рН щелочного раствора пероксида водорода, поскольку при отклонении данного параметра от заявленного в изобретении значения может быть нарушен механизм стабилизации и, соответственно, содержание в нем активного кислорода, что в конечном счете негативно скажется на протекании процесса получения пероксидных соединений щелочных металлов.

Кроме того, моногидрат пероксида лития - соединение, которое не является широко доступным и может быть получено только в результате проведения довольно сложного синтеза при соблюдении большого ряда ограничений [Ю.А. Ферапонтов, М.А. Ульянова, Т.В. Сажнева. Условия кристаллизации Li2O2·H2O в тройной системы LiOH-H2O2-H2O. / ЖНХ. 2008. Т.53. Вып.10, С.1749- 1754.].

Задачей изобретения является упрощение технологического процесса стабилизации щелочного раствора пероксида водорода.

Технический результат заключается в увеличении времени стабильности щелочного раствора пероксида водорода и снижении потерь активного кислорода при его использовании для синтеза перекисных соединений щелочных металлов.

Дополнительным результатом является увеличение содержания основного вещества (перекисные соединения щелочных и щелочноземельных металлов) в продукте синтеза и удаление из технологической цепи получения регенеративных продуктов, созданных на базе полученных перекисных соединений, стадии механического смешения компонентов при приготовлении исходной шихты для последующего формования.

Технический результат достигается тем, что в способе стабилизации щелочного раствора пероксида водорода, включающем добавление в раствор пероксида водорода стабилизаторов, в качестве стабилизаторов используют перхлорат магния и силикаты натрия или калия. При этом перхлорат магния и силикаты натрия или калия вводят в раствор пероксида водорода перед добавлением гидроксида в следующих количествах, моль вещества/моль пероксида водорода:

перхлорат магния (Mg(ClO4)2) 0,0001-0,017;
силикаты натрия или калия (Me2SiO3) 0,0001-0,028.

Добавление гидроксида к стабилизированному раствору пероксида водорода осуществляют двумя порциями, причем вторую порцию гидроксида добавляют после образования коллоида.

Такой прием позволяет упростить технологический процесс стабилизации щелочного раствора пероксида водорода и получать щелочной раствор пероксида водорода стабильный на протяжении до 30 часов, что позволяет снизить расход дорогостоящего пероксида водорода при синтезе пероксидных соединений щелочных металлов и их композитных смесей.

В отличие от способа по патенту РФ №2352522, добавление стабилизаторов в исходный раствор пероксида водорода по изобретению осуществляется в одну стадию и из технологической схемы исключаются операции по непрерывному контролю рН щелочного раствора пероксида водорода.

При этом предложенный способ стабилизации обеспечивает большее время стабильности щелочного раствора пероксида водорода, используемого для синтеза пероксидных соединений щелочных металлов и их композитных смесей. Кроме того, перхлорат магния и силикаты щелочных металлов являются более дешевыми и доступными реагентами, нежели моногидрат пероксида лития, используемый в прототипе.

Как уже отмечалось выше, механизм стабилизации различных растворов пероксида водорода неизвестен. Поэтому сложно однозначно оценить влияние того или иного иона или их ассоциатов, содержащихся в многокомпонентном растворе, на стабильность системы в целом. Нахождение стабилизатора для конкретной цели - задача, которая решается только эмпирическим путем. Но нами было отмечено, что гидроксид следует добавлять только после полного растворения стабилизаторов, а силикаты натрия и калия предпочтительно вводить в пероксид водорода в виде раствора после растворения в нем перхлората магния. Причем после добавления первой порции гидроксида к жидкой фазе образуется коллоид, которому следует дать равномерно распределиться по всему объему раствора и после этого продолжить добавление щелочи. По нашему мнению, согласующемуся с мнением авторов [У. Шамб, Ч. Сеттерфилд, Р. Вентворс. Перекись водорода, - М.: Иностранная литература, - 1958. - 578 с.], коллоидные частицы способны вступать в реакцию со свободными радикалами, образующимися при разложении пероксидных соединений, и тем самым предотвращать возможное протекание цепной реакции распада Н2О2.

Кроме того, поскольку полученные перекисные соединения в дальнейшем могут быть использованы для приготовления регенеративных продуктов, желательно уже на стадии приготовления исходных растворов вводить в их состав необходимое количество компонентов, выполняющих в роль добавок, способствующих оптимизации их работы. В частности, перхлорат магния способствует повышению суммарного содержания активного кислорода в регенеративных продуктах (надпероксид калия - основной компонент регенеративных продуктов содержит 33,8% массовых активного кислорода, а перхлорат магния - 57,6%) и как следствие этого - увеличение времени защитного действия изделия в целом. А силикаты натрия и калия выполняют в регенеративных продуктах роль газопроницаемой структурообразующей добавки, и тем самым улучшают условия диффузии паров воды и диоксида углерода внутрь гранул продукта, что повышает его степень отработки.

