×
20.11.2013
216.012.81b4

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ПОРОШКА ДИБОРИДА ТИТАНА ДЛЯ МАТЕРИАЛА СМАЧИВАЕМОГО КАТОДА АЛЮМИНИЕВОГО ЭЛЕКТРОЛИЗЕРА

Вид РИД

Изобретение

Аннотация: Изобретение относится к материалу смачиваемого анода алюминиевого электролизера. Порошок диборида титана получают при проведении карботермической реакции между мелкодисперсными порошковыми компонентами шихты из безводного диоксида титана, борного ангидрида или борной кислоты и углерода в виде сажи. Борную кислоту или борный ангидрид вводят в порошковую шихту в виде раствора, а синтез проводят при температуре не выше 1473 К в течение 3-4 часов. Изобретение позволяет повысить технологичность, эксплуатационные характеристики производимого из порошка катодного материала, снизить энергетические затраты, улучшить технико-экономические показатели процесса производства смачиваемого материала. 1 табл.
Основные результаты: Способ получения порошка диборида титана для материала смачиваемого катода алюминиевого электролизера, включающий проведение карботермической реакции между компонентами шихты из диоксида титана, источника бора и источника углерода в виде сажи, отличающийся тем, что в качестве источника титана используют мелкодисперсный порошок безводного диоксида титана, в качестве источника бора используют борную кислоту или борный ангидрид, который вводят в шихту в виде раствора, а синтез проводят при температуре не выше 1473 К в течение 3-4 часов.

Изобретение относится к области цветной металлургии, в частности к технологии производства алюминия путем электролиза криолит-глиноземных расплавов.

Алюминиевый электролизер имеет углеродный катод, который не смачивается выделяющимся на нем жидким алюминием, что является причиной ряда серьезных проблем технологии. Задача создания смачиваемого алюминием, экономически выгодного катода является важной для действующих технологий электролиза и необходимой для перспективных конструкций электролизеров, таких как аппараты с дренированным или вертикальным катодом.

Предложено большое количество смачиваемых алюминием материалов для катодов электролизеров, включающих как основной функциональный компонент порошок борида металла и реализуемых на практике в виде покрытий на углеграфитовой подине, наклеиваемых на нее плиток, объемных изделий-компонентов катода [US №4466966, C07D 239/16, C07B 243/04, C07D 239/02, опубл. 21.08.1984; RU №2135643, C25C 3/06, C25C 3/08, C23C 20/08, C04B 35/58, опубл. 27.08.1999; US №5753163, C04B 35/58, C04B 41/51, C04B 41/88, C25C 3/08, B28B 1/26, опубл. 19.05.1998]. Все предложенные материалы-композиты, в которых в качестве функциональной основы обычно выступает диборид титана (т.к. бориды других металлов и дороже, и менее стойки в контакте с жидким алюминием), обеспечивающие смачиваемость расплавом алюминия, а связующее обычно углеродное или алюмооксидное - связывание в прочное, пористое тело.

Решение научно-технической проблемы применения таких материалов в промышленных масштабах наталкивается, в первую очередь, на высокую стоимость указанного функционального компонента - диборида титана, так как предложенные тонкие покрытия быстро изнашиваются и поэтому неэффективны, а толстые покрытия или объемные изделия экономически невыгодны даже при пониженном, до 30-40%, содержании диборида. Еще более низкое содержание не обеспечивает надежного смачивания композита алюминием.

В промышленности диборид титана получают в виде порошка [Самсонов Г.В. Бориды / Г.В.Самсонов, Т.И.Серебрякова, В.А.Неронов. - М.: Атомиздат, 1975. - 376 с.; Серебрякова Т.И. Высокотемпературные бориды / Т.И.Серебрякова, В.А.Неронов, П.Д.Пешев. - М.: Металлургия, 1991. - 368 с.], преимущественно карботермическим восстановлением оксидов титана и бора при температурах порядка 2100-2300 К:

или методом СВС (самораспространяющийся высокотемпературный синтез) с металлами-восстановителями (обычно алюминий, магний):

Основной недостаток первого способа - очень высокие температуры синтеза, энергоемкость, высокая стоимость оборудования, что определяет и высокую стоимость продукта, а второго - необходимость дальнейшей затратной очистки от примесей. Кроме того, в методе СВС трудно управлять дисперсностью и морфологией готового порошка, имеющего весьма неоднородную микроструктуру.

