×
20.11.2013
216.012.8205

ПЬЕЗОЭЛЕКТРИЧЕСКИЙ КЕРАМИЧЕСКИЙ МАТЕРИАЛ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к пьезоэлектрическим керамическим материалам на основе ниобатов натрия-калия и может быть использовано в среднечастотных радиоэлектронных устройствах, работающих в режиме приема, в том числе в трансдукторах ультразвуковых передатчиков. Техническим результатом изобретения является снижение механической добротности, повышение значений пьезомодуля, пьезочувствительности, удельной чувствительности и коэффициента электромеханической связи. Пьезоэлектрический керамический материал на основе ниобатов натрия-калия включает NaO, KO, NbO, LiO, TaO, SbO и NiO при следующем соотношении компонентов, в мас.%: NaO - 8,49-8,67; KO - 11,00-11,25; NbO - 60,68-61,98; LiO - 0,49-0,65; TaO - 11,20-11,44; SbO - 5,33-7,15; NiO - 0,82-0,83. 3 пр., 5 ил., 2 табл.
Основные результаты: Пьезоэлектрический керамический материал на основе ниобатов натрия-калия, включающий NaO, KO, NbO, отличающийся тем, что дополнительно содержит LiO, TaO, SbO, NiO, при следующем соотношении компонентов, мас.%:
Реферат Свернуть Развернуть

Изобретение относится к пьезоэлектрическим керамическим материалам на основе ниобатов натрия-калия и может быть использовано в среднечастотных радиоэлектронных устройствах, работающих в режиме приема, в том числе, в трансдукторах ультразвуковых передатчиков.

Для указанных применений материал должен обладать средним значением диэлектрической проницаемости, ε33T0, (700÷1100), достаточно высоким пьезомодулем d33 (≥200 пКл/Н), пьезочувствительностью, g33, (~20 мВ·м/Н), удельной чувствительностью, , (~5÷6 пКл/Н), коэффициентом электромеханической связи, Kр(~0.4), низкой механической добротностью, Qм, (<50).

Известен пьезоэлектрический керамический материал на основе ниобатов натрия-калия, включающий NaNbO3, KNbO3, LiNbO3 и CeO2. Материал имеет ε33T0=(785÷1023), d33=(148÷178) пКл/Н, g33=(21÷22) мВ·м/Н, пКл/Н, Kр=(0.36÷0.42) (патент US 2007200084 (A1). Опубл. 24.02.2009. Авторы: Xiaoxing Wang, Hung Hom Kowloon, Kin Wing Kwong и др.; по заявке № US 20060362793, приоритет от 30.08.2007. H01L 41/18, C04B 35/495, H01L 41/187) Для указанных применений материал имеет недостаточно высокие значения d33. Кроме того, присутствие в составе дорогостоящего редкоземельного элемента - церия (Ce) делает материал промышленно не рентабельным.

Известен пьезоэлектрический керамический материал на основе ниобатов натрия-калия, включающий NaNbO3, KNbO3, LiNbO3, SrTiO3, BiFeO3. Материал имеет ε33T0=(731÷1043), d33=(90÷150) пКл/Н, g33=(13÷21) мВ·м/Н, пКл/Н (патент EP 2218702 (A1). Опубл. 18.08.2010. Автор: Uraki Shingo; по заявке №ЕР 200857928, приоритет от 06.11.2008. B41I 2/045, B41I 2/055, C04B 35/00, H01L 41/187). Для указанных применений материал имеет недостаточно высокие значения d33.

Наиболее близким по технической сущности и достигаемому результату является пьезоэлектрический керамический материал на основе ниобатов натрия-калия, включающий Na(Nb, Ta, Sb)O3, K(Nb, Ta, Sb)O3, Li(Nb, Ta, Sb)O3 с добавками оксидов марганца (MnO2) и редкоземельного элемента - церия (CeO2). Состав материала отвечает химической формуле (Na0.475K0.475Li0.05)(Nb0.92Ta0.05, Sb0.03)O3 + 0.4%CeO2 +0.4%MnO2, то есть включает оксиды Na2O, K2O, Li2O, Nb2O5, Ta2O5, Sb2O5 CeO2 и MnO2. Материал имеет (для лучших составов) ε33т0=1150, d33=200 пКл/Н, g33=19 мВ·м/н, пКл/Н, Kр=0.43, Qм=80 (Tact Lee, K.W. Kwok, H.L. Li, H.L.W. Chan. Lead-free alkaline niobate-based transducer for ultrasonic wirebonding applications. // Sensor and Actuators A. 2009. №150. P.267-271) (прототип). Для указанных применений материал имеет слишком высокое значение Qм. Кроме того, использование в составе редкоземельного элемента - церия (Ce) приводит к удорожанию материала и изделий из него, что препятствует их массовому применению.

