×
10.11.2013
216.012.7ea7

Результат интеллектуальной деятельности: СПОСОБ И СИСТЕМА СМАЗКИ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ

Вид РИД

Изобретение

№ охранного документа
0002498096
Дата охранного документа
10.11.2013
Аннотация: Изобретение относится к способу и к системе смазки, имеющей в своем составе по меньшей мере три различные камеры, каждая из которых заключает в себе по меньшей мере один подшипник качения. Способ состоит в создании избыточного давления в камерах путем вдувания в эти камеры расхода сжатого воздуха через уплотнительные прокладки герметизации, причем в двух так называемых главных камерах создается давление, превышающее давление в оставшейся так называемой вторичной камере, в смазке подшипника качения в главных камерах, в смазке подшипника качения во вторичной камере только путем впрыскивания масляного тумана, поступающего из по меньшей мере одной из главных камер, причем упомянутый масляный туман направляется в результате разности давлений между главными камерами и вторичной камерой, в извлечении оставшейся части смазочного масла, впрыскиваемого в главные камеры, для его направления к масляному резервуару и в направлении воздушно-масляной смеси, поступающей из вторичной камеры, к масляному сепаратору. Технический результат изобретения - повышение эффективности смазки подшипников без использования сложного оборудования. 3 н. и 4 з.п. ф-лы, 2 ил.

Предшествующий уровень техники

Предлагаемое изобретение относится в целом к области динамической смазки авиационного газотурбинного двигателя.

Авиационный газотурбинный двигатель содержит множество элементов, требующих смазки; при этом речь идет, в частности, о подшипниках качения, используемых для поддержания вращающихся валов, а также зубчатых зацеплений блока приведения в движение вспомогательного оборудования.

В частности, для уменьшения трения, механического износа и нагревания, возникающих вследствие высокой скорости вращения валов газотурбинного двигателя, подшипники качения, которые поддерживают эти валы, должны смазываться. Поскольку простой смазки, осуществляемой путем впрыскивания смазочного масла только в процессе фаз технического обслуживания газотурбинного двигателя, оказывается недостаточно, обычно используют так называемую динамическую смазку.

Динамическая смазка состоит в обеспечении непрерывной циркуляции масла в смазочном контуре. Расход смазочного масла, поступающего из резервуара, направляется, таким образом, при помощи насосов на движущиеся части подшипников, причем эти подшипники размещаются в камерах, закрытых при помощи уплотнительных прокладок герметизации. Для устранения любых утечек смазочного масла из упомянутых камер на остальные части газотурбинного двигателя через уплотнительные прокладки герметизации некоторый расход воздуха, отбираемый на одном из компрессоров газотурбинного двигателя, вдувается через эти уплотнительные прокладки. Таким образом, эти камеры оказываются под повышенным давлением по отношению к атмосферному давлению.

При этом основная часть воздуха, вводимого в камеры, удаляется за пределы газотурбинного двигателя, проходя через специальный контур, предназначенный для удаления масла из этого воздуха и для контроля давления внутри этих камер. В том, что касается смазочного масла, впрыскиваемого в камеры, то оно извлекается в донной части камеры при помощи насосов извлечения через другой специальный контур. Для того, чтобы обеспечить полное осушение камеры, небольшая часть воздуха также всасывается через эти насосы и извлеченная таким образом смесь воздуха со смазочным маслом должна быть сепарирована перед возвращением освобожденного от воздуха масла обратно в резервуар.

Такой способ смазки представляет целый ряд недостатков. В частности, смазочное масло должно направляться посредством множества устройств, таких как трубопроводы, жиклеры, центробежные ковшовые маслосборники, центростремительные ковшовые маслосборники, лунки, каналы и т.п. Удаление смазочного масла и воздуха, насыщенного капельками масла, требует также использования насосов извлечения и масляного сепаратора, которые утяжеляют конструкцию газотурбинного двигателя.

С этими недостатками можно мириться в том случае, когда тепловая мощность, выделяемая подшипниками качения газотурбинного двигателя, является достаточно высокой для того, чтобы оправдать использование такой системы смазки. Этот случай имеет место, в частности, для газотурбинных двигателей, в которых скорость вращения подшипников качения является достаточно высокой в режиме большой мощности (например, порядка от 6000 до 8000 оборотов в минуту для вала низкого давления и порядка от 14000 до 20000 оборотов в минуту для вала высокого давления в двухконтурном газотурбинном двигателе).

