×
20.11.2013
216.012.8345

Результат интеллектуальной деятельности: СЦИНТИЛЛЯЦИОННЫЙ МАТЕРИАЛ НА ОСНОВЕ ZnO-КЕРАМИКИ, СПОСОБ ЕГО ПОЛУЧЕНИЯ И СЦИНТИЛЛЯТОР

Вид РИД

Изобретение

Аннотация: Использование: для регистрации различных видов ионизирующих излучений, в том числе альфа-частиц, в ядерной физике для контроля доз и спектрометрии указанных излучений, в космической технике, медицине, в устройствах, обеспечивающих контроль, в промышленности. Сущность изобретения заключается в получении сцинтилляционного материала, представляющего собой керамику на основе ZnO с содержанием легирующей примеси в виде Се или LiF. Способ получения прозрачной легированной сцинтилляционной ZnO-керамики включает холодное прессование (брикетирование) исходного порошка при давлении 12-25 МПа, обработку брикета в вакууме при температуре 600-800°С и последующее одноосное горячее прессование при температуре 900-1100°С и давлении 100-200 МПа. Исходный материал имеет в основе ZnO, легированный Се в количестве 0,002-0,08 вес.% или LiF в количестве 0,004-0,1 вес.%. Сцинтиллятор включает рабочее тело, выполненное на основе легированной прозрачной ZnO-керамики в форме пластины, одно из оснований которого служит для приема ионизирующего излучения, а другое - для соединения с фотоприемником, при этом рабочее тело обеспечивает время высвечивания быстрой компоненты не более 100 нс. Технический результат: улучшение характеристик по прозрачности и кинетике люминесценции прозрачной сцинтилляционной керамики на основе ZnO. 3 н. и 2 з.п. ф-лы, 4 ил.

Группа изобретений относится к сцинтилляционной технике, а именно к изготовлению материалов, входящих в состав сцинтилляционных детекторов, предназначенных для регистрации альфа, гамма, рентгеновского излучений, и может быть использовано в ядерной физике для контроля доз и спектрометрии указанных излучений, в космической технике, медицине, в устройствах, обеспечивающих антитеррористический контроль, в промышленности.

Востребованность сцинтилляционного материала, обладающего способностью излучать свет при поглощении ионизирующего излучения, определяется наличием необходимого комплекса характеристик, удовлетворяющего требованиям конкретного устройства. Сцинтиллятор должен иметь достаточно высокий световыход, требуемую величину α/β-отношения (квенчинг-фактор) в случае регистрации альфа-частиц, короткое время высвечивания, низкую интенсивность послесвечения (или отсутствие такового), необходимый, определяемый типом детектора спектральный состав излучения и быть прозрачным в области собственного излучения. Кроме того, сцинтилляционный материал и технология его получения должны допускать возможность изготовления образцов необходимых форм и размеров. Несмотря на тот факт, что к настоящему времени разработано много сцинтилляционных материалов в виде монокристаллов, порошковых люминофоров и пленок, сцинтиллятора, отвечающего всему комплексу требований, не существует. Так, широко используемый монокристалл CsI:Tl, обладая высокой эффективностью излучения, имеет интенсивное послесвечение и время спада порядка 1 мкс. Монокристаллический сцинтиллятор YAG:Ce имеет низкий световыход, а монокристалл YAP:Се, обладающий достаточно коротким временем высвечивания и неплохим световыходом, создает серьезные проблемы при сборке сцинтилляционных детекторов для регистрации альфа-частиц [John S. Neal, Nancy С.Giles, Xiaocheng Yang, R. Andrew Wall, K. Burak Ucer, Richard T. Williams, Dariusz J. Wisniewski, Lynn A. Boatner, Varathajan Rengarajan, Jeff Nause, and Bill Nemeth. Evaluation of Melt-Grown, ZnO Single Crystals for Use as Alpha-Particle Detectors. IEЕЕ Transactions on Nuclear Science, v. 55, No. 3, 2008, P. 1397-1403].