Задачей изобретения является снижение Qм (до значений <50) при сохранении средних значений ε33т0 (~700÷1100), достаточно высоких значений пьезомодуля d33 (~190÷200 пКл/Н), пьезочувствительности g33 (~18÷20 мВ·м/н), удельной чувствительности (~5÷6 пКл/Н), коэффициента электромеханической связи планарной моды колебаний Kр (~0.40). При этом из состава материала должны быть исключены редкоземельные элементы.

Указанные результаты достигаются тем, что пьезоэлектрический керамический материал на основе ниобатов натрия-калия, включающий оксиды Na2O, K2O, Nb2O5, дополнительно содержит Li2O, Ta2O5, Sb2O5, NiO при следующем соотношении компонентов, в масс.%:

Na2O=8.49÷8.67 Ta2O5=11.20÷11.44
K2O=11.00÷11.25 Sb2O5=5.35÷7.15
Nb2O5=60.68÷61.98 NiO=0.82÷0.83
Li2O=0.49÷0.65

Состав материала отвечает формуле:

LiaKbNacNbdTamSbnO3+zNiO, где а=6.00÷8.00 (в мол.%), b=42.32÷43.24 (в мол.%), c=49.68÷50.76 (в мол.%), d=82.80÷84.60 (в мол.%), m=9.20÷9.40 (в мол.%), n=6.00÷8.00 (в мол.%), a+b+c=100%, d+m+n=100%, 0≤z≤0.03.

1. Пример изготовления пьезоэлектрического керамического материала

Материал изготавливался по обычной керамической технологии следующим образом. В качестве исходных реагентов использовались гидрокарбонаты, карбонаты и оксиды следующих квалификаций: NaHCO3 - «чда», KHCO3 - «ч», Nb2O5 - «NbO-PT», Li2CO3 - «хч», Ta2O5 - «ТаО-1», Sb2O5 - «хч», NiO - «ч». Синтез осуществлялся путем однократного обжига смесей сырьевых компонентов: NaHCO3, KHCO3, Nb2O5, Li2CO3, Ta2O, Sb2O5, NiO, взятых в количествах (масс. %, в случае NaHCO3, KHCO3, Li2CO3 в пересчете на соответствующие оксиды): Na2O=8.67; K2O=11.25; Nb2O5=61.98; Li2O=0.49; Ta2O5=11.44; Sb2O5=5.35, NiO=0.82 с промежуточным помолом синтезированного продукта. Температура обжига при синтезе, Тсинт.=1223 К, длительность изотермической выдержки, τсинт=5 ч. Спекание образцов в виде столбиков Ø12 мм, высотой 15÷18 мм осуществлялось при Тсп.=1393 К, длительность изотермической выдержки, τсп=1.5 ч. Металлизация (нанесение электродов) производилась путем нанесения на плоские поверхности предварительно сошлифованных до толщины 1 мм образцов серебросодержащей пасты и последующего ее вжигания при температуре Твжиг.=1070 К в течение 0.5 ч. Образцы поляризовали в полиэтиленсилоксановой жидкости при температуре 410 К в течение 40 мин в постоянном электрическом поле напряженностью 4 кВ/см.