Зато в том случае, когда движущиеся элементы одного из подшипников качения газотурбинного двигателя вращаются на относительно небольшой скорости (например, порядка 1000 оборотов в минуту), мощность, порождаемая движущимися элементами этого подшипника, оказывается слишком малой для того, чтобы оправдать использование подобной системы смазки. В такой ситуации получается, что избыточный расход смазочного масла впрыскивается в камеру, заключающую в себе этот подшипник качения при малой скорости вращения, что обусловливает опасность утечек масла за пределы камеры, которая содержит это смазочное масло.

Цель и краткое изложение предлагаемого изобретения

Таким образом, основная техническая задача данного изобретения состоит в том, чтобы устранить упомянутые выше недостатки и предложить способ и систему смазки газотурбинного двигателя, имеющего в своем составе по меньшей мере три различные камеры, каждая из которых заключает в себе по меньшей мере один подшипник качения и которая позволяет обеспечить эффективную смазку подшипников качения без использования сложного оборудования.

В соответствии с предлагаемым изобретением эта цель достигается благодаря способу, состоящему:

- в создании избыточного давления в камерах при помощи вдувания в них расхода сжатого воздуха через уплотнительные прокладки герметизации, закрывающие упомянутые камеры, причем в двух из так называемых главных камер создается давление, превышающее давление в оставшейся так называемой вторичной камере;

- в смазке подшипника качения в главных камерах при помощи впрыскивания в эти камеры расхода смазочного масла, подаваемого из масляного резервуара газотурбинного двигателя;

- в смазке подшипника качения во вторичной камере только путем впрыскивания масляного тумана, поступающего из по меньшей мере одной из главных камер, причем упомянутый масляный туман направляется в результате разности давлений между главными камерами и вторичной камерой;

- в извлечении оставшейся части смазочного масла, впрыскиваемого в главные камеры, для его направления к масляному резервуару;

- в направлении воздушно-масляной смеси, поступающей из вторичной камеры, к масляному сепаратору с целью отделения воздуха от масла.

Здесь под выражением "масляный туман" следует понимать поток воздуха, насыщенный взвешенными капельками масла. В том случае, когда движущиеся части подшипников вторичной камеры имеют относительно небольшую скорость вращения по сравнению со скоростью вращения подшипников в главных камерах (например, порядка 1000 оборотов в минуту), использование упомянутого масляного тумана, поступающего из по меньшей мере одной из главных камер, оказывается полностью достаточным для обеспечения необходимой смазки этих подшипников качения. Это обстоятельство обеспечивает возможность упрощения и облегчения системы смазки (устранение масляного жиклера, насоса извлечения, трубопровода дегазации и масляного сепаратора).

При этом возможны различные варианты реализации такого способа.

В соответствии с первым способом реализации смазка подшипника качения вторичной камеры обеспечивается путем впрыскивания масляного тумана, поступающего из двух главных камер.

В соответствии со вторым способом реализации смазка подшипника качения вторичной камеры обеспечивается путем впрыскивания масляного тумана, поступающего только из одной из двух главных камер.

Объектом предлагаемого изобретения также является система смазки газотурбинного двигателя, имеющая в своем составе:

- по меньшей мере три различные камеры, каждая из которых заключает в себе по меньшей мере один подшипник качения и каждая из которых закрыта при помощи уплотнительных прокладок герметизации;

- средства, предназначенные для введения расхода сжатого воздуха в упомянутые камеры через уплотнительные прокладки герметизации для обеспечения избыточного давления в этих камерах, причем в двух так называемых главных камерах создается давление, превышающее давление в оставшейся так называемой вторичной камере;

- средства, предназначенные для впрыскивания на подшипники качения главных камер расхода смазочного масла, поступающего из масляного резервуара газотурбинного двигателя;

- канал впрыскивания, связывающий по меньшей мере одну из главных камер с вторичной камерой для того, чтобы впрыскивать на подшипник качения вторичной камеры масляный туман, поступающий из по меньшей мере одной главной камеры;

- средства, предназначенные для извлечения на нижнем выходе главных камер остатка смазочного масла, впрыскиваемого в эти камеры, и для направления этого смазочного масла к масляному резервуару;

- средства, предназначенные для направления смеси воздуха со смазочным маслом, поступающей из нижнего выхода вторичной камеры, к масляному сепаратору.

