×
10.11.2013
216.012.7e84

Результат интеллектуальной деятельности: СКВАЖИННЫЙ ДАТЧИК

Вид РИД

Изобретение

№ охранного документа
0002498061
Дата охранного документа
10.11.2013
Аннотация: Изобретение относится к устройствам, предназначенным для измерения параметров потока флюида (нефть, вода, газ и их смеси), таких как температура, скорость и фазовый состав, и может быть использовано при проведении геофизических исследований скважин, а также при контроле за транспортировкой жидких углеводородов по трубопроводной системе. Техническим результатом, достигаемым при реализации изобретения, является расширение функциональных возможностей датчика и повышение эффективности измерений. Скважинный датчик, предназначенный для измерения параметров потока флюида, содержит два идентичных полых открытых с одного конца металлических корпуса, оси симметрии которых находится на одной линии. Открытые концы корпусов обращены друг к другу и жестко закреплены в электрическом изоляторе. В каждом корпусе расположен датчик термоанемометра. Электрические выводы датчиков проходят внутри полостей корпусов и через электрический изолятор выведены наружу. 5 з.п. ф-лы, 1 ил.

Изобретение относится к устройствам, предназначенным для измерения параметров потока флюида (нефть, вода, газ и их смеси), таких как температура, скорость и фазовый состав, и может быть использовано при при проведении геофизических исследований скважин, а также при контроле за транспортировкой жидких углеводородов по трубопроводной системе.

Известен скважинный термоанемометр, описанный в патенте SU №440484. Термоанемометр содержит герметичный корпус, выполненный в виде двух полостей, в одной из которых расположен нагревательный элемент, а в другой - термочувствительный элемент.

Недостатками термоанемометра являются:

- невозможность одновременного измерения температуры и скорости потока флюида, поскольку измерение температуры термочувствительным элементом осуществляется только при выключенном нагревателе;

- переход в режим измерения температуры флюида требует определенное количество времени, в течение которого нагреватель остынет и не будет влиять на работу термочувствительного элемента, при этом температура и состав флюида могут значительно отличаться от первоначального, что сказывается на достоверности получаемой информации;

- вычисление скорости потока флюида осуществляется по сложному алгоритму с учетом массового расхода флюида и его теплофизических свойств;

- отсутствует контроль за составом флюида.

Известен также скважинный датчик, описанные в патенте RU №2384699. Датчик содержит электрический изолятор и полый цилиндрический металлический корпус с расположенным в его полости датчиком термоанемометра.

Недостатками известного датчика являются:

- невозможность одновременного измерения температуры и скорости потока флюида, поскольку измерение температуры осуществляется только при выключенном нагревателе термоанемометра;

- переход в режим измерения температуры флюида требует определенное количество времени, в течение которого нагреватель остынет и не будет влиять на работу термочувствительного элемента, при этом температура и состав флюида могут существенно отличаться от первоначального, что сказывается на достоверности получаемой информации;

- наличие на наружной поверхности полого цилиндрического металлического корпуса термоанемометра диэлектрического слоя, существенно влияющего на теплообмен корпуса с флюидом., вследствие чего ухудшаются метрологические характеристики термоанемометра.

Техническим результатом, достигаемым при реализации изобретения, является расширение функциональных возможностей датчика и повышение эффективности измерений.

В соответствии с изобретением скважинный датчик, содержащий полый открытый с одного конца металлический корпус с расположенным в его полости датчиком термоанемометра и электрический изолятор, содержит второй полый открытый с одного конца металлический корпус, идентичный первому, с расположенным в его полости вторым датчиком термоанемометра. При этом оси симметрии корпусов находится на одной линии, открытые концы корпусов обращены друг к другу и жестко закреплены в электрическом изоляторе, а электрические выводы датчиков проходят внутри полостей корпусов и через электрический изолятор выведены наружу.

Электрический изолятор может быть покрыт диэлектрическим слоем, а также может иметь форму, обеспечивающую минимальность искажений струкртуры потока. Корпуса датчика также могут быть выполнены в форме, обеспечивающей минимальность искажений структуры потока, например, в форме цилиндра или конуса.

Изобретение поясняется чертежом, на котором представлен предлагаемый скважинный датчик.