Известен ряд предложений, способствующих понижению температуры карботермического синтеза и, следовательно, повышению экономической эффективности процесса. Например, в работе [Kang S.H. Synthesis of nano-titanium diboride powders by carbothermal reduction / S.H.Kang, D.J.Kim // J. of the European Ceramic Society, 2007, V.27 - P.715-718] предложен синтез диборида из порошков TiO2, B2O3 и С, смешанных в соотношении 1:2:5 в планетарной мельнице в течение 2 ч. Далее смесь сушат, гранулируют и отжигают при T=773 К в течение часа, а затем проводили основную стадию синтеза при 1773 К в течение 20 мин. Для избавления от излишек оксида бора полученный материал перемешивают в течение 12 ч с добавкой метанола. Средний размер частиц TiB2 составляет 80 нм.

Недостатками этого предложения являются как технологическая сложность процесса, так и слишком мелкий, для рассматриваемого применения, размер частиц продукта.

В работе [Welham N.J. Mechanical Enhancement of the Carbothermic Formation of TiB2 / N.J Welham // Metallurgical and materials transactions A, 2000, v.31, №1. - pp.283-289] предлагается осуществлять процесс между мелкодисперсными, тщательно перемешенными исходными порошковыми компонентами TiO2 (0,2-0,3 мкм), B2O3 (<50 мкм) и графитом (<10 мкм), смесь из которых длительное время (до 100 ч) обрабатывают в мельнице. Способ позволяет получать диборид титана при температуре 1473 К с выходом целевого продукта около 90% и приемлемым размером частиц более 1 мкм.

Однако важным недостатком такого процесса является длительное время помола, а также возможное загрязнение продукта за счет «намола» вещества корпуса мельницы и мелющих тел.

Известно также другое техническое решение [US №2929685, C01B 35/04, опубл. 22.03.1960], где предложено диоксид титана заменить фосфатом титана. Это позволило существенно понизить температуру синтеза и, следовательно, повысить экономическую привлекательность решения: диборид титана был получен из смеси, содержащей фосфат титана, борный ангидрид и уголь, при 1373-1873 К.

Однако указанный способ не может быть принят для решения данной проблемы, так как присутствие примеси фосфора даже в малых количествах, как известно, недопустимо с точки зрения использования материала в электролизной ванне, способствующее существенному понижению выхода по току.

Известны также исследования, в которых используют борную кислоту вместо борного ангидрида, в качестве источника бора в карботермическом синтезе TiB2 [Shahbahrami В. The effect of processing parameters in the carbothermal synthesis of titanium diboride powder / B.Shahbahrami, F.Golestani Fard, A. Sedghi // Advanced Powder Technology, 2012, V.23. - P.234-238]. Авторы готовят смесь из порошков TiO2, H3BO3 и С при соотношении компонентов TiO23ВО3:C=1:2,4:5 (значительно выше стехиометрического содержания), нагревают в течение 1 ч при температуре 1273-1873 К. Реакция протекает полностью при Т=1773 К. В зависимости от времени термообработки возможно получить размер частиц продукта от 1-5 до 20-50 мкм.

Существенным недостатком такого процесса являются большие избыточные количества борной кислоты и углерода, от которых в дальнейшем необходима очистка, и температура, обеспечивающая высокий выход продукта, также достаточно велика.

Наиболее близким техническим решением, выбранным в качестве прототипа, является способ получения порошка диборида титана, предложенный в патенте [US №2973247, C01B 35/04, опубл. 28.02.1961]. В данном способе смесь водной суспензии промышленного полупродукта - диоксида титана гидрата, углерода в виде сажи и борного ангидрида или борной кислоты, тщательно перемешивают в мельнице, просушивают и далее прокаливают в течение 1-3 ч при температуре, взятой из интервала 1623-2023 К. Так, термообработка при 1773 К в течение 1,5 ч дает продукт-диборид титана в виде неагрегированного порошка. В способе используются дешевые компоненты, получая порошок, не требующий дальнейшего размола с преимущественными размерами частиц в подходящем диапазоне 1-15 мкм. Однако эффективная температура основной энергоемкой стадии обжига остается довольно высокой - порядка 1773 К, что является существенным недостатком метода, снижающим технологические и экономические параметры процесса получения целевого продукта. Кроме того, суспензия диоксида титана гидрата производится, как правило, из сульфатных растворов и поэтому содержит до 10% серной кислоты, что может привести к образованию серосодержащих примесей в конечном продукте и потребовать введение стадии дополнительной очистки.