Способ стабилизации щелочных растворов пероксида водорода осуществляют следующим образом. В водный раствор пероксида водорода любой концентрации при непрерывном перемешивании вводят перхлорат магния. После того как кристаллы полностью растворятся, добавляют силикаты натрия или калия (предпочтительно в жидком виде). Затем небольшой порцией (2-5% весовых от общего количества) добавляют соответствующий гидроксид таким образом, чтобы визуально было заметно образование коллоида.

Гидроксиды щелочных и щелочноземельных металлов так же можно использовать в любом виде (твердое вещество, раствор, суспензия и т.д.). После того, как за счет перемешивания образовавшийся in situ коллоид распределится по всему объему пероксида водорода (2-5 минут), добавляют оставшийся гидроксид таким образом, чтобы температура в зоне реакции не превышала 30°С. Такой режим позволяет максимально нивелировать влияние температурного фактора на разложение пероксидных продуктов.

Полученный щелочной раствор пероксида водорода может быть использован для дальнейшего получения пероксидных соединений щелочных металлов или их композитных смесей различными способами. Содержание в получаемых щелочных растворах пероксида водорода активного кислорода можно определять любыми пригодными для этого методами химического или физико-химического анализа.

Примеры, представленные ниже, описывают случай приготовления щелочного раствора пероксида водорода для последующего синтеза надпероксида калия, как случай, в котором содержание сильного гидроксида в исследуемом растворе максимально (рН раствора больше 13 и каталитическое воздействие анионов ОН- на пероксидные продукты так же максимально).

Пример 1.

К 1000 мл водного 50% раствора пероксида водорода при непрерывном перемешивании добавляют 0,39 г перхлората магния (Mg(ClO4)2). После его полного растворения добавляют 25 г 50% водного раствора силиката калия и твердый 85% гидроксид калия в количестве 13,8 г (2% весовых от общего количества) и через две минуты еще 676,2 г 85% гидроксида калия таким образом, чтобы температура в зоне реакции не превышала 30°С. Полученный щелочной раствора пероксида водорода помещают при температуре 25°С в темное место и через определенные интервалы времени проводят анализы по определению активного кислорода в жидкой фазе, т.е. определяют потерю системой активного кислорода. Время стабильности полученного щелочного раствора пероксида водорода с использованием в указанных количествах в качестве стабилизатора перхлората магния и силиката калия составило 484 минуты. Потеря щелочным раствором пероксида водорода активного кислорода за 8 часов составила 13,1 л.

Пример 2.

К 1000 мл водного 50% раствора пероксида водорода при непрерывном перемешивании добавляют 5,13 г перхлората магния (Mg(ClO4)2). После его полного растворения добавляют 25 г 50% водного раствора силиката калия и твердый 85% гидроксид калия в количестве 17,25 г (2,5% весовых от общего количества) и через две минуты еще 672,75 г 85% гидроксида калия таким образом, чтобы температура в зоне реакции не превышала 30°С. Далее как в примере 1. Время стабильности полученного щелочного раствора пероксида водорода составило 541 минута. Потеря щелочным раствором пероксида водорода активного кислорода за 8 часов составила 11,4 л.

Пример 3.

К 1000 мл водного 50% раствора пероксида водорода при непрерывном перемешивании добавляют 3,37 г перхлората магния. После полного растворения добавляют 18,22 г 50% водного раствора силиката натрия и твердый 85% гидроксид калия в количестве 20 г (2,9% весовых от общего количества) и через две с половиной минуты еще 670 г 85% гидроксида калия таким образом, чтобы температура в зоне реакции не превышала 30°С. Далее как в примере 1. Время стабильности полученного щелочного раствора пероксида водорода составило 933 минуты. Потеря щелочным раствором пероксида водорода активного кислорода за 8 часов составила 5,9 л.

Пример 4.

К 1000 мл водного 50% раствора пероксида водорода при непрерывном перемешивании добавляют 7,1 г сульфата магния. После полного растворения добавляют 26,8 г 50% водного раствора силиката натрия и твердый 85% гидроксид калия в количестве 24,15 г (3,5% весовых от общего количества) и через три минуты еще 665,85 г 85% гидроксида калия таким образом, чтобы температура в зоне реакции не превышала 30°С. Далее как в примере 1. Время стабильности полученного щелочного раствора пероксида водорода составило 1452 минуты. Потеря щелочным раствором пероксида водорода активного кислорода за 8 часов составила 2,2 л.