2. Пример изготовления пьезоэлектрического керамического материала

Материал изготавливался по обычной керамической технологии следующим образом. В качестве исходных реагентов использовались гидрокарбонаты, карбонаты и оксиды следующих квалификаций: NaHCO3 - «чда», KHCO3 - «ч», Nb2O5 - «NbO-PT», Li2CO3 - «хч», Ta2O5 - «ТаО-1», Sb2O5 - «хч», NiO - «ч». Синтез осуществлялся путем однократного обжига смесей сырьевых компонентов: NaHCO3, KHCO3, Nb2O5, Li2CO3, Ta2O5, Sb2O5, NiO, взятых в количествах (масс. %, в случае NaHCO3, KHCO3, Li2CO3 в пересчете на соответствующие оксиды): Na2O=8.58; K2O=11.11; Nb2O5=61.33; Li2O=0.57; Ta2O5=11.35; Sb2O5=6.24, NiO=0.82 с промежуточным помолом синтезированного продукта. Температура обжига при синтезе, Tcинт.=1223 K, длительность изотермической выдержки, τсинт=5 ч. Спекание образцов в виде столбиков Ø12 мм, высотой 15÷18 мм осуществлялось при Тсп.=1393 К, длительность изотермической выдержки, τсп=1.5 ч. Металлизация (нанесение электродов) производилась путем нанесения на плоские поверхности предварительно сошлифованных до толщины 1 мм образцов серебросодержащей пасты и последующего ее вжигания при температуре Tвжиг.=1070 К в течение 0.5 ч. Образцы поляризовали в полиэтиленсилоксановой жидкости при температуре 410 К в течение 40 мин в постоянном электрическом поле напряженностью 4 кВ/см.

3. Пример изготовления пьезоэлектрического керамического материала

Материал изготавливался по обычной керамической технологии следующим образом. В качестве исходных реагентов использовались гидрокарбонаты, карбонаты и оксиды следующих квалификаций: NaHCO3 - «чда», KHCO3 - «ч», Nb2O5 - «NbO-PT», Li2CO3 - «хч», Ta2O5 - «ТаО-1», Sb2O5 - «хч», NiO - «ч». Синтез осуществлялся путем однократного обжига смесей сырьевых компонентов: NaHCO3, KHCO3, Nb2O5, Li2CO3, Ta2O5, Sb2O5, NiO, взятых в количествах (масс. %, в случае NaHCO3, KHCO3, Li2CO3 в пересчете на соответствующие оксиды): Na2O=8.49; K2O=11.00; Nb2O5=60.68; Li2O=0.65; Ta2O5=11.20; Sb2O5=7.15, NiO=0.83 с промежуточным помолом синтезированного продукта. Температура обжига при синтезе, Тсинт.=203 К, длительность изотермической выдержки, τсинт=5 ч. Спекание образцов в виде столбиков Ø12 мм, высотой 15÷18 мм осуществлялось при Tcп.=1393K, длительность изотермической выдержки τсп=1,5 ч. Металлизация (нанесение электродов) производилась путем нанесения на плоские поверхности предварительно сошлифованных до толщины 1 мм образцов серебросодержащей пасты и последующего ее вжигания при температуре Твжиг.=1070 К в течение 0,5 ч. Образцы поляризовали в полиэтиленсилоксановой жидкости при температуре 410 К в течение 40 мин в постоянном электрическом поле напряженностью 4 кВ/см.

Электрофизические характеристики определяли в соответствии с ОСТ 11.0444-87. Измерялись относительная диэлектрическая проницаемость поляризованных образцов, ε33Т00 - диэлектрическая постоянная), пьезомодули, |d31| и d33, коэффициент электромеханической связи планарной моды колебаний, Kр, механическая добротность, Qm, скорость звука, V1E. Пьезомодуль, d33, определяли квазистатическим методом. Измерение экспериментальной плотности образцов, ρэксп, осуществляли методом гидростатического взвешивания в октане. Пьезочувствительность на толщинной моде колебаний, d33, рассчитывали по формуле d33=d3333Т; удельную чувствительность рассчитывали по формуле ; акустический импеданс, Za, рассчитывали по формуле Zaэксп.V1E.

На фиг.1, где изображена табл.1, приведены основные характеристики материала в зависимости от состава, а на фиг.2, где изображена табл.2, приведены основные электрофизические характеристики оптимальных составов предлагаемого материала. Результаты испытания пьезоэлектрических керамических образцов приведены в Акте.

Полученные экспериментальные данные (фиг.1, табл.1, примеры 3-5) свидетельствуют о том, что пьезоэлектрический керамический материал предлагаемого состава обладает оптимальными, с точки зрения решаемой технической задачи, характеристиками в указанном интервале величин компонентов.

