×
10.11.2013
216.012.7ff9

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ РАДИОНУКЛИДА ВИСМУТ-212

Вид РИД

Изобретение

Аннотация: Изобретение относится к технологии получения радионуклидов для ядерной медицины, в частности для терапии онкологических заболеваний. В заявленном способе в раствор, содержащий радионуклид тория и его дочерние продукты распада, добавляют ионообменную смолу, после чего раствор декантируют, а ионообменную смолу высушивают и помещают в реактор, через который пропускают газ, удаляя при этом из реактора один из дочерних продуктов распада тория-228 - газообразный радионуклид радон-220, и направляют газ через аэрозольный фильтр в сорбционное устройство, где в результате радиоактивного распада накапливают радионуклид свинец-212, который после выхода активности свинца-212 на насыщение десорбируют со стенок сорбционного устройства кислым раствором и полученный раствор направляют на колонку с ионообменной смолой, с которой периодически смывают дочерний продукт распада радионуклид висмут-212. Исходный раствор может быть смесью изотопов тория торий-228, торий-229, торий-232. В качестве газа для продувки системы используют воздух, и/или азот, и/или гелий, и/или аргон, и/или криптон, и/или ксенон. В качестве сорбционного устройства используют сосуд или сосуды, объем которых обеспечивает время пребывания радона-220, достаточное для его полного распада в радионуклид свинец-212. Техническим результатом является уменьшение трудоемкости процесса получения целевого радионуклида висмут-212. 5 з.п. ф-лы.

Изобретение относится к технологии получения радионуклидов для ядерной медицины, в частности, для терапии онкологических заболеваний.

При терапии онкологических заболеваний все более широкое применение находят α-излучающие радионуклиды. Это связано с большой начальной энергией (5-8 МэВ) и коротким пробегом (десятки микрон) α-частиц в биологических тканях, и следовательно высоким уровнем выделения энергии в области локализации распадающихся нуклидов. Носители α-излучающих радионуклидов (моноклональные антитела, пептиды) с высокой специфичностью позволяют доставлять их в опухолевый узел или метастатический очаг. Благодаря малым пробегам α-частиц возможно селективное воздействие излучения на патологические объекты с минимальной лучевой нагрузкой на окружающие здоровые ткани.

Настоящее изобретение может быть использовано для создания генераторов α-излучателей торий-228/свинец-212 (228Th/212Pb) и свинец-212/висмут-212 (212Pb/212Bi), конечные элементы цепочки распадов которых - радионуклиды свинец-212 и висмут-212, могут использоваться в составе медицинских радиофармпрепаратов.

Одним из перспективных направлений в ядерной медицине является радиоиммунотерапия с использованием α-излучателей. Применение короткоживущих α-излучающих радионуклидов для терапии онкологических заболеваний представляет интерес с радиобиологической точки зрения поскольку является наиболее эффективным способом летального поражения опухолевых клеток благодаря короткому пробегу α-частиц в ткани и высокой ионизирующей способности.

Радионуклид висмут-212, образующийся при распаде изотопа уран-232 считается одним из перспективных для использования в терапии онкологических заболеваний.

Период полураспада висмута-212 составляет 60,6 мин, средняя энергия α-частиц 7,8 МэВ. При распаде висмута-212 образуются радионуклиды таллий-208 и полоний-212, которые ведут к стабильному нуклиду свинец-208. Пробег α-частиц в биологической ткани менее 100 мкм, что соответствует всего лишь нескольким диаметрам раковой клетки, а линейная передача энергии (ЛПЭ) достигает ~80 кэВ/мкм.

Начальный элемент цепочки уран-232 - искусственный изотоп урана, образование которого происходит в ядерном реакторе при облучении природного тория (232Th, T1/2=1,5·1010 лет) в результате следующих реакций взаимодействия нейтронов и гамма-квантов с нуклидом торий-232:

232Th(n,γ)233Th→233Ра(γ,n)232Ра→232U

232Th(n,2n)231Th→231Pa(n,γ)232Pa→232U

232Th(γ,n)231Th→231Pa(n,γ)232Pa→232U.