Пример 5.

К 1000 мл водного 50% раствора пероксида водорода при непрерывном перемешивании добавляют 8,1 г перхлората магния. После полного растворения добавляют 58 г 50% водного раствора силиката калия и твердый 85% гидроксид калия в количестве 27,6 г (4% весовых от общего количества) и через четыре минуты еще 662,4 г 85% гидроксида калия таким образом, чтобы температура в зоне реакции не превышала 30°С. Далее как в примере 1. Время стабильности полученного щелочного раствора пероксида водорода составило 1278 минут. Потеря щелочным раствором пероксида водорода активного кислорода за 8 часов составила 3,0 л.

Пример 6.

К 1000 мл водного 50% раствора пероксида водорода при непрерывном перемешивании добавляют 20 г перхлората магния и 43,0 г сульфата магния. После полного растворения добавляют 81 г 50% водного раствора силиката калия и твердый 85% гидроксид калия в количестве 34,5 г (5% весовых от общего количества) и через пять минут еще 655,5 г 85% гидроксида калия таким образом, чтобы температура в зоне реакции не превышала 30°С. Далее как в примере 1. Время стабильности полученного щелочного раствора пероксида водорода составило 807 минут. Потеря щелочным раствором пероксида водорода активного кислорода за 8 часов составила 6,6 л.

Пример 7.

К 1000 мл водного 50% раствора пероксида водорода при непрерывном перемешивании добавляют 66,7 г сульфата магния. После полного растворения добавляют 12 г 50% водного раствора силиката калия и твердый 85% гидроксид калия в количестве 34,5 г (5% весовых от общего количества) и через три минуты еще 655,5 г 85% гидроксида калия таким образом, чтобы температура в зоне реакции не превышала 30°С. Далее как в примере 1. Время стабильности полученного щелочного раствора пероксида водорода составило 531 минуту. Потеря щелочным раствором пероксида водорода активного кислорода за это время составила 11,3 л.

В таблице представлены данные о времени стабильности щелочного раствора пероксида водорода при использовании в качестве стабилизатора различных количеств растворимых соединений магния и силикатов щелочных металлов и потере системой активного кислорода за 8 часов (время рабочей смены на производстве). В качестве сравнения указанные выше характеристики так же приведены для стабилизатора щелочного раствора пероксида водорода, приведенные в примере 5 патента РФ №2352522.

Таблица
Номер примера Время стабильности, мин Потери щелочным раствором активного кислорода за 8 часов, л
1 484 13,1
2 541 11,4
3 933 5,9
4 1452 2,2
5 1278 3,0
6 807 6,6
7 617 10,8
8 531 11,3
По патенту РФ №2352522 342 21,7

Как видно из представленных в таблице данных, предложенный способ стабилизации щелочного раствора пероксида водорода, используемого для последующего синтеза пероксидных соединений щелочных металлов и их композитных смесей, позволяет увеличить стабильность раствора до 1452 минут. При этом потеря системой активного кислорода не превышает 13,1 л. (минимальная потеря щелочным раствором пероксида водорода за 8 часов при применении предложенного способа составляет 2,2 л.)

Способ стабилизации щелочного раствора пероксида водорода, заключающийся в последовательном добавлении в раствор пероксида водорода стабилизаторов, отличающийся тем, что в качестве стабилизаторов используют перхлорат магния и силикаты натрия или калия, при этом перхлорат магния и силикаты натрия или калия вводят в раствор пероксида водорода перед добавлением гидроксида в следующих количествах, моль вещества/моль пероксида водорода: а добавление гидроксида в стабилизированный раствор пероксида водорода осуществляют двумя порциями, при этом вторую порцию гидроксида добавляют после образования коллоида.
Источник поступления информации: Роспатент

Showing 1-10 of 101 items.
20.01.2013
№216.012.1b8c

Изолирующий дыхательный аппарат

Изобретение относится к индивидуальным изолирующим дыхательным аппаратам, обеспечивающим жизнедеятельность человека в атмосфере, непригодной для дыхания. Изолирующий дыхательный аппарат, содержит регенеративный продукт, маску, дыхательный мешок и устройство регулирования объема дыхательной...
Тип: Изобретение
Номер охранного документа: 0002472546
Дата охранного документа: 20.01.2013
20.01.2013
№216.012.1b95