Данные, приведенные на фиг.1, 2 (табл.1, 2), подтверждают преимущества предлагаемого пьезоэлектрического керамического материала по сравнению с материалом - прототипом, а именно снижение Qm (почти вдвое) до значений ~45÷49 при сохранении средних значений относительной диэлектрической проницаемости ε33Т0~1091÷1097, относительно высоких значений пьезомодуля d33~202÷203 пКл/Н, пьезочувствительности g33~20 мВ·м/Н, удельной чувствительностью пКл/Н, коэффициента электромеханической связи планарной мод колебаний Kр~0.42÷0.43.

Эффект снижения Qm достигается, по существу, дополнительным введением в материал, включающий Na2O, K2O, Nb2O5 оксидов Li2O, Ta2O5, Sb2O5, NiO.

Предлагаемый пьезоэлектрический керамический материал получают по обычной керамической технологии без использования редкоземельных элементов (как в прототипе), что значительно упрощает и удешевляет технологический процесс.

Среднее значение относительной диэлектрической проницаемости ε33Т0=1091÷1097 предлагаемого пьезоэлектрического керамического материала определяет основное его назначение - использование в среднечастотных преобразователях.

Это следует, прежде всего, из того, твердые растворы на основе ниобатов щелочных металлов (НЩМ) могут использоваться в качестве резонансных элементов пьезоэлектрических преобразователей в высокочастотных (ВЧ) (3.0÷30.0) МГц и очень высокочастотных (ОВЧ) (30.0÷300.0) МГц диапазонах, среднечастотном (СЧ) (0.3÷3.0) МГц диапазоне; низкочастотном (НЧ) (30.0÷300.0) кГц) и ультранизкочастотном (ОНЧ) (<30.0 кГц) диапазонах. Классификация электромагнитных волн по частотным диапазонам представлена в (Носов Ю.Н., Кукаев А.А. Энциклопедия отечественных антенн. Справочное издание. М. 2001. С.49).

При условии согласования преобразователя с нагрузкой (Ri=Rн) (обычно реализуемое в выпускаемой промышленностью радиоэлектронной аппаратуре выходное сопротивление Rн~50 Ом для высоких и средних частот и 1000 Ом для низких частот), используя формулу для емкостного сопротивления преобразователя: Ri=1/ωС, где Ri - емкостное сопротивление преобразователя. Ом; ω - круговая частота, Гц; C - емкость, Ф; - можно приблизительно оценить интервалы значений емкости C=1/2πfRi для указанных диапазонов частот, а, следовательно, и относительной диэлектрической проницаемости поляризованных элементов, ε33Т0=k·C, где k - коэффициент, зависящий от размеров элементов, ε0=8.85·10-12 Ф - диэлектрическая проницаемость вакуума; при k=1, ε33Т0=C.

На фиг.3-5, где изображены таблицы 3-5, приведены значения относительной диэлектрической проницаемости, ε33Т0, реализуемые в объемных керамических образцах в различных частотных диапазонах. Там же (*) приведены комментарии к таблицам.

Таким образом, при пониженных (средних) частотах необходимы достаточно высокие (средние) значения ε33Т0 для снижения сопротивления преобразователя, что улучшает его согласование с нагрузкой. Средние значения ε33Т0 полезны и для снижения габаритов, что важно при разработке гидроакустических устройств.

Достаточно высокие значения Kр, g33, определяют высокую эффективность электроакустических преобразователей в режимах приема и излучения.

Разработанный пьезоэлектрический керамический материал может быть использован в среднечастотных радиоэлектронных устройствах, работающих в режиме приема, в том числе, в трансдукторах ультразвуковых передатчиков, а также и в сейсмоприемниках, предназначенных для геофизической разведки полезных ископаемых. С их помощью регистрируются сейсмические колебания, искусственно вызванные действием взрыва. Основной параметр сейсмоприемника - чувствительность к изменению давления во внешней среде, - в значительной степени обеспечивается высоким коэффициентом , а средние значения ε33Т0 благоприятны для согласования сейсмоприемника, работающего в среднечастотном диапазоне, с нагрузкой.

Кроме работы на средних частотах, предлагаемый материал может быть использован в приборах медицинской диагностики, работающих на нагрузку с низкоомным входным сопротивлением, которое обеспечивает согласование с ней преобразователя. В таких устройствах низкие значения Qm разработанного материала способствуют подавлению ложных колебаний. Разработанный материал имеет низкую плотность (ρэксп.=4.52 г/см3), что приводит к значительному снижению веса изделий и уменьшению акустического импеданса (Za~19 mrayl), что необходимо для согласования с акустической нагрузкой.