Известен порошковый люминофор ZnO:Ga, обладающий очень хорошими сцинтилляционными характеристиками: высоким световыходом - 15000 фотонов/МэВ, малым временем высвечивания - 0,7 нс и, как следствие, самой высокой добротностью (отношение световыход/время спада) среди известных люминофоров [Derenzo S.E., Weber М J., Klintenberg M.K.Temperarure dependence of the fast, ncar-band-edge scintillation from Cul, HgI2, РbI2, ZnO:Ga and CdS:In // Nucl. Instr. Meth. in Phys. Research A. 2002. V. 486. P. 214-219; Патент США, №2006219928, опубликованный 05.10.2006 по индексам МПК G01T 1/20, С09К 11/08, С09К 11/56]. Реально использовать эти материалы в качестве сцинтилляторов не удается, так как порошковые люминофоры не прозрачны.

Известен пленочный сверхбыстрый сцинтиллятор на основе ZnO (Lorenz М., Johne R., Nobis Т. et al. // Appl. Phys. Lett.2006. V. 89. P. 244510). Однако существенным недостатком этого сцинтиллятора является низкий световыход - 420 фотон/МэВ.

Известны пленки на основе ZnO, легированные Li (в виде LiCl) в интервале концентраций 2-10вес.% (S.H. Jeong, D.N.Park, S.-B. Lee, J.-H. Boo. Study on the doping effect of Li-doped ZnO film //Thin Solid Films 516 (2008) 5586-5589). Поскольку эти пленки предназначены для использования в пьезоэлектрических устройствах, их люминесцентные свойства не исследованы.

Известны пленки на основе ZnO, легированные Li (в виде Li2CO3) в интервале концентраций 0,05-0,1ат.% (В.Н.Jim, Y.S.Kim, В.К.Moon, B.C.Chou, J.H.Jeong. Optical and Electrical Properties of Li-Doped ZnO Thin Films by the Pulsed Laser Deposition// J.of the Korean Physical Society, v.53, No.3, p.p.l655-1659), для которых установлено, что спектральный состав фотолюминесценции содержит полосы в УФ (380 нм), зеленой (520 нм) и красной (630 нм) областях. Тем не менее, статья не содержит данных об интенсивности люминесценции и временных характеристиках, т.к. потенциальное применение рассматриваемых пленок - прозрачные проводящие покрытия.

Известные сообщения о пленках на основе ZnO, легированных Се в диапазоне концентраций 0,74-20 ат.% (Z.Sofiani, B.Derkowska, P.Dalasinski, M.Wojdyla, S.Dabos-Seignon, MAlaoui Lamrani, L. Dghoughi, W.Bala, M.Addou, B.Sahraoui. Optical properties of ZnO and ZnO:Ce layers grown by spray pyrolis.// Optics Communications 267 (2006), P.433-439; Yun Gcng Zhag, Guang Biao Zhang, Yuan Xu Wang. First -principles study of the electronic structure and optical properties of Ce-doped ZnO.// J.Appl.Phys. 109, (2011), P.063510-1 - 063510-7), имеют своей целью создание материла для применения в оптоэлектронных устройствах. Информация о люминесцентных характеристиках ограничивается данными о спектральном составе фотолюминесценции. Спектры содержат полосы с тремя пиками: 380, 510 и 650 нм.

Получение монокристаллического оксида цинка - сложный, длительный и дорогостоящий технологический процесс. К настоящему времени известны немногочисленные попытки выращивания небольших по размеру сцинтилляторов на основе ZnO. Так, в упомянутой ранее работе (John S.Neal, Nancy С.Giles, Xiaocheng Yang, R.Andrew Wall, K. Burak Ucer, Richard T. Williams, Dariusz J. Wisnicwski, Lynn A. Boatner, Varathajan Rengarajan, Jeff Nause, and Bill Nemeth. Evaluation of Melt-Grown, ZnO Single Crystals for Use as Alpha-Particle Detectors. IEEE Transactions on Nuclear Science, v. 55, No. 3, 2008, P. 1397-1403) представлены результаты исследований монокристаллов ZnO, ZnO:Ga, ZnO:In,Li, ZnO:Er,Li, ZnO:Mg,Ga, ZnO:Gd, and ZnO:Li. На основании изучения сцинтилляционных характеристик делается заключение о перспективности только ZnO, ZnO:Ga, ZnO:In,Li, ZnO:Er,Li сцинтилляторов, т.к. они обладают субнаносекундным временем высвечивания и интенсивностью, сопоставимой с люминесценцией пластикового сцинтиллятора ВС-400 при возбуждении альфа-частицами.