Способ получения продукта для регенерации воздуха

Изобретение относится к способу получения продуктов для регенерации воздуха на основе надпероксида калия, используемых в системах жизнеобеспечения человека (СЖО) на химически связанном кислороде. Способ получения продукта для регенерации воздуха осуществляют следующим образом. Исходные...
Тип: Изобретение
Номер охранного документа: 0002472555
Дата охранного документа: 20.01.2013
20.01.2013
№216.012.1b96

Способ получения регенеративного продукта

Изобретение относится к способам получения химических веществ, используемых в изолирующих дыхательных аппаратах и в системах регенерации воздуха, в частности к способам получения регенеративных продуктов на основе супероксида металла. Способ получения регенеративного продукта включает...
Тип: Изобретение
Номер охранного документа: 0002472556
Дата охранного документа: 20.01.2013
20.01.2013
№216.012.1ba3

Фильтр-пылегазоуловитель частиц и аэрозолей

Изобретение относится к фильтрам в устройствах очистки воздуха, предназначенным для использования в различных отраслях промышленности, авиации, для защиты от отравляющих веществ, для кондиционирования воздушной среды жилых и промышленных зданий, замкнутых объектов, например для кухонного...
Тип: Изобретение
Номер охранного документа: 0002472569
Дата охранного документа: 20.01.2013
20.02.2013
№216.012.2635

Способ получения гибких адсорбирующих изделий

Изобретение относится к способам получения гибких адсорбирующих изделий. Способ включает смешение порошка пористого адсорбирующего материала (адсорбента), в качестве которого используют цеолиты, силикагели либо их комбинации, с полимерным связующим и формование полученной композиции. В качестве...
Тип: Изобретение
Номер охранного документа: 0002475301
Дата охранного документа: 20.02.2013
10.05.2013
№216.012.3ce3

Способ получения гибких композиционных сорбционно-активных материалов

Изобретение относится к способам получения сорбционно-активных материалов. Способ включает смешение порошка цеолита или силикагеля либо их комбинации с раствором полимера и формование полученной композиции в изделие требуемой геометрической конфигурации. На смешение с порошком подают раствор...
Тип: Изобретение
Номер охранного документа: 0002481154
Дата охранного документа: 10.05.2013
10.05.2013
№216.012.3d55

Способ получения гидрофобного цеолита

Изобретение относится к цеолитам, используемым в качестве адсорбентов или носителей катализаторов. Способ получения гидрофобного цеолита заключается в прокаливании неподвижного слоя цеолита Y в присутствии водяного пара в ступенчатом режиме: 1-2 ч при температуре 180-230°С, 1,5-2,5 ч при...
Тип: Изобретение
Номер охранного документа: 0002481268
Дата охранного документа: 10.05.2013
27.05.2013
№216.012.43b7

Cпособ получения фильтрующе-сорбирующего материала с фотокаталитическими свойствами

Изобретение относится к материалам фильтрующего типа, предназначенным для очистки воздуха от паров и газов вредных химических веществ. Предложен фильтрующе-сорбирующий материал, содержащий тканевую основу, диоксид кремния и фотокаталитически активный диоксид титана в анатазной форме. Массовое...
Тип: Изобретение
Номер охранного документа: 0002482912
Дата охранного документа: 27.05.2013
10.06.2013
№216.012.470b

Регенеративный патрон изолирующего дыхательного аппарата

Изобретение относится к изолирующим дыхательным аппаратам на химически связанном кислороде. Регенеративный патрон изолирующего дыхательного аппарата на химически связанном кислороде содержит пусковой брикет, регенеративный продукт. Пусковой брикет расположен на входе патрона и выполнен в виде...
Тип: Изобретение
Номер охранного документа: 0002483767
Дата охранного документа: 10.06.2013
20.06.2013
№216.012.4b6d

Способ изготовления химического адсорбента диоксида углерода

Изобретение относится к способам получения адсорбента диоксида углерода, предназначенного для использования в средствах защиты органов дыхания. Способ включает образование дисперсии гидроксидов щелочных и/или щелочноземельных металлов и формование волокон адсорбента. Образование дисперсии...
Тип: Изобретение
Номер охранного документа: 0002484891
Дата охранного документа: 20.06.2013
Showing 1-10 of 112 items.
20.01.2013
№216.012.1b8c