В зависимости от условий облучения тория в реакторе равновесная концентрация урана-232 лежит в пределах 1000-6000 ppm [В.М. Мурогов, М.Ф. Троянов, А.Н. Шмелев «Использование тория в ядерных реакторах». Энергоатомиздат. М., 1983].

При облучении тория в реакторе одновременно с ураном-232 происходит образование урана-233 по следующей реакции:

232Th(n,γ)→233Th→233Ра→233U.

В результате α-распада урана-233 образуется торий-229, который в свою очередь после ряда распадов переходит в радионуклид висмут-213.

Висмут-212 является типичным генераторным радионуклидом и находит применение в радиоиммунотерапии, главным образом, в виде меченных им моноклональных антител и других молекулярных носителей. Сегодня для получения висмута-212 используют две генераторные системы - 228Th/224Ra и 224Ra/212Bi. В первой из них, радий-224, отделяется от тория-228 за счет анионообменного разделения этих радионуклидов из раствора азотной кислоты. Во втором генераторе с использованием катионообменных смол и минеральных кислот из радия-224 выделяют висмут-212 [R.W. Atcher, A.M. Friedman, J.J. Hines «An improved generator for the production of 212Pb and 212Bi from 224Ra». International Journal of Radiation Applications and Instrumentation. Part A. Applied Radiation and Isotopes, Volume 39, Issue 4, 1988, Pages 283-286].

За прототип выбран способ получения висмута-212, описанный в патенте №2430440 «Способ получения радионуклида висмут-212». Авторы: Чувилин Д.Ю., Загрядский В.А., Прошин М.А., Панченко В.Я.

В качестве исходного сырья для получения радионуклида висмут-212 авторы использовали раствор, содержащий смесь радионуклидов торий-228, торий-229 и дочерних продуктов распада этих радионуклидов. Для получения висмута-212 выполняли следующие процедуры:

- раствор, содержащий смесь тория-228, тория-229 и дочерних продуктов распада этих радионуклидов, помещали в колбу-барботер;

- через раствор, находящийся в барботере пропускали газ (например, воздух), пузырьки которого захватывают газообразный продукт распада - радон-220 и уносят его через аэрозольный фильтр в сорбционное устройство;

- в сорбционном устройстве (например, последовательно соединенные медицинские флаконы) радон-220 распадался в свинец-212 и оседал на внутренних стенках;

- после сорбционного устройства поток газа возвращали в барботер;

- свинец-212 смывали кислотным раствором с внутренних стенок сорбционного устройства и направляли на ионообменную колонку с катионитом Дауэкс-50;

- накопившийся в колонке висмут-212 элюировали раствором соляной кислоты и использовали по назначению.

Однако этот способ получения висмута-212 имеет ряд недостатков:

- при длительной эксплуатации барботера уменьшается объем раствора, содержащего смесь тория-228, тория-229 и дочерних продуктов распада этих радионуклидов, в результате чего требуется периодическое пополнение барботера исходным раствором;

- наличие кислых паров для получения химически чистого свинца-212 требует использования специальных материалов сорбционного устройства, стойких в агрессивных средах.

- образование водяных аэрозолей при барботировании раствора требует установки фильтров для их улавливания, которые необходимо периодически менять из-за ухудшения фильтрующих свойств.

РАСКРЫТИЕ ИЗОБРЕТЕНИЯ

Задачей изобретения является устранение указанных выше недостатков прототипа, что приводит к упрощению технологического процесса получения радионуклида висмут-212.

