×
20.11.2013
216.012.81aa

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ИЗ ВЫСОКОУГЛЕРОДИСТОЙ СТАЛИ ПРОВОЛОКИ С НАНОСТРУКТУРОЙ

Вид РИД

Изобретение

Аннотация: Изобретение предназначено для снижения себестоимости арматурной высокопрочной проволоки. Способ включает деформацию заготовки путем приложения тянущей силы с одновременным приложением дополнительной деформации сдвига вращением. Снижение затрат на производство проволоки с повышенными физико-механическими свойствами посредством повышения величины накопленной деформации обеспечивается за счет того, что величину деформации сдвига устанавливают регламентированным изменением величины угла подъема винтовой линии вращения, причем величину угла подъема винтовой линии вращения за один проход устанавливают в пределах 2-10° при суммарном угле подъема не более 50°. 1 табл.
Основные результаты: Способ получения проволоки из высокоуглеродистой стали с наноструктурой, включающий деформацию заготовки путем приложения тянущего усилия с одновременным приложением дополнительной деформации сдвига вращением, отличающийся тем, что величину деформации сдвига вращением устанавливают посредством изменения величины угла подъема винтовой линии вращения, величину которого определяют по формуле: где γ - величина угла подъема винтовой линии вращения;S - расстояние между пластинами цементита в стали заготовки;d - диаметр заготовки;S - расстояние между пластинами цементита в стали готовой проволоки;d - диаметр готовой проволоки, причем величину угла подъема винтовой линии вращения за один проход устанавливают в пределах 2-10° при суммарном угле подъема не более 50°.

Изобретение относится к обработке металлов давлением и предназначено для изготовления преимущественно арматурной высокопрочной проволоки 9 группы (диаметров более 8,0 мм).

Известно, что высокими конструкционными, функциональными и технологичными свойствами обладают металлы с наноструктурой (НС), размером зерен менее 100 нм. (Валиев Р.З., Александров И.В. Объемные наноструктурные материалы: получение, структура и свойства. - М.: ИКЦ: «Академкнига», 2007. -398 с.).

Известно, что изготовление проволоки из высокоуглеродистой стали, волочением в монолитной волоке производят из катанки, имеющей мелкопластинчатую феррито-цементитного структуру (сорбит). В ходе процесса расстояние между пластинами цементита (межпластинчатое расстояние), характеризующее размер зерна, уменьшается непрерывно при увеличении накопленной степени деформации и определяется соотношением:

где S0 - межпластинчатое расстояние при начальном диаметре проволоки d0;

S - межпластинчатое расстояние на конечном диаметре проволоки d;

ε - накопленная степень деформации.

С учетом квазимонотонного характера течения металла при волочении в монолитной волоке, это соотношение выражается в следующем виде

т.е. при волочении в монолитной волоке межпластинчатое расстояние пропорционально отношению диаметров проволоки до и после волочения.

При волочении в монолитной волоке деформация пластин цементита по сравнению с ферритом незначительна и пластинчатая структура сохраняется после обработки. (Битков В.В. Технология и машины для производства проволоки. Екатеринбург. УрО РАН, 2004. - 343 с.).

Однако для получения готовой проволоки с наноструктурой из сорбитизированной катанки путем постепенного изменения соотношений диаметров проволоки до и после волочения, необходимо обеспечить получение очень высоких степеней деформации.

Так, например, для получения из катанки с размером зерна 150 нм проволоки диаметром 10,00 мм с размером зерна 60 нм, необходимо обеспечить накопленную степень деформации ε=1,8. Для этого необходима катанка диаметром 25,00 мм.

Переработка такой катанки связана с большими затратами, т.к. для ее переработки необходимы значительные усилия волочения. При этом, в процессе волочения из-за неравномерности распределения деформации по сечению проволоки возможно появление трещин в центре и на поверхности проволоки, что снижает ее качество и вызывает повышенную обрывность. Кроме того, для реализации данного процесса необходимо многократное дорогостоящее волочильное оборудование большой мощности.

Для снижения усилия волочения обычно используют прием волочения через вращающиеся волоки. Так, например, известен способ волочения заготовок круглого поперечного сечения путем протягивания заготовки через ряд расположенных последовательно волок с одновременным вращением одной или нескольких волок. При данном известном способе совмещают операции тепловой и деформационной обработки. (Пат. РФ №2252091, МПК В21С 1/00).