Задачей изобретения является разработка энергосберегающего способа синтеза порошка диборида титана в неагломерированной форме в мягких температурных условиях, предназначенного, в первую очередь, для материала смачиваемого катода, который обеспечивал бы технологичность процесса при необходимом качестве продукта синтеза и приемлемых экономических показателях.

Таким образом, технический результат, получаемый в результате использования предлагаемого изобретения, заключается в повышении технологичности, эксплуатационных характеристик производимого из продукта катодного материала, снижении энергетических затрат, улучшении технико-экономических показателей процесса производства смачиваемого материала.

Технический результат достигается тем, что в способе получения порошка диборида титана для материала смачиваемого катода алюминиевого электролизера, включающем проведение карботермической реакции между мелкодисперсными порошковыми компонентами шихты из диоксида титана гидрата, борного ангидрида или борной кислоты, как источника бора, и углерода в виде сажи, новым является то, что в качестве источника титана используют безводный диоксид титана, в качестве источника бора используют борную кислоту, которую вводят в порошковую шихту в виде раствора, а синтез проводят при температуре не выше 1473 К в течение 3-4 часов.

Известный способ получения порошка диборида титана видоизменяется таким образом, что бор вводится в реакционную смесь в виде раствора борной кислоты с последующим выпариванием. Борная кислота в виде раствора, смешиваемого с готовым высокодисперсным, безводным диоксидом титана и сажей, позволяет получить статистически однородное взаимное распределение фазовых компонентов и осуществлять синтез при относительно низкой температуре - не выше 1473 К с высоким выходом целевого продукта (TiB2) - до 93-95% с частицами порошка размером до 5-10 мкм в неагрегированной форме, и достаточно чистого для рассматриваемого применения без дополнительной очистки, что обеспечивает существенное понижение стоимости диборидного компонента катодного композита.

От прототипа заявляемый способ отличается тем, что:

- в качестве источника титана используется безводный диоксид титана в виде промышленного пигмента, имеющий высокую дисперсность с размером частиц 0,2-0,3 мкм, что не вносит дополнительных примесей в готовый продукт и способствует получению качественного порошка;

- в качестве источника бора используют борную кислоту, которую вводят в реакционную порошковую смесь из диоксида титана и сажи в виде раствора, после выпаривания которого борсодержащий компонент однородно распределяется по поверхности готового коммерческого порошка диоксида титана в виде высокодисперсных кристаллов конденсационной природы, что повышает реакционную способность контактирующих компонентов, сокращает диффузионные пути переноса реагирующих частиц и позволяет существенно понизить температуру технологического процесса;

- процесс ведут при температуре 1473 К.

Эти отличия позволяют сделать вывод о соответствии заявляемого технического решения критерию «новизна». Признаки, отличающие заявляемый способ от прототипа, не выявлены в других технических решениях при изучении данной и смежных областей химии и, следовательно, обеспечивают заявляемому решению соответствие критерию «изобретательский уровень».

Заявляемый способ получения порошка диборида для материала смачиваемого катода алюминиевого электролизера является энергосберегающим процессом получения в мягких температурных условиях порошковой смеси, содержащей, преимущественно, диборид титана в неагломерированной форме, а также малое количество других фазовых компонентов, которые не являются вредными в катодном материале алюминиевого электролизера и, следовательно, не требуется дополнительная очистка от них. Низкая температура синтеза и отсутствие необходимости дополнительной очистки продукта обеспечивает существенное понижение стоимости диборидного компонента катодного композита. Это, в свою очередь, позволяет создавать технологичный и экономичный смачиваемый алюминием катодный материал, что ведет к увеличению срока службы промышленного электролизера и повышению его технико-экономических показателей.

Сущность способа заключается в следующем.

Исходную порошковую шихту для карботермического синтеза диборида титана готовят в виде однородной, высокодисперсной (нанодисперсной) смеси порошков-источников бора (борный ангидрид, B2O3), титана (диоксид титана, TiO2) и восстановителя-углерода (сажа). Товарный диоксид (пигмент) и сажа имеют нужную дисперсность и задача состоит во введении борного ангидрида тоже в виде высокодисперсных частиц. Последнее достигается путем добавления к шихте раствора борной кислоты (Н3ВО3) в расчетном количестве, и дальнейшего выпаривания до полного удаления связанной воды (2Н3ВО3=B2O3+3H2O, 430-470 К), в результате чего образуется борный ангидрид в виде высокодисперсных частиц конденсационного происхождения, равномерно распределенных в объеме порошковой шихты.