Поликристаллические оптические материалы - керамики на основе различных соединений, в том числе на основе ZnO, являются перспективной альтернативой монокристаллам не только по способам получения, но и по ряду характеристик, таких как высокая механическая прочность, отсутствие плоскостей спайности, высокая термическая устойчивость, возможность получения образцов необходимых размеров и форм.

Известен способ получения керамики ZnO:Li для применения в фотоэлектрических устройствах (A.H.Salama, F.F.Hammad. Bletrical Properties of Li-Doped P-type ZnO Ceramics.// J.Mater.Sci. Technol., V.25, No.3, 2009, p.p.314-318). Способ заключается в приготовлении смеси ZnO и Li2O (в количестве 0,5-2,0 моль%), холодном изостатическом прессовании этой смеси при 7 т/см2 и отжигом полученной таблетки на воздухе при 1200°С в течение 2 часов. Сообщение содержит данные о структуре и электрических свойствах керамики.

Известен способ получения поликристаллического керамического сцинтиллятора на основе ZnO (ZnO:Ga), который осуществляется по методу одноосного горячего прессования исходных порошков в интервале температур 900-1100°С и давлений 28-35(42) МПа (J.S.Neal, D.M.DeVito, B.L.Armstrong et.al. Investigation of ZnO-based Polycrystalline Ceramic Scintillators for Use as α-Particle Detectors// IEEE Transactions on Nuclear Science, Vol.56, No3, 2009, pp.892-898). Получаемые в указанных условиях керамические образцы имеют плотность около 98%, что и является причиной их «ограниченной», как утверждают авторы, прозрачности. По существу же при такой плотности керамика и не может быть прозрачной.

Известен способ получения прозрачной керамики и сцинтиллятор на основе этой керамики (патент РФ №2328755, опубликованный 10.07.2008, МПК G01T 1/20; С04В 35/453). Известный способ заключается в горячем прессовании порошкообразного оксида цинка при температуре 1150-1250°С и давлении 100-200 МПа. Указанным способом получают прозрачные в видимой области спектра сцинтилляционные керамики на основе ZnO (ZnO, ZnO:Ga, ZnO:In, ZnO:Al) с плотностью более 0.99 от рентгеноструктурной. В соответствии с данными рассматриваемого патента предпочтительными для использования в качестве сцинтилляторов являются керамики ZnO:Ga и ZnO:In с максимумом рентгенолюминесценции в области 385-390 нм, поскольку они обладают малым временем спада - около 1 нс. Однако существенным недостатком этих керамик является низкий световыход, составляющий порядка 1% от такового для монокристаллического сцинтиллятора CsI:Tl.

Наиболее близким к заявляемой группе изобретений техническим решением является способ получения прозрачной керамики и сцинтиллятор на основе этой керамики (патент РФ №2416110, опубликованный 10.04.2011, МПК G01T 1/00). Известный способ заключается в холодном прессовании исходного материала в виде порошка оксида цинка при давлении 12-25 МПа и последующим горячим прессованием полученного брикета при температуре 900-1100°С и давлении 100-200 МПа. Указанным способом получают сцинтиллятор из прозрачной нелегированной керамики ZnO с максимумом полосы излучения в области спектра 515-520 нм, отличающийся более высоким световыходом по сравнению с керамическими сцинтилляторами ZnO:Ga и ZnO:In. Существенным недостатком этой керамики является большое время спада до 1,6 мкс и практическое отсутствие быстрой компоненты, относительная интенсивность которой составляет всего ~ 1%.