Однако задачей данного известного способа является снижение усилия волочения за счет увеличения пластичности заготовки в нагретом состоянии и снижение за счет этого затрат на производство.

Недостатком данного способа является то, что он не позволяет увеличить степень накопленной деформации за один цикл обработки и является неэффективным при получении ультрамелкозернистых (наноструктурных) материалов, поэтому известный способ не может обеспечить получение поволоки диаметром 10,00 мм с размером зерна 60 нм из высокоуглеродистой стали волочением в монолитной волоке из катанки, имеющей мелкопластинчатую феррито-цементитного структуру (сорбит).

Известен способ получения ультрамелкозернистых заготовок в пересекающихся каналах, целью которого является упрочнение металлов в процессе обработки. Способ включает деформацию заготовки из пластического материала в вертикальном и горизонтальных каналах с перемещением заготовки в последнем с подпором. При этом изменение сопротивления деформированию пластичного материала осуществляют также нагреванием и охлаждением (См. патент РФ №2277991, МПК В21 J 5/00).

Известный способ из-за технических сложностей не может быть использован для получения длинномерных наноструктурных материалов, например, проволоки диаметром 10,0 мм с размером зерна 60 нм. из высокоуглеродистой стали волочением в монолитной волоке из катанки, имеющей мелкопластинчатую феррито-цементитную структуру (сорбит).

Наиболее близким способом к заявленному изобретению является способ волочения ультрамелкозернистых полуфабрикатов волочением со сдвигом в двух конических волоках с вращением одной из них. (Патент РФ №2347633, МПК В21С 1/00).

В соответствии с этим способом для получения требуемой структуры осуществляют волочение в двух последовательно расположенных монолитных волоках. В первой неподвижной волоке осуществляется деформация с изменением диаметра проволоки, а во вращающейся второй волоке обеспечивается дополнительная деформация сдвига. При этом накопленная величина деформации за один цикл обработки в двух волоках достигает 1,5, что обеспечивает измельчение структуры.

Однако данный способ неприемлем для получения проволоки с пластинчатой феррито-цементитной структурой, так как из-за большой сдвиговой деформации происходит разрушение цементитных пластин, что вызывает охрупчивание проволоки и снижение ее физико-механических свойств.

Кроме того, во вращающейся волоке со смещенным конусом наблюдается высокая дополнительная неравномерность деформации, в связи с чем появляется вероятность среза проволоки в месте стыка волок и растет усилие волочения.

При этом технологическая схема для осуществления способа по прототипу сложна. Все это делает предложенный процесс малотехнологичным и сложным при промышленном производстве проволоки.

Задачей изобретения является повышение физико-механических свойств проволоки путем получения наноструктурного состояния, при одновременном снижении затрат на ее производство.

Поставленная задача достигается тем, что при получении из высокоуглеродистой стали проволоки с наноструктурой путем деформации заготовки приложением тянущей силы с одновременным приложением дополнительной деформации сдвига вращением, величину деформации сдвига устанавливают изменением величины угла подъема винтовой линии вращения, которую определяют по формуле:

где γ - величина угла подъема винтовой линии вращения;

S0 - межпластинчатое расстояние в заготовке;

d0 - диаметр заготовки;

S - межпластинчатое расстояние в готовой проволоке после обработки;

d - диаметр готовой проволоки после обработки,

причем величину угла подъема винтовой линии вращения за один проход устанавливают в пределах 2-10° при суммарном угле подъема не более 50.

Предлагаемый способ волочения проволоки путем деформации с приложением тянущей силы в сочетании с одновременным приложением деформации сдвигом позволяет получить проволоку с наноструктурой. Выбранные пределы величины угла подъема винтовой линии вращения обеспечивают необходимую величину накопленной деформации и соответственно получение в проволоке наноструктурного состояния, при одновременном снижении затрат на ее производство.

Пример конкретного выполнения способа.

По заказу ОАО «ММК-МЕТИЗ» был проведен сравнительный анализ заявляемого способа и способа получения проволоки с применением монолитных волок.

Заготовку из катанки, имеющей сорбитную структуру с размером зерна 180 нм., обрабатывали по маршруту:

16,00→14,25→12,85→11,73→10,80→10.00.