Разработанный материал обладает способностью эффективно накапливать электрическую энергию (плотность запасенной электрической энергии более 2·103 Кл·В·м-3), что перспективно для его использования в качестве источника внешнего электрического поля.

Из вышесказанного следует, что технический результат изобретения достигается новой совокупностью существенных признаков, как вновь введенных, так и известных, следовательно, заявленный пьезоэлектрический керамический материал соответствует критерию патентоспособности «изобретательский уровень».

Предлагаемый пьезоэлектрический керамический материал обеспечивает технический результат, не вызывает затруднений при изготовлении, предполагает использование основных (доступных и дешевых) материалов (реагентов) и стандартного оборудования, не содержит в своем составе токсичных элементов, что свидетельствует о соответствии заявленного технического решения критерию «промышленная применяемость».

Таблица 1
N п/п Номера составов NNo образца ЭЛЕКТРОФИЗИЧЕСКИЕ ПАРАМЕТРЫ
εтззо Kр |d31|, пКл/Н d33', пКл/Н , пм/В QМ , м/с g33 мВ·м/Н Za, mrayl
1 1088 0.41 78 200 6.1 45 4.33 20.7 19.6
2 1094 0.42 82 204 6.2 44 4.29 21.0 19.4
1 3 3 1090 0.42 79 201 6.1 46 4.32 20.8 19.5
4 1091 0.43 82 202 6.1 45 4.31 20.9 19.5
5 1092 0.42 79 203 6.1 45 4.30 21.0 19.4
Cp 1091 0.42 80 202 6.1 45 4.31 20.9 19.5
1 1095 0.43 85 204 6.1 45 4.28 21.0 19.3
2 1097 0.42 84 203 6.1 46 4.29 20.9 19.4
3 1099 0.43 83 202 6.0 47 4.30 20.7 19,4
2 4 4 1096 0.43 86 204 6.2 46 4.29 21.0 19.4
5 1098 0.43 82 203 6.0 45 4.29 20.9 19.4
Cp 1097 0.43 84 203 6.1 46 4.29 20.9 19.4
1 1094 0.41 82 203 6.1 48 4.25 20.9 19.6
2 1096 0.43 82 204 6.2 49 4.24 21.0 19.4
3 1095 0.42 84 202 6.1 49 4.22 20.8 19.5
3 5 4 1096 0.42 83 203 6.1 48 4.23 20.9 19.5
5 1093 0.43 84 201 6.1 50 4.22 20.8 19.4
Cp 1095 0.42 83 203 6.1 49 4.23 20.9 19.5

Номера составов, соответствующих формуле изобретения и примерам 3, 4, 5 табл.1 на фиг.1 описания изобретения.

Таблица 2
Номера соответствуют табл.1 Состав, масс.%
Na2O K2O Nb2O5 Li2O Ta2O5 Sb2O5 NiO
3 8.67 11.25 61.98 0.49 11.44 5.35 0.82
4 8.58 11.11 61.33 0.57 11.35 6.24 0.82
5 8.49 11.00 60.68 0.65 11.20 7.15 0.83

Пьезоэлектрический керамический материал на основе ниобатов натрия-калия, включающий NaO, KO, NbO, отличающийся тем, что дополнительно содержит LiO, TaO, SbO, NiO, при следующем соотношении компонентов, мас.%:
ПЬЕЗОЭЛЕКТРИЧЕСКИЙ КЕРАМИЧЕСКИЙ МАТЕРИАЛ
ПЬЕЗОЭЛЕКТРИЧЕСКИЙ КЕРАМИЧЕСКИЙ МАТЕРИАЛ
ПЬЕЗОЭЛЕКТРИЧЕСКИЙ КЕРАМИЧЕСКИЙ МАТЕРИАЛ
ПЬЕЗОЭЛЕКТРИЧЕСКИЙ КЕРАМИЧЕСКИЙ МАТЕРИАЛ
ПЬЕЗОЭЛЕКТРИЧЕСКИЙ КЕРАМИЧЕСКИЙ МАТЕРИАЛ
Источник поступления информации: Роспатент