Задачей настоящего изобретения, представляющего собой группу: материал, способ его получения и устройство сцинтиллятора, является получение прозрачной сцинтилляционной керамики на основе ZnO с улучшенными характеристиками по прозрачности и кинетике люминесценции (по времени спада быстрой компоненты) и создание устройства сцинтиллятора, в котором используется легированная ZnO-керамика, изготовленная предложенным способом, обладающая высокой прозрачностью и характеризующаяся наличием интенсивной быстрой компоненты со временем спада менее 100 нс.

Технический результат достигается путем создания нового сцинтилляционного материала, представляющего собой керамику на основе ZnO с содержанием легирующей примеси, обеспечивающей формирование сцинтилляционного материала с кинетикой люминесценции, характеризующейся наличием интенсивной быстрой компоненты сцинтилляции со временем спада менее 100 нс.

Легирующая примесь может быть представлена в виде Се или LiF.

Содержание легирующей примеси в виде Се предпочтительно в количестве 0,001-0,08 вес.%, а в виде LiF - в количестве 0,004-0,1 вес.%.

Авторами изобретения осуществлялось исследование воздействия указанных легирующих примесей, включенных в материал на основе сцинтилляционной ZnO-керамики, на его характеристики; в результате в новом легированном материале установлен эффект появления быстрой компоненты, что обеспечивает решение поставленной задачи.

Поставленная задача реализуется в способе получения прозрачной легированной сцинтилляционной ZnO-керамики, включающем холодное прессование (брикетирование) исходного порошка оксида цинка при давлении 12-25 МПа и последующее одноосное горячее прессование при температуре 900-1100°С и при давлении 100-200 МПа, в котором, в отличие от прототипа, во-первых, исходный материал имеет в основе ZnO, легированный Се в количестве 0,001-0,08 вес.% или LiF в количестве 0,004-0,1 вес.% и, во-вторых, перед стадией одноосного горячего прессования дополнительно проводят обработку брикета в вакууме при температуре 600-800°С.

Дополнительная обработка брикета в вакууме перед стадией одноосного горячего прессования производится с целью дегазации брикетированного материала и формирования однородности получаемого легированного сцинтилляционного материала.

Заявляется также новый сцинтиллятор, включающий рабочее тело, выполненное из прозрачной керамики на основе ZnO в форме пластины, одно из оснований которого служит для приема ионизирующего излучения, а другое для соединения с фотоприемником, в котором, в отличие от прототипа, пластина выполнена из легированной ZnO-керамики, при этом рабочее тело обеспечивает время спада быстрой компоненты не более 100 нс.

Представляемая группа изобретений объединена изобретательским замыслом.

Сцинтилляционный материал, содержащий легирующие примеси LiF или Се, получаемый по данному способу, обладает повышенной прозрачностью во всей видимой области спектра, в том числе и в области максимума собственного излучения - 508-517 нм, и наличием быстрой компоненты со временем спада менее 100 нс.

На фигурах 1 и 2 изображена кинетика рентгенолюминесценции (полученная методом однофотонного счета) легированных керамик ZnO:Ce (Фиг.1) и ZnO:LiF (Фиг.2) в сравнении с прототипом - нелегированной ZnO-керамикой. По горизонтальной оси отложено время (нс), по вертикальной - количество событий, которое пропорционально интенсивности свечения.

На Фиг.3 приведены кривые полного пропускания (%) легированной керамики ZnO:Ce в сравнении с прототипом при толщине образцов h=0,l мм.

На Фиг.4 приведены кривые полного пропускания легированной керамики ZnO:LiF в сравнении с прототипом при толщине образцов h=0,4 мм.

Предлагаемый способ иллюстрируется следующими примерами.

Пример 1. Берут 7,99992 г исходного ZnO порошка высокой степени чистоты, который смешивают с 0,00008 г Се. Полученную механическую смесь подвергают холодному прессованию (брикетированию) на воздухе при давлении 12 МПа в течение 20 минут, после чего проводят обработку брикета в вакууме при температуре 600°С и последующее горячее прессование в вакууме при температуре 970°С и давлении 200 МПа в течение 60 минут. В результате получают легированный керамический ZnO сцинтилляционный материал в виде диска диаметром 20-25 мм и толщиной 1,0 мм (здесь и далее - после механической обработки), обладающий временем высвечивания быстрой компоненты 48 нс и коэффициентом полного пропускания на λ=500-520 нм порядка 42%.