В процессе технологии была получена готовая проволока с размером зерна 112 нм. При этом суммарное усилие волочения составило 3550 Н, а накопленная степень деформации 0,94.

По этому же маршруту при волочении проволоки из катанки, имеющей сорбитную структуру с размером зерна 180 нм, в роликовых волоках с применением предлагаемого способа, при среднем угле подъема винтовой линии вращения за один проход 9 градусов, была получена проволока с размером зерна 80 нм. При этом цементитные пластины не разрушились и приобрели форму вытянутой спирали. Суммарное усилие волочения составило 1400 Н, а степень накопленной деформации 3,1.

При волочении проволоки по этому же маршруту известным способом в монолитной волоке из катанки с межпластинчатым расстоянием 100 нм, была получена проволока с межпластинчатым расстоянием 62 нм, усилие волочения составило 3550 Н, а при волочении с применением предлагаемого способа при угле подъема винтовой линии вращения за один проход 9 градусов была получена проволока с межпластинчатым расстоянием 45 нм, при этом суммарное усилие волочения составило 1400 Н, а степень накопленной деформации 3,1.

При волочении с углом подъема винтовой линии вращения за один проход 10 градусов, из катанки диаметром 15,00 мм с межпластинчатым расстоянием 180 нм за четыре прохода была получена проволока диаметром 10,00 мм с межпластинчатым расстоянием 80 нм.

Результаты испытаний приведены в таблице.

Значение угла у S межпластинчатое расстояние в готовой проволоке, нм Суммарно е усилие волочения за передел, Н ε - накопленная степень деформации. Примечание
за проход Запередел (суммарное) вытяжки кручения общая
1 5 113,00 1400 0,94 1,11 2,05 Крупное зерно
2 10 92,7 1400 0,94 1,29 2,23 Нанозерно, пластинчатый цементит
4 20 76,6 1400 0,94 1,67 2,61 Нанозерно, пластинчатый цементит
8 40 48,9 1400 0,94 2,57 3,51 Нанозерно, пластинчатый цементит
10 50 37,2 1400 0,94 3,11 4,05 Нанозерно, пластинчатый цементит
11 55 Не определяется 1400 0,94 3,42 4,36 Пластины цементита разрушены

Из приведенных данных таблицы видно, что оптимальное значение угла подъема винтовой линии вращения за проход для получения наноструктурного состояния проволоки и исключения разрушения пластин цементита находится в пределах 2-10° при суммарном его значении не более 50, энергозатраты на получение проволоки предлагаемым способом снижены по сравнению с процессом волочения в монолитной волоке примерно в 2,5 раза.

Способ получения проволоки из высокоуглеродистой стали с наноструктурой, включающий деформацию заготовки путем приложения тянущего усилия с одновременным приложением дополнительной деформации сдвига вращением, отличающийся тем, что величину деформации сдвига вращением устанавливают посредством изменения величины угла подъема винтовой линии вращения, величину которого определяют по формуле: где γ - величина угла подъема винтовой линии вращения;S - расстояние между пластинами цементита в стали заготовки;d - диаметр заготовки;S - расстояние между пластинами цементита в стали готовой проволоки;d - диаметр готовой проволоки, причем величину угла подъема винтовой линии вращения за один проход устанавливают в пределах 2-10° при суммарном угле подъема не более 50°.
СПОСОБ ПОЛУЧЕНИЯ ИЗ ВЫСОКОУГЛЕРОДИСТОЙ СТАЛИ ПРОВОЛОКИ С НАНОСТРУКТУРОЙ
Источник поступления информации: Роспатент

Showing 21-30 of 30 items.
10.05.2018
№218.016.43c3

Способ изготовления круглой проволоки из углеродистой стали волочением

Изобретение относится к обработке металлов давлением и может быть использовано для изготовления проволоки. Способ включает последовательное протягивание круглой деформируемой заготовки через неприводную роликовую волоку, в которой формируется промежуточный профиль, имеющий форму невыполненного...
Тип: Изобретение
Номер охранного документа: 0002649610
Дата охранного документа: 04.04.2018
09.08.2018
№218.016.7a11

Способ подготовки поверхности заготовки из высокоуглеродистых марок стали перед сухим волочением