Для решения этой задачи предложен способ получения радионуклида висмут-212 из раствора, содержащего радионуклиды тория и дочерние продукты распада этих радионуклидов, включающий удаление одного из дочерних продуктов распада тория-228 - газообразного радионуклида радон-220, транспортировку газа через аэрозольный фильтр в сорбционное устройство, где в результате радиоактивного распада по цепочке 220Rn→216Po→212Pb накапливают радионуклид свинец-212, который периодически десорбируют и полученный раствор направляют на колонку с ионообменной смолой, с которой периодически смывают его дочерний продукт распада радионуклид висмут-212, при этом, предварительно в раствор, содержащий радионуклиды тория и дочерние продукты распада этих радионуклидов, добавляют ионообменную смолу, после чего раствор декантируют, а ионообменную смолу с сорбированными на ней изотопами тория высушивают и помещают в реактор, через который пропускают газ, удаляя при этом из реактора один из дочерних продуктов распада тория-228 - газообразный радионуклид радон-220.

Также, исходный раствор может содержать смесь радионуклидов торий-228, торий-229, торий-232 и дочерние продукты распада этих радионуклидов.

Кроме того, реактор продувают воздухом, и/или азотом, и/или гелием, и/или аргоном, и/или криптоном, и/или ксеноном.

Сорбцию радионуклида свинец-212 производят раствором кислоты или раствором смеси кислоты со спиртом, через которые продувают газ из реактора.

Поток газа после сорбционного устройства может быть возвращен в реактор.

Поток газа после сорбционного устройства может быть направлен в систему утилизации.

В предлагаемом способе получения радионуклида висмут-212 использовано наличие среди дочерних продуктов распада тория-228 газообразного радионуклида радон-220, который в результате распада по цепочке 220Rn→216Po→212Pb→212Bi приводит к образованию целевого радионуклида висмут-212. Период полураспада радона-220 составляет 55,6 сек, что обеспечивает возможность его удаления от места образования потоком газа (воздух, гелий, азот, аргон, криптон, ксенон) [Схемы распада радионуклидов. Энергия и интенсивность излучения. Публикация 38 МКРЗ. В двух частях. Часть вторая. Книга 2. М., Энергоатомиздат, 1987, стр.204-205].

Химические соединения радионуклида радон-220 не известны. Поэтому весь образовавшийся радон-220 окажется в сорбционном устройстве, кроме той части изотопов, которые распадутся за время транспортировки газа по коммуникациям.

После выделения висмут-212 используется по своему прямому назначению для приготовления медицинских препаратов, применяемых при терапии онкологических заболеваний.

Предлагаемый способ получения радионуклида висмут-212 обладает рядом преимуществ по сравнению с описанным прототипом:

- отказ от барботирования раствора, содержащего радионуклиды торий-228, торий-229 и дочерние продукты распада этих радионуклидов, исключает необходимость периодического пополнения барботера исходным раствором при его длительной эксплуатации, что упрощает технологический процесс получения целевого радионуклида висмут-212.

- отказ от использования раствора, содержащего радионуклиды торий-228, торий-229 и дочерние продукты распада этих радионуклидов, позволяет исключить из технологической цепочки фильтры, обеспечивающие удаление водяных аэрозолей, образующихся при барботировании раствора;

- использование сухой ионообменной смолы, удерживающей радионуклиды торий-228, торий-229 и дочерние продукты распада этих радионуклидов, снимает проблему коррозионной стойкости материалов сорбционного устройства и коммуникаций в агрессивных средах, поскольку в потоке газа, проходящем через реактор, отсутствуют пары кислоты.

ПРИМЕР ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ

В качестве исходного сырья для получения радионуклида висмут-212 используют раствор, содержащий смесь радионуклидов торий-228, торий-229, торий-232 и дочерних продуктов распада этих радионуклидов. Изотопный состав тория:

- Th-229 - 6,81%
- Th-230 ≅ 0,08%
- Th-228 - следы
- Th-232 - 93,11%.

Реализация предложенного способа получения висмута-212 начинается с удаления из исходного раствора изотопов тория путем добавления в раствор ионообменной смолы.