Пример 2. Берут 7,99984 г исходного ZnO порошка высокой степени чистоты, который смешивают с 0,00016 г Се. Полученную механическую смесь подвергают холодному прессованию (брикетированию) на воздухе при давлении 25 МПа в течение 15 минут, после чего проводят обработку брикета в вакууме при температуре 700°С и последующее горячее прессование в вакууме при температуре 1050°С и давлении 150 МПа в течение 60 минут. В результате получают легированный керамический ZnO материал в виде диска диаметром 20-25 мм и толщиной 1,0 мм, обладающий временем высвечивания быстрой компоненты 40 нс и коэффициентом полного пропускания на λ=500-520 нм порядка 48%.

Пример 3. Берут 7,9936 г исходного ZnO порошка высокой степени чистоты, который смешивают с 0,0064 г Се. Полученную механическую смесь подвергают холодному прессованию (брикетированию) на воздухе при давлении 20 МПа в течение 15 минут, после чего проводят обработку брикета в вакууме при температуре 800°С и последующее горячее прессование в вакууме при температуре 1100°С и давлении 125 МПа в течение 60 минут. В результате получают легированный керамический ZnO материал в виде диска диаметром 20-25 мм и толщиной 1,0 мм, обладающий временем спада быстрой компоненты 42 нс.

Пример 4. Берут 7,99968 г исходного ZnO порошка высокой степени чистоты, который смешивают с 0,00032 г LiF. Полученную механическую смесь подвергают холодному прессованию (брикетированию) на воздухе при давлении 25 МПа в течение 15 минут, после чего проводят обработку брикета в вакууме при температуре 700°С и последующее горячее прессование в вакууме при температуре 1000°С и давлении 150 МПа в течение 60 минут. В результате получают легированный керамический ZnO материал в виде диска диаметром 20-25 мм и толщиной 1,0 мм, обладающий временем спада быстрой компоненты 50 нс и коэффициентом полного пропускания на λ=500-520 нм порядка 41%.

Пример 5. Берут 7,9992 г исходного ZnO порошка высокой степени чистоты, который смешивают с 0,0008 г LiF. Полученную механическую смесь подвергают холодному прессованию (брикетированию) на воздухе при давлении 20 МПа в течение 15 минут, после чего проводят обработку брикета в вакууме при температуре 650°С и последующее горячее прессование в вакууме при температуре 1050°С и давлении 150 МПа в течение 60 минут. В результате получают легированный керамический ZnO материал в виде диска диаметром 20-25 мм и толщиной 1,0 мм, обладающий временем спада быстрой компоненты 45 нс и коэффициентом полного пропускания на λ=500-520 нм порядка 50%.

Полученная легированная ZnO-керамика пригодна для использования в известных конструкциях - сцинтилляционных детекторах, что позволит работать этой конструкции с большей эффективностью, за счет повышенных прозрачности и быстродействия.

Данные, представленные на Фиг.1 и 2, показывают, что легированные керамики ZnO:Ce и ZnO:LiF имеют отличную от нелегированной ZnO-керамики (прототипа) кинетику рентгенолюминесценции. Для прототипа характерна гиперболическая форма сцинтилляционного импульса и среднее время высвечивания 1.0-1.6 мкс. Для легированных ZnO-керамик, содержащих примеси Се или LiF, наблюдается появление быстрой компоненты, время спада которой менее 100 нс и колеблется в пределах 40-55 не.

Данные, представленные на Фиг.3 и 4, демонстрирует более высокую прозрачность легированных керамик ZnO:Ce и ZnO:LiF, полученных заявляемым способом, по сравнению с прототипом во всей области спектра и, что особенно важно, в области собственного излучения - 508-517 нм. В этой области прозрачность сцинтиллятора на основе легированной ZnO-керамики выше прозрачности прототипа на 5-8%.