Изобретение относится к области металлургии и может быть использовано в метизном производстве. Способ включает подготовку поверхности заготовки перед сухим волочением, включающим травление заготовки в растворе соляной кислоты, промывку водой, нанесение подсмазочного покрытия в растворе буры...
Тип: Изобретение
Номер охранного документа: 0002663027
Дата охранного документа: 01.08.2018
20.02.2019
№219.016.c0a9

Способ формирования головок гвоздей и инструмент для окончательного оформления головок

Изобретения относятся к обработке металлов давлением и могут быть использованы при изготовлении гвоздей. Проволоку зажимают в полуматрицах и деформируют с получением головки с гладкой торцевой поверхностью. Затем производят окончательное оформление головки чистовым пуансоном. При этом на...
Тип: Изобретение
Номер охранного документа: 0002307720
Дата охранного документа: 10.10.2007
20.02.2019
№219.016.c388

Арматурный канат и способ его изготовления

Изобретение относится к канатному производству и может быть использовано при производстве закладной арматуры, предназначенной для армирования изделий из бетона. Задача, решаемая изобретением, заключается в создании самовыпрямляющегося арматурного элемента большой длины с соотношением прочности...
Тип: Изобретение
Номер охранного документа: 0002431024
Дата охранного документа: 10.10.2011
29.03.2019
№219.016.f317

Способ изготовления стержневых изделий с головкой и коническим участком на стержне

Изобретение относится к обработке металлов давлением и может быть использовано при изготовлении стержневых изделий типа штепселей для электротяговых соединений. Производят предварительное и окончательное формирование на исходной заготовке головки, формируют конический участок стержня и...
Тип: Изобретение
Номер охранного документа: 0002336143
Дата охранного документа: 20.10.2008
19.04.2019
№219.017.2dd5

Дюбель

Изобретение относится к области машиностроения и строительства, а именно к конструкции крепежных изделий. Дюбель содержит стержень с продольными рифлениями, головкой и острием и изготовлен из стали с содержанием углерода 0,57÷0,79 мас.%, марганца 0,3÷0,95 мас.%, хрома до 0,35 мас.%, кремния...
Тип: Изобретение
Номер охранного документа: 0002342571
Дата охранного документа: 27.12.2008
18.05.2019
№219.017.579d

Устройство для пластического обжатия канатов

Изобретение относится к канатному производству и может быть использовано при производстве пластически обжатых канатов. Устройство содержит роликовую клеть для обжатия канатов, которая располагается между ротором и вытяжным механизмом канатовьющей машины с возможностью вращения соосно ротору...
Тип: Изобретение
Номер охранного документа: 0002371533
Дата охранного документа: 27.10.2009
02.10.2019
№219.017.d04b

Устройство постоянного натяжения проволок при свивке стальных канатов

Изобретение относится к канатному производству и может быть использовано при производстве арматурных и других стальных канатов. Устройство постоянного натяжения проволок при свивке стальных канатов содержит неподвижно связанную с ротором канатовьющей машины раму и установленные на раме...
Тип: Изобретение
Номер охранного документа: 0002700957
Дата охранного документа: 24.09.2019
13.11.2019
№219.017.e127

Способ изготовления арматурного каната

Изобретение может быть использовано при производстве арматурных канатов, предназначенных для армирования предварительно напряженных изделий из бетона и других пластичных материалов. Техническая задача - повышение сцепления арматурного каната при одновременном снижении потерь от релаксации...
Тип: Изобретение
Номер охранного документа: 0002705668
Дата охранного документа: 11.11.2019
30.05.2023
№223.018.73a7

Способ производства калиброванной стали для холодной высадки

Изобретение относится к области металлургии, а именно к изготовлению горячекатаной стали для холодной высадки. Выплавляют сталь, имеющую химический состав, содержащий в мас.%: углерод 0,37-0,44, марганец 0,50-0,80, кремний 0,17-0,37, сера не более 0,020, фосфор не более 0,020, хром 0,40-0,90,...
Тип: Изобретение
Номер охранного документа: 0002763981
Дата охранного документа: 13.01.2022
Showing 31-40 of 47 items.
20.02.2019
№219.016.c388

Арматурный канат и способ его изготовления

Изобретение относится к канатному производству и может быть использовано при производстве закладной арматуры, предназначенной для армирования изделий из бетона. Задача, решаемая изобретением, заключается в создании самовыпрямляющегося арматурного элемента большой длины с соотношением прочности...
Тип: Изобретение
Номер охранного документа: 0002431024
Дата охранного документа: 10.10.2011
23.03.2019
№219.016.ecbb