Для этого 20 мл раствора смеси радионуклидов торий-228, торий-229 и продуктов распада этих радионуклидов в 8М HNO3, смешивают с 5-6 мл анионита Дауэкс-1, используя свойство тория прочно связываться с функциональной группой анионита.

После выдержки в течение 1 часа практически весь торий сорбируется на смоле. Затем раствор декантируется. Влажную смолу высушивают и помещают в реактор, объемом 6-7 мл, в котором имеется два канала - вход и выход.

С помощью перистальтического насоса реактор продувают газом, например, воздухом и/или азотом и/или гелием и/или аргоном и/или криптоном и/или ксеноном (для воздуха расход составлял 60-150 мл/мин). Выделившийся при распаде тория-228 радон-220 потоком газа переносится через аэрозольный фильтр и поступает в сорбционное устройство (например, медицинские флаконы объемом по 20 мл), где распадется в свинец-212, который осаждается на стенки сорбционного устройства. Газ может быть возвращен в реактор (замкнутая система) или удален в систему утилизации (открытая система). В качестве сорбционного устройства можно использовать сосуд с раствором кислоты, или сосуд с раствором смеси кислоты со спиртом, через которые продувается газ из реактора.

Максимальная наработка свинца-212 занимает около 50 часов. Для эффективного сбора свинца-212 оптимизируют геометрические параметры накопителя - сводят к минимуму «паразитные» объемы и коммуникации, объем реактора минимизируют (отношение объема накопителя к объему реактора должно быть не менее 10). Расход газа подбирают из расчета его пребывания в накопители не менее 10 минут. Накопившийся свинец-212 смывают со стенок азотной кислоты объемом 5-7 мл и полученный раствор пропускают через колонку с катионитом Дауэкс-50. Ионы свинца-212 связываются с функциональной группой катионита. По прошествии 3-5 часов содержание висмута-212 в ионообменной колонке достигает насыщения, после чего его смывают разбавленной соляной кислотой.

По сравнению со способом, выбранным за прототип, предложенный способ получения висмута-212 позволяет, упростить технологический процесс, уменьшить его трудоемкость, снизить содержание примесных радионуклидов.

Источник поступления информации: Роспатент

Showing 111-120 of 323 items.
20.10.2015
№216.013.84d2

Способ управления энергетической установкой

Изобретение относится к области управления энергетическими установками, включая стационарные и транспортные ядерные энергетические установки, в том числе с жидко-металлическим теплоносителем ядерного реактора и закритическими параметрами пара. Давление пара регулируют управлением положения...
Тип: Изобретение
Номер охранного документа: 0002565605
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.8579

Способ управления ядерной энергетической установкой

Изобретение относится к области управления энергетическими установками (ЯЭУ), включая стационарные и транспортные ядерные энергетические установки, в том числе с жидкометаллическим теплоносителем ядерного реактора и закритическими параметрами пара. Технический результат - повышение точности...
Тип: Изобретение
Номер охранного документа: 0002565772
Дата охранного документа: 20.10.2015
20.11.2015
№216.013.8fd1

Подводная ядерная термоэлектрическая установка

Изобретение относится к ядерным термоэлектрическим установкам. Для достижения этого результата предложена подводная ядерная термоэлектрическая установка, содержащая расположенные в газоплотной защитной оболочке легководный ядерный реактор и блоки термоэлектрические (БТЭ), равномерно...
Тип: Изобретение
Номер охранного документа: 0002568433
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.8ffe

Способ разложения карбонатов

Изобретение может быть использовано в химической, горнодобывающей промышленности. Способ разложения карбонатов включает измельчение исходного сырья, разложение карбонатов за счет подвода внешней энергии, отвод конверсионного газа, охлаждение целевого продукта. В качестве карбонатов используют...
Тип: Изобретение
Номер охранного документа: 0002568478
Дата охранного документа: 20.11.2015
20.12.2015
№216.013.9a64