Сцинтилляционный детектор, реализующий данный способ, состоит из сцинтиллятора - прозрачной легированной керамики на основе ZnO в виде диска диаметром 20-25 мм толщиной порядка 1 мм, полученной по заявляемому способу, и фотоприемника. Оптический контакт между сцинтиллятором и фотоприемником обеспечивается тонким слоем силиконовой смазки. Поток ионизирующего излучения воздействует на сцинтилляционный материал; сцинтиллятор преобразует это излучение в световой импульс, который регистрируется с помощью фотоприемника.

Для реализации сцинтиллятора, предназначенного для регистрации альфа-частиц, используют пластину из легированной сцинтилляционной керамики на основе ZnO с линейными размерами (10×10-12×12) мм толщиной 5-25 мкм, приклеенную к кварцевой подложке.

Сцинтилляционные оптические керамики ZnO:Ce и ZnO;LiF с улучшенными параметрами по прозрачности и быстродействию могут быть использованы для регистрации различных видов ионизирующих излучений, в том числе альфа-частиц, в ядерной физике для контроля доз и спектрометрии указанных излучений, в космической технике, медицине, в устройствах, обеспечивающих антитеррористический контроль, в промышленности.


СЦИНТИЛЛЯЦИОННЫЙ МАТЕРИАЛ НА ОСНОВЕ ZnO-КЕРАМИКИ, СПОСОБ ЕГО ПОЛУЧЕНИЯ И СЦИНТИЛЛЯТОР
СЦИНТИЛЛЯЦИОННЫЙ МАТЕРИАЛ НА ОСНОВЕ ZnO-КЕРАМИКИ, СПОСОБ ЕГО ПОЛУЧЕНИЯ И СЦИНТИЛЛЯТОР
СЦИНТИЛЛЯЦИОННЫЙ МАТЕРИАЛ НА ОСНОВЕ ZnO-КЕРАМИКИ, СПОСОБ ЕГО ПОЛУЧЕНИЯ И СЦИНТИЛЛЯТОР
СЦИНТИЛЛЯЦИОННЫЙ МАТЕРИАЛ НА ОСНОВЕ ZnO-КЕРАМИКИ, СПОСОБ ЕГО ПОЛУЧЕНИЯ И СЦИНТИЛЛЯТОР
Источник поступления информации: Роспатент

Showing 541-550 of 681 items.
04.02.2020
№220.017.fd21

Способ оценки механических характеристик деформированных металлических объектов

Изобретение относится к области машиностроения и может быть использовано для оценки степени деформирования металлических объектов и исследования прочностных свойств твердых материалов путем приложения к ним механических усилий. Сущность: осуществляют внедрение индентора в одну фиксированную...
Тип: Изобретение
Номер охранного документа: 0002712776
Дата охранного документа: 31.01.2020
04.02.2020
№220.017.fd8d

Нуль-орган

Изобретение относится к области автоматики и измерительной техники и предназначено для детектирования момента перехода напряжения входного двухполярного гармонического сигнала через нулевой уровень, в частности, может использоваться в устройствах измерения временных интервалов. Нуль-орган...
Тип: Изобретение
Номер охранного документа: 0002712768
Дата охранного документа: 31.01.2020
23.02.2020
№220.018.04cc

Мишень тормозного излучения электронного ускорителя

Изобретение относится к мишени тормозного излучения электронного ускорителя. Мишень содержит расположенные последовательно по ходу излучения, входной и выходной коллиматоры с проходными отверстиями на оси и размещенный между ними конвертер тормозного излучения, выполненный из материала с...
Тип: Изобретение
Номер охранного документа: 0002714883
Дата охранного документа: 20.02.2020
23.02.2020
№220.018.0571

Неоднородная формирующая длинная линия (варианты)

Группа изобретений относится к импульсной технике и может быть использована в схемах питания импульсных источников, работающих как в импульсном, так и в импульсно-периодическом режимах. Техническим результатом является уменьшение длительности импульса выходного напряжения неоднородной...
Тип: Изобретение
Номер охранного документа: 0002714739
Дата охранного документа: 19.02.2020
23.02.2020
№220.018.05ba