Эксперименты проведены с одинаковым стехиометрическим составом шихты в соответствии с уравнением (1), т.е. при использовании борной кислоты вместо борного ангидрида суммарная реакция синтеза выглядит следующим образом:

и согласно (3) каждая загрузка имела следующий состав: 79,9 г TiO2, 123,6 г Н3ВО3 и 60 г С. Размер частиц TiO2 составляет 0,2-0,3 мкм, сажи - порядка 0,05 мкм. Продолжительность синтеза составляла 1-4 часа при температуре 1373-1473 К. Результаты приведены в таблице 1.

Предлагаемый способ получения порошка диборида титана лабораторно апробирован, продукты синтеза подвергнуты рентгенофазовому и электронномикроскопическому анализу.

Таблица 1
Результаты карботермического синтеза TiB2
Температура синтеза, К Продолжительность синтеза, ч TiB2, % TiC (TiO), % Прочие, %
Пример 1 1373 4 - 32 68
Пример 2 1423 4 28 24 48
Пример 3 1473 4 95 5 -
Пример 4 1473 3 93 7 -
Пример 5 1473 2 72 16 12
Пример 6 1473 1 47 18 35

Результаты показали, что оптимальная температура синтеза составляет 1473 К, продолжительность термообработки - 3-4 ч.

Основную часть порошка в примерах №№3 и 4 составляют неагломерированные гексагональные пластинчатые кристаллы диборида титана до 5-10 мкм в поперечнике и до 4 мкм толщины.

Карбид и монооксид титана, как известно, рентгенографически трудноразличимы, но совместное применение микрорентгеноспектрального анализа показало присутствие обоих этих веществ в виде кристаллов октаэдрического строения размером 2-3 мкм.

В колонке «Прочие» таблицы 1 отражены, в основном, оксиды титана различных промежуточных степеней окисления.

Низкое содержание посторонних компонентов (карбид и монооксид титана) позволяет обойтись без дополнительных стадий очистки порошка перед его использованием в качестве основного компонента для смачиваемого катодного композита, что еще более удешевляет производство.

Полученные порошковые смеси (примеры №№3 и 4) были также испытаны в целевом применении: из них изготовлены катоды для вертикального лабораторного электролизера в виде брусков размером около 10×10×100 мм. К смеси из примеров №№3 и 4 добавляли 20% пульвербакелита - в качестве связующего, изопропиловый спирт - в качестве растворителя. Из шихты прессовали заготовки в стальной пресс-форме, которые далее обжигали под углеродной постелью при температуре около 1000°С. Катоды прошли электрохимические испытания в указанном электролизере при следующих условиях: криолитовое отношение КО=1,8 (состав электролита, %: 90,4Na3AlF6-5,6NaF-4Al2O3), электролит насыщен по глинозему, температура электролиза 1193 К, рабочая катодная плотность тока 0,8 А/см2, длительность испытания - 24 ч.

Визуальный и микроскопический контроль образцов после испытания показал, что в процессе электролиза катоды хорошо смачивались и покрывались тонкой пленкой алюминия. При этом внешние размеры катода после испытаний не изменились. Это свидетельствует о приемлемом качестве полученного катодного материала и, следовательно, об эффективности предложенного технического решения.

Совокупные преимущества способа получения порошка диборида титана для материала смачиваемого катода алюминиевого электролизера заключаются в реализации энергосберегающего, низкотемпературного процесса с высоким выходом продукта в виде неагломерированного порошка, не требующего дополнительного размола, с малым содержанием примесных фаз, не требующих очистки, что обеспечивает технологическую и экономическую эффективность предлагаемого решения.

Способ получения порошка диборида титана для материала смачиваемого катода алюминиевого электролизера, включающий проведение карботермической реакции между компонентами шихты из диоксида титана, источника бора и источника углерода в виде сажи, отличающийся тем, что в качестве источника титана используют мелкодисперсный порошок безводного диоксида титана, в качестве источника бора используют борную кислоту или борный ангидрид, который вводят в шихту в виде раствора, а синтез проводят при температуре не выше 1473 К в течение 3-4 часов.
Источник поступления информации: Роспатент

Showing 231-240 of 243 items.
19.04.2019
№219.017.31eb

Генератор озона

Изобретение относится к производству озона и может быть использован для очистки воды и обработки помещений в медицине. Генератор озона содержит разрядную камеру в виде прямоугольного параллелепипеда, внутри которой стопкой уложены плоские электроды и диэлектрические барьеры, имеется входная и...
Тип: Изобретение
Номер охранного документа: 0002458855
Дата охранного документа: 20.08.2012
29.04.2019
№219.017.4479