Целью предлагаемого изобретения также является газотурбинный двигатель, имеющий в своем составе систему смазки описанного выше типа.

Краткое описание приведенных в приложении фигур

Другие характеристики и преимущества предлагаемого изобретения будут лучше поняты из приведенного ниже описания со ссылкой на прилагаемые чертежи, иллюстрирующие не имеющие ограничительного характера примеры его реализации. На фигурах:

- фиг.1 представляет собой схематический вид системы смазки в соответствии с первым способом реализации предлагаемого изобретения;

- фиг.2 представляет собой схематический вид системы смазки в соответствии со вторым способом реализации предлагаемого изобретения.

Подробное описание способа реализации изобретения

Предлагаемое изобретение применяется к любому авиационному газотурбинному двигателю, имеющему в своем составе по меньшей мере три камеры, заключающие в себе подшипники качения. Говоря более конкретно, это изобретение применяется к газотурбинным двигателям с двухступенчатым вентилятором с противоположными направлениями вращения.

На фиг.1 весьма схематическим образом представлена система смазки, применяемая в газотурбинных двигателях с двухступенчатым вентилятором с противоположными направлениями вращения.

Такой газотурбинный двигатель, имеющий продольную ось Х-Х, содержит три различные кольцевые камеры, а именно: две так называемые главные камеры 10, 10', сформированные на входе газотурбинного двигателя, каждая из которых заключает в себе по меньшей мере один подшипник качения, Р1 и Р'1 соответственно, и одну так называемую вторичную камеру 12, сформированную на выходе двигателя и заключающую в себе по меньшей мере один подшипник Q1 качения. Для удобства восприятия на фиг.1 представлен только один подшипник качения в каждой камере. При этом, разумеется, каждая камера может содержать несколько таких подшипников.

Хорошо известным образом эти различные подшипники качения (которые могут представлять собой шариковые подшипники или роликовые подшипники) поддерживают во вращательном движении различные корпусы газотурбинного двигателя. На фиг.1 и 2 позицией 13 обозначены участки валов корпусов газотурбинного двигателя или участки кожуха, на которых закрепляются кольца подшипников качения.

В то же время, принимая во внимание режимы вращения валов газотурбинного двигателя, подшипники Q1 качения вторичной камеры 12 вращаются на относительно небольшой скорости (например, порядка от 1000 до 2000 оборотов в минуту) по сравнению с подшипниками Р1, Р'1 качения главных камер 10, 10' (вращающихся, например, на скорости порядка от 6000 до 20000 оборотов в минуту).

Главные камеры 10, 10' и вторичная камера 12 отличаются друг от друга и каждая из них закрыта герметичным образом на своих переднем и заднем концах при помощи кольцевых уплотнительных прокладок 14 герметизации. Эти уплотнительные прокладки герметизации представляют собой, например, уплотнительные прокладки лабиринтного типа, уплотнительные прокладки щеточного типа или уплотнительные прокладки с углеродным кольцом.

Для уменьшения трения, механического износа и нагревания, которые возникают, в частности, вследствие высокой скорости вращения валов газотурбинного двигателя, подшипники качения главных камер и вторичной камеры должны быть смазанными. Эта смазка обеспечивается при помощи способа и системы, подробно описаные в последующем изложении.

Подшипники Р1, Р'1 качения в главных камерах 10, 10' смазываются путем непрерывного впрыскивания смазочного масла между кольцами их движущихся элементов. Это впрыскивание реализуется посредством сопел 16 впрыскивания, открывающихся напротив этих колец. На фиг.1 это впрыскивание смазочного масла схематически представлено стрелками Fhuile.

Масло, используемое для смазки этих подшипников Р1, Р'1 качения, поступает из масляного резервуара 18 газотурбинного двигателя. Это масло отбирается из упомянутого резервуара 18 посредством питающего масляного насоса 20 и подается в масляный контур 22, связанный с каждым соплом 16 впрыскивания.