Showing 1-10 of 21 items.
20.03.2013
№216.012.2f58

Способ получения шпинелей на основе феррита-хромита цинка

Изобретение относится к технологии получения твердых растворов со структурой шпинели на основе ферритов и хромитов переходных элементов и может найти применение в химической промышленности в процессах органического синтеза для производства бутадиена и углеводородов из синтез-газа в качестве...
Тип: Изобретение
Номер охранного документа: 0002477655
Дата охранного документа: 20.03.2013
20.11.2013
№216.012.8202

Пьезоэлектрический керамический материал

Изобретение относится к пьезоэлектрическим керамическим материалам и может быть использовано в низкочастотных приемных устройствах, гидрофонах, сонарах, работающих в гидростатическом режиме, акустических приемниках, датчиках давления. Состав материала, мас.%: PbO 69,39-69,68, NbO 17,98-19,28,...
Тип: Изобретение
Номер охранного документа: 0002498958
Дата охранного документа: 20.11.2013
20.11.2013
№216.012.8203

Пьезоэлектрический керамический материал

Изобретение относится к производству пьезоэлектрических керамических материалов и может быть использовано для создания высокочастотных электромеханических преобразователей, применяемых, в частности, в ультразвуковых линиях задержки (эксплуатируемых в частотном диапазоне (20÷30) мГц),...
Тип: Изобретение
Номер охранного документа: 0002498959
Дата охранного документа: 20.11.2013
20.11.2013
№216.012.8204

Пьезоэлектрический керамический материал

Изобретение относится к пьезоэлектрическим керамическим материалам на основе ниобата натрия и может быть использовано для создания низкочастотных приемных устройств - гидрофонов, микрофонов, гидроприемников, а также для создания низкочастотных электромеханических преобразователей, возбуждающих...
Тип: Изобретение
Номер охранного документа: 0002498960
Дата охранного документа: 20.11.2013
10.04.2014
№216.012.b77a

Оптическое интерференционное устройство для измерения перемещений поверхностей объектов контроля

Устройство содержит закрепленное на основании (1) устройство (2) для регулировки и фиксации его положения относительно поверхности (12) объекта (13), соединенный с ним цилиндрический корпус (4), во внутренней полости (5) которого установлены источник (6) когерентного оптического излучения и...
Тип: Изобретение
Номер охранного документа: 0002512697
Дата охранного документа: 10.04.2014
20.02.2015
№216.013.2933

Пьезоэлектрический керамический материал

Изобретение относится к пьезоэлектрическим керамическим материалам. Технический результат изобретения заключается в снижении относительной диэлектрической проницаемости и температуры спекания материала. Пьезоэлектрический керамический материал содержит следующие компоненты, мас.%: PbO...
Тип: Изобретение
Номер охранного документа: 0002542004
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.2937

Пьезоэлектрический керамический материал

Изобретение относится к пьезоэлектрическим керамическим материалам. Технический результат изобретения заключается в снижении механической добротности, относительной диэлектрической проницаемости поляризованных образцов, в повышении пьезомодуля, пьезочувствительности, удельной чувствительности,...
Тип: Изобретение
Номер охранного документа: 0002542008
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.2938

Пьезоэлектрический керамический материал

Изобретение относится к пьезоэлектрическим керамическим материалам. Технический результат изобретения заключается в повышении коэффициента электромеханической связи планарной моды колебаний, снижении относительной диэлектрической проницаемости. Пьезоэлектрический керамический материал содержит...
Тип: Изобретение
Номер охранного документа: 0002542009
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.293b

Пьезоэлектрический керамический материал

Изобретение относится к пьезоэлектрическим керамическим материалам. Технический результат изобретения заключается в снижении относительной диэлектрической проницаемости и механической добротности, в повышении пьезочувствительности, коэффициента электромеханической связи планарной моды...
Тип: Изобретение
Номер охранного документа: 0002542012
Дата охранного документа: 20.02.2015
10.04.2015
№216.013.4003

Пьезоэлектрический керамический материал

Изобретение относится к пьезоэлектрическим керамическим материалам на основе соединений свинца, титана, ниобия, магния, германия, циркония и может быть использовано в электромеханических преобразователях, стабильно работающих в диапазоне температур от 25°C до 240°C, одним из основных критериев...
Тип: Изобретение
Номер охранного документа: 0002547875
Дата охранного документа: 10.04.2015
Showing 1-10 of 32 items.
20.11.2013
№216.012.8202