Изолирующий дыхательный аппарат

Изобретение относится к индивидуальным изолирующим дыхательным аппаратам, обеспечивающим жизнедеятельность человека в атмосфере, непригодной для дыхания. Изолирующий дыхательный аппарат, содержит регенеративный продукт, маску, дыхательный мешок и устройство регулирования объема дыхательной...
Тип: Изобретение
Номер охранного документа: 0002472546
Дата охранного документа: 20.01.2013
20.01.2013
№216.012.1b95

Способ получения продукта для регенерации воздуха

Изобретение относится к способу получения продуктов для регенерации воздуха на основе надпероксида калия, используемых в системах жизнеобеспечения человека (СЖО) на химически связанном кислороде. Способ получения продукта для регенерации воздуха осуществляют следующим образом. Исходные...
Тип: Изобретение
Номер охранного документа: 0002472555
Дата охранного документа: 20.01.2013
20.01.2013
№216.012.1b96

Способ получения регенеративного продукта

Изобретение относится к способам получения химических веществ, используемых в изолирующих дыхательных аппаратах и в системах регенерации воздуха, в частности к способам получения регенеративных продуктов на основе супероксида металла. Способ получения регенеративного продукта включает...
Тип: Изобретение
Номер охранного документа: 0002472556
Дата охранного документа: 20.01.2013
20.01.2013
№216.012.1ba3

Фильтр-пылегазоуловитель частиц и аэрозолей

Изобретение относится к фильтрам в устройствах очистки воздуха, предназначенным для использования в различных отраслях промышленности, авиации, для защиты от отравляющих веществ, для кондиционирования воздушной среды жилых и промышленных зданий, замкнутых объектов, например для кухонного...
Тип: Изобретение
Номер охранного документа: 0002472569
Дата охранного документа: 20.01.2013
20.02.2013
№216.012.2635

Способ получения гибких адсорбирующих изделий

Изобретение относится к способам получения гибких адсорбирующих изделий. Способ включает смешение порошка пористого адсорбирующего материала (адсорбента), в качестве которого используют цеолиты, силикагели либо их комбинации, с полимерным связующим и формование полученной композиции. В качестве...
Тип: Изобретение
Номер охранного документа: 0002475301
Дата охранного документа: 20.02.2013
10.05.2013
№216.012.3ce3

Способ получения гибких композиционных сорбционно-активных материалов

Изобретение относится к способам получения сорбционно-активных материалов. Способ включает смешение порошка цеолита или силикагеля либо их комбинации с раствором полимера и формование полученной композиции в изделие требуемой геометрической конфигурации. На смешение с порошком подают раствор...
Тип: Изобретение
Номер охранного документа: 0002481154
Дата охранного документа: 10.05.2013
10.05.2013
№216.012.3d55

Способ получения гидрофобного цеолита

Изобретение относится к цеолитам, используемым в качестве адсорбентов или носителей катализаторов. Способ получения гидрофобного цеолита заключается в прокаливании неподвижного слоя цеолита Y в присутствии водяного пара в ступенчатом режиме: 1-2 ч при температуре 180-230°С, 1,5-2,5 ч при...
Тип: Изобретение
Номер охранного документа: 0002481268
Дата охранного документа: 10.05.2013
27.05.2013
№216.012.43b7

Cпособ получения фильтрующе-сорбирующего материала с фотокаталитическими свойствами

Изобретение относится к материалам фильтрующего типа, предназначенным для очистки воздуха от паров и газов вредных химических веществ. Предложен фильтрующе-сорбирующий материал, содержащий тканевую основу, диоксид кремния и фотокаталитически активный диоксид титана в анатазной форме. Массовое...
Тип: Изобретение
Номер охранного документа: 0002482912
Дата охранного документа: 27.05.2013
10.06.2013
№216.012.470b

Регенеративный патрон изолирующего дыхательного аппарата

Изобретение относится к изолирующим дыхательным аппаратам на химически связанном кислороде. Регенеративный патрон изолирующего дыхательного аппарата на химически связанном кислороде содержит пусковой брикет, регенеративный продукт. Пусковой брикет расположен на входе патрона и выполнен в виде...
Тип: Изобретение
Номер охранного документа: 0002483767
Дата охранного документа: 10.06.2013
20.06.2013
№216.012.4b6d

Способ изготовления химического адсорбента диоксида углерода

Изобретение относится к способам получения адсорбента диоксида углерода, предназначенного для использования в средствах защиты органов дыхания. Способ включает образование дисперсии гидроксидов щелочных и/или щелочноземельных металлов и формование волокон адсорбента. Образование дисперсии...
Тип: Изобретение
Номер охранного документа: 0002484891
Дата охранного документа: 20.06.2013
+ добавить свой РИД