Расход сжатого воздуха также вводится в главные камеры 10, 10' и во вторичную камеру 12 через их соответствующие уплотнительные прокладки 14 герметизации. Этот расход воздуха, который поступает, например, в результате отбора воздуха от компрессора высокого давления газотурбинного двигателя, схематически представлен стрелками Fair на фиг.1. Этот воздух обеспечивает создание избыточного давления в этих камерах для того, чтобы исключить возможность выхода смазочного масла за пределы этих камер.

В то же время, в соответствии с предлагаемым изобретением в главных камерах 10, 10', создается более высокое давление, чем во вторичных камерах 12, то есть это означает, что давление внутри каждой из главных камер превышает давление внутри вторичной камеры. Это становится возможным в результате введения более значительного расхода сжатого воздуха в главные камеры, чем во вторичную камеру.

Что касается подшипника Q1 качения вторичной камеры 12, то он смазывается путем впрыскивания масляного тумана, поступающего из каждой из главных камер 10, 10'. Этот масляный туман направляется посредством по меньшей мере одного канала 24 впрыскивания, связывающего в верхней части первые выходы 26, 26' (называемые верхними выходами) главных камер с входом 28 вторичной камеры, причем этот вход открывается напротив подшипника Q1 качения этой камеры. Принимая во внимание разность давлений, существующую между главными камерами и вторичной камерой, отсутствует всякая необходимость в использовании насоса для того, чтобы обеспечить циркуляцию этого масляного тумана из главных камер ко вторичной камере.

Этот масляный туман представляет собой поток воздуха, насыщенный взвешенными капельками смазочного масла, причем эти капельки масла исходят из смазки подшипников Р1, Р'1 качения в главных камерах. Поскольку подшипники Q1 качения вторичной камеры вращаются на относительно небольшой скорости по отношению к скорости вращения других подшипников, их смазка может быть обеспечена одним впрыскиванием этого масляного тумана. Также никакое впрыскивание смазочного масла посредством сопла впрыскивания (или любого другого эквивалентного устройства) не предусматривается для обеспечения смазки этого подшипника Q1.

Каждая главная камера 10, 10' содержит также в своей нижней части специальный второй выход 30, 30' (называемый нижним выходом), обеспечивающий возможность извлечения оставшейся части смазочного масла, впрыскиваемого в эти камеры. Для реализации этой функции каждый из этих нижних выходов 30, 30' открывается в канал 32, 32' отведения, связанный с масляным резервуаром газотурбинного двигателя (посредством воздушно-масляных сепараторов, не показанных на фиг.1). При этом насосы 34, 34' отведения позволяют направить оставшуюся часть смазочного масла к масляному резервуару 18.

Что касается вторичной камеры 12, то она также содержит в своей нижней части специальный нижний выход 36, обеспечивающий возможность извлечения смеси воздуха с маслом, поступающей в результате смазки подшипника Q1, для направления этой смеси в направлении масляного сепаратора 38. Для этого нижний выход 36 связан с масляным сепаратором 38 при помощи канала 40 отведения. Масляный сепаратор обеспечивает отделение воздуха от масла, причем масло перенаправляется в масляный резервуар 18 газотурбинного двигателя (механизм перенаправления не представлен на фиг.1), а воздух удаляется из этого сепаратора наружу (удаление воздуха представлено на фиг.1 стрелкой Fevacuation).

Теперь со ссылкой на фиг.2 будет описан второй вариант реализации способа и системы смазки в соответствии с предлагаемым изобретением. В этом способе реализации газотурбинный двигатель также содержит две главные камеры 10, 10' и вторичную камеру 12.

Зато этот второй способ реализации отличается от первого способа реализации тем, что канал 24 впрыскивания связывает только одну из главных камер (а именно, в рассматриваемом здесь случае, главную камеру 10') с вторичной камерой 12. Таким образом, подшипник Q1 качения вторичной камеры 12 смазывается только путем впрыскивания масляного тумана, поступающего только из одной из двух главных камер.

Разумеется, канал впрыскивания с таким же успехом может связывать другую главную камеру (а именно, камеру 10) с вторичной камерой 12. Как и для другого способа реализации, никакое впрыскивание смазочного масла посредством сопла впрыскивания (или любого другого эквивалентного устройства) не предусматривается для смазки подшипника Q1 качения во вторичной камере.