Анодный токоподвод алюминиевого электролизера

Изобретение относится к конструкции анодного токоподвода электролизера для получения алюминия. Анодный токоподвод алюминиевого электролизера, состоящий из вертикального наращиваемого стержня, выполнен из соединенных встык с созданием электрического контакта керамических открытопористых и...
Тип: Изобретение
Номер охранного документа: 0002456382
Дата охранного документа: 20.07.2012
29.04.2019
№219.017.4676

Керамическая масса для изготовления кирпича

Изобретение относится к области строительства, в частности к получению эффективного керамического строительного кирпича. Техническим результатом изобретения является снижение теплопроводности и плотности кирпича. Керамическая масса для изготовления кирпича содержит среднепластичную глину и...
Тип: Изобретение
Номер охранного документа: 0002462433
Дата охранного документа: 27.09.2012
09.05.2019
№219.017.5090

Способ определения величины подработки массива твердеющей закладки

Изобретение относится к горной промышленности, а именно к подземной разработке месторождений полезных ископаемых, с заполнением выработанного пространства твердеющей закладкой. Техническим результатом является определение величины подработки массива твердеющей закладки. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002464425
Дата охранного документа: 20.10.2012
18.05.2019
№219.017.5b9c

Устройство для сбора и эвакуации анодных газов из-под укрытия электролизера с обожженными анодами

Изобретение относится к цветной металлургии, в частности к получению алюминия в электролизерах с предварительно обожженными анодами, и может быть применено для улавливания выбросов при выполнении технологических операций, связанных с разгерметизацией укрытий. Устройство для сбора и эвакуации...
Тип: Изобретение
Номер охранного документа: 0002468127
Дата охранного документа: 27.11.2012
29.05.2019
№219.017.680c

Стекло для получения пеностекла (варианты)

Изобретение относится к составам стекол, используемых для получения шлакового пеностекла. Технический результат заключается в снижении себестоимости, оптимальной температуры варки и вспенивания стекла. Сырьем для получения стекла являются отходы теплоэнергетики. Стекло для получения пеностекла...
Тип: Изобретение
Номер охранного документа: 0002424999
Дата охранного документа: 27.07.2011
29.05.2019
№219.017.69b1

Способ приготовления порошковой шихты ag/sno для разрывных электроконтактов

Изобретение относится к области порошковой металлургии, в частности к производству изделий из металлических порошков. Может использоваться при получении композиционных металлокерамических материалов для разрывных электроконтактов на серебряной основе, используемых в низковольтной аппаратуре....
Тип: Изобретение
Номер охранного документа: 0002442835
Дата охранного документа: 20.02.2012
29.05.2019
№219.017.6a0a

Раскатчик для изготовления набивных свай

Изобретение относится к строительной технике и может быть использовано для устройства раскатных вертикальных, наклонных и горизонтальных скважин без выемки грунта и изготовления за один рабочий цикл набивных свай. Раскатчик для изготовления набивных свай включает вал с хвостовиком и соосно...
Тип: Изобретение
Номер охранного документа: 0002465409
Дата охранного документа: 27.10.2012
19.06.2019
№219.017.8bb7

Способ извлечения золота из бедных малосульфидных руд

Изобретение относится к способу переработки золотосодержащих руд с низким содержанием тяжелой сульфидной составляющей. Способ включает дробление руды, двухстадийное измельчение, классификацию, гравитационное обогащение с получением хвостов и гравитационного концентрата, поступающего на доводку...
Тип: Изобретение
Номер охранного документа: 0002465353
Дата охранного документа: 27.10.2012
19.06.2019
№219.017.8bb8

Установка для определения механических напряжений в конструкционных материалах

Использование: для определения механических напряжений в конструкционных материалах. Сущность: заключается в том, что установка для определения механических напряжений в конструкционных материалах содержит корпус, заполненный иммерсионной жидкостью, акустическое фокусирующее устройство в виде...
Тип: Изобретение
Номер охранного документа: 0002465583
Дата охранного документа: 27.10.2012
Showing 231-240 of 245 items.
19.07.2018
№218.016.7251

Плоский спиральный индуктор сильного магнитного поля (варианты)