Пьезоэлектрический керамический материал

Изобретение относится к пьезоэлектрическим керамическим материалам и может быть использовано в низкочастотных приемных устройствах, гидрофонах, сонарах, работающих в гидростатическом режиме, акустических приемниках, датчиках давления. Состав материала, мас.%: PbO 69,39-69,68, NbO 17,98-19,28,...
Тип: Изобретение
Номер охранного документа: 0002498958
Дата охранного документа: 20.11.2013
20.11.2013
№216.012.8203

Пьезоэлектрический керамический материал

Изобретение относится к производству пьезоэлектрических керамических материалов и может быть использовано для создания высокочастотных электромеханических преобразователей, применяемых, в частности, в ультразвуковых линиях задержки (эксплуатируемых в частотном диапазоне (20÷30) мГц),...
Тип: Изобретение
Номер охранного документа: 0002498959
Дата охранного документа: 20.11.2013
20.11.2013
№216.012.8204

Пьезоэлектрический керамический материал

Изобретение относится к пьезоэлектрическим керамическим материалам на основе ниобата натрия и может быть использовано для создания низкочастотных приемных устройств - гидрофонов, микрофонов, гидроприемников, а также для создания низкочастотных электромеханических преобразователей, возбуждающих...
Тип: Изобретение
Номер охранного документа: 0002498960
Дата охранного документа: 20.11.2013
10.04.2014
№216.012.b77a

Оптическое интерференционное устройство для измерения перемещений поверхностей объектов контроля

Устройство содержит закрепленное на основании (1) устройство (2) для регулировки и фиксации его положения относительно поверхности (12) объекта (13), соединенный с ним цилиндрический корпус (4), во внутренней полости (5) которого установлены источник (6) когерентного оптического излучения и...
Тип: Изобретение
Номер охранного документа: 0002512697
Дата охранного документа: 10.04.2014
20.02.2015
№216.013.2933

Пьезоэлектрический керамический материал

Изобретение относится к пьезоэлектрическим керамическим материалам. Технический результат изобретения заключается в снижении относительной диэлектрической проницаемости и температуры спекания материала. Пьезоэлектрический керамический материал содержит следующие компоненты, мас.%: PbO...
Тип: Изобретение
Номер охранного документа: 0002542004
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.2937

Пьезоэлектрический керамический материал

Изобретение относится к пьезоэлектрическим керамическим материалам. Технический результат изобретения заключается в снижении механической добротности, относительной диэлектрической проницаемости поляризованных образцов, в повышении пьезомодуля, пьезочувствительности, удельной чувствительности,...
Тип: Изобретение
Номер охранного документа: 0002542008
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.2938

Пьезоэлектрический керамический материал

Изобретение относится к пьезоэлектрическим керамическим материалам. Технический результат изобретения заключается в повышении коэффициента электромеханической связи планарной моды колебаний, снижении относительной диэлектрической проницаемости. Пьезоэлектрический керамический материал содержит...
Тип: Изобретение
Номер охранного документа: 0002542009
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.293b

Пьезоэлектрический керамический материал

Изобретение относится к пьезоэлектрическим керамическим материалам. Технический результат изобретения заключается в снижении относительной диэлектрической проницаемости и механической добротности, в повышении пьезочувствительности, коэффициента электромеханической связи планарной моды...
Тип: Изобретение
Номер охранного документа: 0002542012
Дата охранного документа: 20.02.2015
10.04.2015
№216.013.4003

Пьезоэлектрический керамический материал

Изобретение относится к пьезоэлектрическим керамическим материалам на основе соединений свинца, титана, ниобия, магния, германия, циркония и может быть использовано в электромеханических преобразователях, стабильно работающих в диапазоне температур от 25°C до 240°C, одним из основных критериев...
Тип: Изобретение
Номер охранного документа: 0002547875
Дата охранного документа: 10.04.2015
20.04.2015
№216.013.418c

Пьезоэлектрический керамический материал

Изобретение относится к пьезоэлектрическим керамическим материалам и может быть использовано при создании высокочастотных акустоэлектрических преобразователей. Пьезоэлектрический керамический материал содержит оксиды натрия, ниобия, стронция, лития, алюминия, висмута и железа при следующем...
Тип: Изобретение
Номер охранного документа: 0002548278
Дата охранного документа: 20.04.2015
+ добавить свой РИД