Первый выход 26 в верхней части главной камеры 10, не связанный с вторичной камерой 12, связан с масляным сепаратором 38 посредством канала 42 для того, чтобы отделять воздух от масла из масляного тумана, поступающего из этой главной камеры.

И наконец, здесь следует отметить, что насос 20 питания смазочным маслом, насосы 34 отведения и масляный сепаратор 38 в двух этих способах реализации могут быть соединены с блоком приведения в движение вспомогательного оборудования газотурбинного двигателя (не показано) для их приведения в движение при помощи этого блока. Альтернативным образом некоторые из этих вспомогательных устройств, или вся их совокупность, могут иметь электрический привод.


СПОСОБ И СИСТЕМА СМАЗКИ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ
СПОСОБ И СИСТЕМА СМАЗКИ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ
Источник поступления информации: Роспатент

Showing 841-850 of 929 items.
29.04.2019
№219.017.42d3

Система блокировки главного вала газотурбинного двигателя с плавким подшипником

Газотурбинный двигатель, содержащий, по меньшей мере, одну первую вращающуюся систему, содержащую первый вал, статор и подшипники, жестко связанные с упомянутым статором и способные удерживать упомянутый вал, причем один из упомянутых подшипников способен разрушаться или изменять свои...
Тип: Изобретение
Номер охранного документа: 0002368791
Дата охранного документа: 27.09.2009
29.04.2019
№219.017.42e4

Система защиты главного вала газотурбинного двигателя с плавким подшипником

Изобретение относится к газотурбинному двигателю, имеющему в своем составе, по меньшей мере, одну первую вращающуюся систему, содержащую первый вал, статор и подшипники, жестко связанные с упомянутым статором и способные удерживать упомянутый вал, причем один из упомянутых подшипников способен...
Тип: Изобретение
Номер охранного документа: 0002369761
Дата охранного документа: 10.10.2009
29.04.2019
№219.017.42ed

Устройство для балансировки вращающейся детали, в частности ротора турбореактивного двигателя

Устройство предназначено для балансировки вращающейся детали, в частности ротора турбины, в турбомашине, такой как турбореактивный двигатель, при этом устройство содержит, по меньшей мере, один балансировочный грузик, установленный на кольцевом фланце детали, и крепежное средство для крепления...
Тип: Изобретение
Номер охранного документа: 0002361090
Дата охранного документа: 10.07.2009
29.04.2019
№219.017.4301

Кольцевая камера сгорания для турбомашины с улучшенным внутренним крепежным фланцем

Кольцевая камера сгорания турбомашины содержит внутреннюю кольцевую стенку и внешнюю кольцевую стенку, соединенные лобовой стенкой. Внутренняя и внешняя стенки продолжаются в направлении течения газов внутренним крепежным фланцем и внешним крепежным фланцем, прикрепляемыми соответственно к...
Тип: Изобретение
Номер охранного документа: 0002365822
Дата охранного документа: 27.08.2009
29.04.2019
№219.017.435b

Измерение толщины стенки, в частности стенки лопатки, при помощи токов фуко

Изобретение относится к способу оценки толщины стенки полой детали типа лопатки газотурбинного двигателя, по меньшей мере в одной точке, имеющей определенный радиус кривизны в этой точке, внутри интервала радиусов кривизны и определенных значений толщины, заключающийся в том, что определяют...
Тип: Изобретение
Номер охранного документа: 0002418963
Дата охранного документа: 20.05.2011
29.04.2019
№219.017.4394

Демонтируемая камера сгорания с улучшенными аэродинамическими характеристиками

Камера сгорания турбореактивного двигателя включает в себя кольцевую наружную стенку, кольцевую внутреннюю стенку и заднюю стенку камеры и обтекатель. Задняя стенка простирается между наружной и внутренней стенками и на ней монтируются средства впрыскивания. Обтекатель вместе с задней стенкой...
Тип: Изобретение
Номер охранного документа: 0002411412
Дата охранного документа: 10.02.2011
29.04.2019
№219.017.439c

Лопатка статора с изменяющимся углом установки, газотурбинный двигатель, содержащий такую лопатку, и способ ремонта такой лопатки

Лопатка статора с изменяющимся углом установки, установленная в картере газотурбинного двигателя, содержит перо, площадку, поворотный шкворень, накладку с диском и, по меньшей мере, одну стопорную лапку. Диск накладки установлен одной стороной на площадке и опирается другой стороной...
Тип: Изобретение
Номер охранного документа: 0002416725
Дата охранного документа: 20.04.2011
29.04.2019
№219.017.43ca