Способ поперечной накачки рабочей среды лазера

Изобретение относится к лазерной технике. В способе поперечной накачки рабочей среды лазера, включающем передачу излучения от диодных источников накачки в рабочую среду лазера с помощью оптических волокон, плотно упакованных на концевом участке с образованием излучающей площадки размером d×h,...
Тип: Изобретение
Номер охранного документа: 0002714781
Дата охранного документа: 19.02.2020
27.02.2020
№220.018.0699

Пломбировочное устройство

Использование: изобретение относится к пломбирующим устройствам, именно к навесным пломбам, предназначенным для контроля целостности опломбированного объекта, и может использоваться в любой области техники, где требуется контроль и определение фактов несанкционированного вмешательства. Сущность...
Тип: Изобретение
Номер охранного документа: 0002715043
Дата охранного документа: 21.02.2020
28.02.2020
№220.018.06d3

Способ сдерживания бокового разлета продуктов взрыва заряда взрывчатого вещества, метающего ударник, и устройство для его осуществления

Изобретение предназначено для применения при испытаниях военной техники, в которых используются взрывы зарядов взрывчатых веществ (ВВ). Способ основан на осуществлении инициирования на наиболее удаленных от ударника торцах метающего заряда ВВ и, по крайней мере, одного дополнительного заряда...
Тип: Изобретение
Номер охранного документа: 0002715322
Дата охранного документа: 26.02.2020
28.02.2020
№220.018.06ef

Система мониторинга разъемных соединений кабельного тракта

Изобретение относится к технике связи, в частности к оборудованию кабельных систем и может использоваться для идентификации состояния портов коммутационных панелей, через которые осуществляется соединение сетевых устройств. Техническим результатом является расширение функциональных...
Тип: Изобретение
Номер охранного документа: 0002715361
Дата охранного документа: 26.02.2020
29.02.2020
№220.018.072d

Способ количественного определения галогенидов лития в литиевом электролите для тепловых химических источников тока

Изобретение относится к аналитической химии, а именно к методам определения концентрации компонентов электролитов для тепловых химических источников тока (ТХИТ), и может быть использовано для определения галогенидов щелочных металлов при их совместном присутствии в твердых литиевых...
Тип: Изобретение
Номер охранного документа: 0002715225
Дата охранного документа: 26.02.2020
29.02.2020
№220.018.073e

Способ изготовления взрывчатого наноструктурированного материала

Способ изготовления наноструктурированного взрывчатого материала включает помещение навески порошкообразного взрывчатого вещества (ВВ) из группы индивидуальных азотсодержащих органических ВВ, имеющих упругость паров не ниже 10 Па, в тигель с крышкой, имеющей коническую внутреннюю полость, в...
Тип: Изобретение
Номер охранного документа: 0002715195
Дата охранного документа: 25.02.2020
Showing 251-253 of 253 items.
10.04.2019
№219.017.0647

Способ получения прозрачной сцинтилляционной zno керамики и сцинтиллятор

Изобретение относится к сцинтилляционной технике, а именно к изготовлению материалов, входящих в состав сцинтилляционных детекторов, предназначенных для регистрации ионизирующих излучений, и может быть использовано в медицинской диагностике, устройствах таможенного контроля и космической...
Тип: Изобретение
Номер охранного документа: 0002416110
Дата охранного документа: 10.04.2011
29.05.2019
№219.017.6654

Флуоресцентная керамика

Изобретение относится к флуоресцентной керамике для использования в детекторе ионизирующего излучения, а также способу ее изготовления. Керамика имеет общую формулу GdOS, легированный М, где М представляет собой, по меньшей мере, один элемент, выбранный из группы, состоящей из Yb, Dy, Sm, Но,...
Тип: Изобретение
Номер охранного документа: 0002350579
Дата охранного документа: 27.03.2009
01.02.2020
№220.017.fc22

Способ получения менисков из кристаллов фтористого лития

Изобретение относится к технологии получения менисков, оболочек и заготовок линз оптических систем современных оптических, оптоэлектронных и лазерных приборов, работающих в ультрафиолетовой, видимой и ИК-областях спектров, и может быть использовано для получения выпукло-вогнутых линз из...
Тип: Изобретение
Номер охранного документа: 0002712680
Дата охранного документа: 30.01.2020
+ добавить свой РИД