Реактор конверсии метана

Изобретение относится к установкам получения водорода, водород-метановой смеси, синтез-газа, содержащего в основном Н и СО, для производства водорода, спиртов, аммиака, диметилового эфира, этилена, для процессов Фишера-Тропша и может быть использовано в химической промышленности для переработки...
Тип: Изобретение
Номер охранного документа: 0002571149
Дата охранного документа: 20.12.2015
20.01.2016
№216.013.a3ee

Термоэлектрическая батарея

Изобретение относится к области термоэлектрического приборостроения и может быть использовано при изготовлении термоэлектрических устройств, основанных на эффекте Пельтье или Зеебека, прежде всего термоэлектрических генераторов электрической энергии, а также холодильных термоэлектрических...
Тип: Изобретение
Номер охранного документа: 0002573608
Дата охранного документа: 20.01.2016
27.02.2016
№216.014.c166

Способ улучшения каталитических свойств пенициллинацилазы из escherichia coli и применение мутантной пенициллинацилазы

Изобретение относится к биотехнологии, в частности, к способу улучшения каталитических свойств пенициллинацилазы. Заявленный способ включает изменение структуры пенициллинацилазы из Escherichia coli путем замены аминокислотного остатка 145 альфа-цепи на лейцин или аминокислотного остатка 71...
Тип: Изобретение
Номер охранного документа: 0002576002
Дата охранного документа: 27.02.2016
10.02.2016
№216.014.c33e

Способ изготовления защитного диэлектрического слоя

Изобретение относится к способам получения тонкопленочных материалов, в частности тонких пленок на основе оксида европия(III), и может быть использовано для защиты функционального слоя EuO. Способ изготовления защитного диэлектрического слоя EuO для полупроводниковой пленки, полученной на...
Тип: Изобретение
Номер охранного документа: 0002574554
Дата охранного документа: 10.02.2016
20.03.2016
№216.014.c8df

Способ изготовления наноструктурированной мишени для производства радиоизотопа молибдена-99

Изобретение относится к реакторной технологии получения радиоизотопа молибден-99 (Мо), являющегося основой для создания радиоизотопных генераторов технеция-99m (Tc). В заявленном способе производство радиоизотопа молибден-99 по реакции Мо(n,γ)Мо, осуществляемой в потоке тепловых нейтронов...
Тип: Изобретение
Номер охранного документа: 0002578039
Дата охранного документа: 20.03.2016
27.03.2016
№216.014.c8fb

Микротвэл ядерного реактора

Изобретение относится к области ядерной энергетики, в частности к микросферическому топливу с керамическими защитными покрытиями, и может быть использовано в ядерных реакторах, применяемых как для транспорта, так и в стационарных энергоустановках, в частности в сверхвысокотемпературных...
Тип: Изобретение
Номер охранного документа: 0002578680
Дата охранного документа: 27.03.2016
Showing 111-120 of 193 items.
20.07.2015
№216.013.64f7

Способ выращивания эпитаксиальных пленок монооксида европия на кремнии

Изобретение относится к способам получения эпитаксиальных тонкопленочных материалов, в частности тонких пленок на основе монооксида европия, и может быть использовано для создания устройств спинтроники, например спиновых транзисторов и инжекторов спин-поляризованного тока. Способ выращивания...
Тип: Изобретение
Номер охранного документа: 0002557394
Дата охранного документа: 20.07.2015
27.07.2015
№216.013.67c4

Комбинированный сверхпроводник

Изобретение относится к области прикладной сверхпроводимости и может быть использовано при изготовлении сверхпроводящих обмоток, сверхпроводящих накопителей энергии, дипольных и квадрупольных магнитов для ускорителей заряженных частиц. Комбинированный сверхпроводник содержит провода 1,...
Тип: Изобретение
Номер охранного документа: 0002558117
Дата охранного документа: 27.07.2015
10.08.2015
№216.013.69df