Устройство для осевого удержания фланца диска ротора, а также турбина турбомашины и турбомашина, содержащие такое устройство

Устройство для осевого удержания фланца диска ротора содержит диск ротора, кольцевой фланец и стопорное кольцо. Кольцевой фланец включает кольцевое основание, прижимающееся к внешней по радиусу стенке паза, и хвостовик, который выступает из основания по радиусу внутрь в паз в диске. Стопорное...
Тип: Изобретение
Номер охранного документа: 0002426889
Дата охранного документа: 20.08.2011
29.04.2019
№219.017.43d5

Ротор компрессора авиационного турбореактивного двигателя, компрессор и турбореактивный двигатель

Изобретение относится к области крепления лопаток ротора компрессора турбореактивного двигателя и обеспечивает уменьшение массы ротора, в частности передней системы стопорения. Указанный технический результат достигается при помощи диска (11) ротора, содержащего фланец (26) осевого удержания...
Тип: Изобретение
Номер охранного документа: 0002423624
Дата охранного документа: 10.07.2011
29.04.2019
№219.017.44a4

Заслонка с клапаном для системы охлаждения в газотурбинном двигателе, устройство охлаждения и турбореактивный двигатель

Заслонка с клапаном, предназначенная для системы охлаждения в газотурбинном двигателе, содержит клапан, установленный с возможностью поворота относительно оси между положением перекрытия отверстия и положением открытия этого отверстия. Отверстие предназначено для прохождения воздуха. Также...
Тип: Изобретение
Номер охранного документа: 0002459096
Дата охранного документа: 20.08.2012
Showing 671-675 of 675 items.
30.11.2018
№218.016.a1b5

Планетарный редукторный механизм для приведения во вращение лопастных узлов турбомашины с редуктором

Изобретение относится к планетарному передаточному механизму для приведения во вращение первого лопастного узла газотурбинного двигателя, содержащему: зубчатое колесо, соединенное с ротором двигателя для того, чтобы быть приведенным во вращение; по меньшей мере один сателлит, находящийся в...
Тип: Изобретение
Номер охранного документа: 0002673639
Дата охранного документа: 28.11.2018
20.03.2019
№219.016.e82f

Масляная система противообледенительной защиты переднего конуса авиационного турбореактивного двигателя

Изобретение относится к области авиации, более конкретно к масляной системе противообледенительной защиты переднего конуса турбореактивного двигателя. Система противообледенительной защиты содержит трубку питания, присоединенную к переднему конусу двигателя, обеспечивающую связь вала...
Тип: Изобретение
Номер охранного документа: 0002457155
Дата охранного документа: 27.07.2012
27.05.2019
№219.017.61ae

Теплообменник и газотурбинный двигатель, содержащий такой теплообменник

Изобретение относится к теплотехнике и может быть использовано, в частности, для охлаждения текучей среды во вторичном проточном тракте многоконтурного турбореактивного двигателя. Объектом изобретения является теплообменник (10) между первой текучей средой и второй текучей средой, содержащий...
Тип: Изобретение
Номер охранного документа: 0002689238
Дата охранного документа: 24.05.2019
08.06.2019
№219.017.7597

Маслосборная крышка для агрегата газотурбинного двигателя

Кольцевая маслосборная крышка агрегата газотурбинного двигателя, выполненная с возможностью расположения вокруг агрегата и с возможностью вращения вокруг оси, содержит сквозные отверстия для радиального прохождения масла за счет центробежного эффекта, а также средства отклонения масла. Средства...
Тип: Изобретение
Номер охранного документа: 0002690900
Дата охранного документа: 06.06.2019
02.10.2019
№219.017.cb42

Самоцентрирующийся подшипник скольжения

Изобретение относится к механическому узлу из двух механических деталей, вращающихся одна относительно другой и позволяющих получить самоцентрирующийся гидростатический подшипник. Самоцентрирующийся подшипник скольжения содержит первую деталь с цилиндрической полостью, вторую деталь (34) с по...
Тип: Изобретение
Номер охранного документа: 0002701288
Дата охранного документа: 25.09.2019
+ добавить свой РИД