Изобретение относится к электротехнике и может быть использовано в индукторах устройств для магнитно-импульсной обработки материалов (МИОМ), такой как прессование порошков, штамповка листовых заготовок и т.д., использующих ток высокой частоты и большой амплитуды для генерации сильного...
Тип: Изобретение
Номер охранного документа: 0002661496
Дата охранного документа: 17.07.2018
29.03.2019
№219.016.f468

Электрический контактный узел инертного анода для получения алюминия в солевом расплаве и способ его монтажа

Изобретение относится к изготовлению инертных анодов для электролитического получения алюминия в криолит-глиноземном расплаве. Электрический контактный узел инертного анода содержит полый корпус инертного анода, выполненный из оксидной керамики на основе SnO, и металлический токоподводящий...
Тип: Изобретение
Номер охранного документа: 0002418889
Дата охранного документа: 20.05.2011
10.04.2019
№219.017.072a

Способ производства металлов с керамическим анодом

Изобретение относится к области цветной металлургии и может быть использовано для получения металлов электролизом расплавленных электролитов с инертными анодами, в частности для электролитического производства алюминия из глиноземсодержащего фторидного расплава в электролизере с анодом,...
Тип: Изобретение
Номер охранного документа: 0002452797
Дата охранного документа: 10.06.2012
29.04.2019
№219.017.3f43

Оксидный материал для несгораемых анодов алюминиевых электролизеров (варианты)

Изобретение относится к области цветной металлургии и может быть использовано при изготовлении инертных анодов для получения металлов электролизом расплавов, в частности для электролитического получения алюминия в криолит-глиноземных расплавах. В качестве материала для несгораемых анодов...
Тип: Изобретение
Номер охранного документа: 0002291915
Дата охранного документа: 20.01.2007
29.04.2019
№219.017.3f55

Способ нанесения смачиваемого покрытия подины алюминиевого электролизера

Изобретение относится к области цветной металлургии, в частности к производству алюминия электролизом криолит-глиноземных расплавов. Способ нанесения (синтеза) смачиваемого диборидного покрытия подины алюминиевого электролизера осуществляют в период пуска электролизной ванны непосредственно из...
Тип: Изобретение
Номер охранного документа: 0002299278
Дата охранного документа: 20.05.2007
29.04.2019
№219.017.43fe

Установка магнитно-импульсного прессования наноразмерных порошков

Изобретение относится к порошковой металлургии, в частности к устройствам для магнитно-импульсного прессования изделий из порошковых материалов. Установка состоит из источника питания, включающего в себя генератор импульсных токов, разрядник и блок управления; пресса, включающего в себя раму, в...
Тип: Изобретение
Номер охранного документа: 0002422245
Дата охранного документа: 27.06.2011
29.05.2019
№219.017.69b1

Способ приготовления порошковой шихты ag/sno для разрывных электроконтактов

Изобретение относится к области порошковой металлургии, в частности к производству изделий из металлических порошков. Может использоваться при получении композиционных металлокерамических материалов для разрывных электроконтактов на серебряной основе, используемых в низковольтной аппаратуре....
Тип: Изобретение
Номер охранного документа: 0002442835
Дата охранного документа: 20.02.2012
09.06.2019
№219.017.7de4

Способ электролитического производства алюминия

Изобретение относится к способу электролитического производства алюминия из глиноземсодержащего фторидного расплава. Способ осуществляют с использованием анодов, содержащих двухфазные металлические сплавы на основе меди и железа, в том числе легированные небольшими количествами никеля,...
Тип: Изобретение
Номер охранного документа: 0002455398
Дата охранного документа: 10.07.2012
06.07.2019
№219.017.a70f

Генератор для получения наночастиц в импульсно-периодическом газовом разряде

Изобретение относится к области нанотехнологий, в частности к генератору для получения наночастиц в импульсно-периодическом разряде. Генератор содержит разрядную камеру (4) с каналом входа газа (11) и каналом выхода газа (12) с аэрозольными частицами. Два изолированных электрода (1), (2) из...
Тип: Изобретение
Номер охранного документа: 0002693734
Дата охранного документа: 04.07.2019
06.07.2019
№219.017.a8bc

Плоский индуктор для магнитно-импульсного прессования изделий из наноразмерных порошков

Изобретение относится к порошковой металлургии, в частности к устройствам для магнитно-импульсного прессования изделий из наноразмерных порошковых материалов. Плоский индуктор состоит из спирали индуктора, выполненной в виде архимедовой спирали, кожуха, межвитковой изоляции, токовводов,...
Тип: Изобретение
Номер охранного документа: 0002417861
Дата охранного документа: 10.05.2011
+ добавить свой РИД