Тепловыделяющая сборка стержневых твэлов (варианты) и способ ее работы

Изобретение относится к области атомной энергетики и может быть использовано в реакторах типа ВВЭР (PWR) и кипящих реакторах типа ВК (BWR). Предложена конструктивная схема ТВС со стержневыми твэлами, расположенными наклонно к вертикальной оси и образующими конусные и щелевые коллекторы для...
Тип: Изобретение
Номер охранного документа: 0002558656
Дата охранного документа: 10.08.2015
20.08.2015
№216.013.701c

Применение фрагмента днк транскрибируемой области рибосомного повтора для повышения устойчивости мезенхимных стволовых клеток к действию агрессивных факторов окружающей среды

Изобретение относится к области молекулярной биологии, молекулярной генетики и клеточной биологии, в частности к применению ДНК-конструкции для индуцирования в мезенхимных стволовых клетках выраженного адаптивного ответа. Указанная генетическая конструкция включает CpG- и GC-богатую вставку...
Тип: Изобретение
Номер охранного документа: 0002560270
Дата охранного документа: 20.08.2015
27.08.2015
№216.013.744a

Способ генерации энергии в анаэробной системе

Изобретение относится преимущественно к области энергетики, в частности анаэробной энергетики, и может быть использовано в воздухонезависимых энергоустановках (ЭУ) с тепловыми двигателями и электрохимическими генераторами. Способ генерации энергии в анаэробной системе включает реакцию водорода...
Тип: Изобретение
Номер охранного документа: 0002561345
Дата охранного документа: 27.08.2015
27.08.2015
№216.013.746b

Способ получения радионуклида никель-63

Изобретение относится к реакторной технологии получения радионуклидов и может быть использовано для производства радионуклида Ni, являющегося основой для создания миниатюрных автономных источников электрической энергии с длительным сроком службы, работающих на бета-вольтаическом эффекте. Способ...
Тип: Изобретение
Номер охранного документа: 0002561378
Дата охранного документа: 27.08.2015
10.10.2015
№216.013.829f

Способ анализа генетического полиморфизма для определения предрасположенности к шизофрении и алкоголизму

Изобретение относится к области генетики и молекулярной биологии и касается способа анализа генетического полиморфизма в полиморфных точках генов. Охарактеризованное изобретение включает генотипирование локусов, ответственных за предрасположенность к шизофрении и алкоголизму, с помощью...
Тип: Изобретение
Номер охранного документа: 0002565036
Дата охранного документа: 10.10.2015
20.10.2015
№216.013.84d2

Способ управления энергетической установкой

Изобретение относится к области управления энергетическими установками, включая стационарные и транспортные ядерные энергетические установки, в том числе с жидко-металлическим теплоносителем ядерного реактора и закритическими параметрами пара. Давление пара регулируют управлением положения...
Тип: Изобретение
Номер охранного документа: 0002565605
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.8579

Способ управления ядерной энергетической установкой

Изобретение относится к области управления энергетическими установками (ЯЭУ), включая стационарные и транспортные ядерные энергетические установки, в том числе с жидкометаллическим теплоносителем ядерного реактора и закритическими параметрами пара. Технический результат - повышение точности...
Тип: Изобретение
Номер охранного документа: 0002565772
Дата охранного документа: 20.10.2015
20.11.2015
№216.013.8fd1

Подводная ядерная термоэлектрическая установка

Изобретение относится к ядерным термоэлектрическим установкам. Для достижения этого результата предложена подводная ядерная термоэлектрическая установка, содержащая расположенные в газоплотной защитной оболочке легководный ядерный реактор и блоки термоэлектрические (БТЭ), равномерно...
Тип: Изобретение
Номер охранного документа: 0002568433
Дата охранного документа: 20.11.2015
+ добавить свой РИД