Способ получения длинномерных заготовок круглого поперечного сечения с ультрамелкозернистой структурой

Изобретение относится к области обработки металлов давлением. Способ включает размотку заготовки, обработку заготовки и смотку заготовки. Обработку заготовки осуществляют путем протяжки через ряд последовательно расположенных деформирующих инструментов. В качестве деформирующих инструментов...
Тип: Изобретение
Номер охранного документа: 0002446027
Дата охранного документа: 27.03.2012
11.04.2019
№219.017.0b41

Антенный адаптер - диполь круговой поляризации

Изобретение относится к технике всенаправленных в горизонтальной плоскости антенн и может быть использовано в сетях беспроводных радиосистем, развернутых для работы с мобильными носителями, непредсказуемо изменяющими положение, используемыми в сильно пересеченных препятствиями средах и в...
Тип: Изобретение
Номер охранного документа: 0002684433
Дата охранного документа: 09.04.2019
18.05.2019
№219.017.579d

Устройство для пластического обжатия канатов

Изобретение относится к канатному производству и может быть использовано при производстве пластически обжатых канатов. Устройство содержит роликовую клеть для обжатия канатов, которая располагается между ротором и вытяжным механизмом канатовьющей машины с возможностью вращения соосно ротору...
Тип: Изобретение
Номер охранного документа: 0002371533
Дата охранного документа: 27.10.2009
04.06.2019
№219.017.731d

Симметричный кабель для передачи данных

Заявляемое изобретение относится к кабельной технике, более конкретно, к симметричным экранированным кабелям круглой формы, совместимым с цилиндрическими высокочастотными соединителями. Симметричный кабель для передачи данных содержит сердечник, представляющий собой, по меньшей мере, одну пару...
Тип: Изобретение
Номер охранного документа: 0002690160
Дата охранного документа: 31.05.2019
09.06.2019
№219.017.7d17

Радиационно-сшиваемая композиция на основе фторуглеродного полимера

Изобретение относится к изоляционным материалам для кабелей, а более точно к изоляционным материалам в кабельной промышленности, представляющим собой радиационно-сшиваемые композиции на основе водородосодержащих фторполимеров с полиаллиловыми эфирами поликарбоновых кислот, выполняющих роль...
Тип: Изобретение
Номер охранного документа: 0002414762
Дата охранного документа: 20.03.2011
02.10.2019
№219.017.d04b

Устройство постоянного натяжения проволок при свивке стальных канатов

Изобретение относится к канатному производству и может быть использовано при производстве арматурных и других стальных канатов. Устройство постоянного натяжения проволок при свивке стальных канатов содержит неподвижно связанную с ротором канатовьющей машины раму и установленные на раме...
Тип: Изобретение
Номер охранного документа: 0002700957
Дата охранного документа: 24.09.2019
13.11.2019
№219.017.e127

Способ изготовления арматурного каната

Изобретение может быть использовано при производстве арматурных канатов, предназначенных для армирования предварительно напряженных изделий из бетона и других пластичных материалов. Техническая задача - повышение сцепления арматурного каната при одновременном снижении потерь от релаксации...
Тип: Изобретение
Номер охранного документа: 0002705668
Дата охранного документа: 11.11.2019
07.06.2020
№220.018.254d

Способ производства фасонных профилей высокой точности

Изобретение относится к области обработки металлов давлением и может быть использовано для изготовления металлических фасонных профилей. Производство изделий с повышенными прочностными свойствами обеспечивается за счет того, что осуществляют холодную прокатку круглой заготовки в многовалковом...
Тип: Изобретение
Номер охранного документа: 0002722847
Дата охранного документа: 04.06.2020
12.07.2020
№220.018.3224

Способ получения калиброванных шестигранных профилей из нержавеющих сталей

Изобретение относится к обработке металлов давлением и может быть использовано для изготовления шестигранных профилей из нержавеющих сталей. Способ включает деформацию круглой заготовки в двух последовательно расположенных трехвалковых калибрах, образованных гладкими валками, и чистовое...
Тип: Изобретение
Номер охранного документа: 0002726231
Дата охранного документа: 10.07.2020
+ добавить свой РИД