Скважинный датчик содержит первый полый металлический корпус 1 с расположенным в его полости датчиком 2 термоанемометра и второй полый металлический корпус 3 с расположенным в его полости датчиком 4 термоанемометра. Оси симметрии корпусов 1 и 3 датчиков находятся на одной линии О -О, корпуса датчиков электрически изолированы друг от друга с помощью изолятора 5 и жестко заделаны в нем со стороны открытых концов. Металлические корпуса 1 и 3 датчиков термоанемометра, к внутренним поверхностям которых подведены электрические выводы 6 и 7, являются электродами резистивного датчика состава флюида. Датчик 2 термоанемометра, равно как и датчик 4, состоит из нагревательного элемента и датчика температуры (на чертеже не показано), имеет тепловой контакт с внутренней поверхностью соответствующего полого металлического корпуса и электрически изолирован от него, при этом нагревательный элемент и датчик температуры также электрически изолированы друг от друга. Такие датчики описаны, например, в Скважинный термокондуктивный дебитомер СТД. И.Г. Жувагин, С.Г. Комаров, В.Б. Черный. - М., Недра, 1973, или в Геофизические исследования скважин: справочник мастера по промысловой геофизике / под. общ. ред. В.Г. Мартынова, Н.Е. Лазуткиной, М.С. Хохловой. - М.: Инфра-инженерия, 2009. Электрические выводы датчиков 2 и 4 проходят внутри полостей соответствующих корпусов и далее через электрический изолятор 5 выводятся наружу и подключаются к электронному блоку (на чертеже не показано). Для повышения влагостойкости и химической стойкости электрический изолятор может покрываться дополнительным диэлектрическим слоем (на чертеже не показано), а форма изолятора и корпусов 1 и 3 может быть выполнена такой, чтобы вносить минимальные искажения в структуру потока, например, в виде цилиндра или конуса.

Скважинный датчик работает следующим образом.

Скважинный датчик размещают в скважине таким образом, чтобы ось датчиков совпадала с осью скважины, при этом датчик 2 направлен в сторону зумпфа скважины, а датчик 4 направлен в сторону устья скважины. В зависимости от направления потока флюида и/или направления движения скважинного датчика относительно потока (проведение спуско-подъемных операций в скважине) датчик 2 и датчик 4 могут использоваться в режиме измерения температуры потока или в режиме измерения скорости потока. При спуске в скважину или статическом положении скважинного датчика, когда поток флюида направлен навстречу корпусу 1, датчик 2 термоанемометра используют в режиме измерения температуры, а датчик 4 термоанемометра в режиме измерения скорости потока. В этом случае нагревательный элемент датчика 2 отключен и задействован только его термочувствительный элемент, а у датчика 4 термоанемометра задействованы нагревательный и термочувствительный элементы, и тепло, выделяемое нагревательным элементом датчика 4 не влияет на работу термочувствительного элемента датчика 2. Одновременно по изменению электропроводимости флюида между корпусами 1 и 3 датчиков термоанемометра определяют состав флюида (см., например, Геофизические исследования скважин: справочник мастера по промысловой геофизике / под. общ. ред. В.Г. Мартынова, Н.Е. Лазуткиной, М.С. Хохловой. - М.: Инфра-инженерия, 2009).

При смене направления потока, т.е. при подъеме прибора или при работе скважины в нагнетательном режиме, когда поток направлен навстречу корпусу 3, датчик 4 термоанемометра используют в режиме измерения температуры, а датчик 2 термоанемометра в режиме измерения скорости потока. В этом случае нагревательный элемент датчика 4 отключен и задействован только его термочувствительный элемент, а у датчика 2 задействованы нагревательный и термочувствительный элементы, и тепло, выделяемое нагревательным элементом датчика 2 не влияет на работу термочувствительного элемента датчика 4.

Аналогичным образом датчик используют для проведения измерений температуры, скорости и фазового состава многофазного потока (нефть, вода, газ и их смеси) в трубопроводах. Скважинный датчик размещают в трубе таким образом, чтобы ось датчиков совпадала с осью трубы, при этом датчик 2 и датчик 4 направлены противоположно друг другу, в сторону зумпфа скважины. В зависимости от направления потока флюида датчик 2 и датчик 4 могут использоваться в режиме измерения температуры потока или в режиме измерения скорости потока. В случае, когда поток флюида направлен навстречу корпусу 1, датчик 2 термоанемометра используют в режиме измерения температуры, а датчик 4 термоанемометра в режиме измерения скорости потока. В этом случае нагревательный элемент датчика 2 отключен и задействован только его термочувствительный элемент, а у датчика 4 термоанемометра задействованы нагревательный и термочувствительный элементы, и тепло, выделяемое нагревательным элементом датчика 4 не влияет на работу термочувствительного элемента датчика 2. Одновременно по изменению электропроводимости флюида между корпусами 1 и 3 датчиков термоанемометра определяют состав флюида.

При смене направления потока, т.е. когда поток направлен навстречу корпусу 3, датчик 4 термоанемометра используют в режиме измерения температуры, а датчик 2 термоанемометра в режиме измерения скорости потока. В этом случае нагревательный элемент датчика 4 отключен и задействован только его термочувствительный элемент, а у датчика 2 задействованы нагревательный и термочувствительный элементы, и тепло, выделяемое нагревательным элементом датчика 2 не влияет на работу термочувствительного элемента датчика 4.

Переход каждого датчика с режима измерения температуры на режим измерения скорости потока флюида осуществляется по команде, поступающей из электронного блока.

Температура, скорость и состав флюида определяются по результатам предварительной градуировки соответствующих датчиков. Данные градуировок хранятся в элементах памяти электронного блока.

Использование датчиков термоанемометра попеременно в активном и пассивном режимах позволяет определять направление потока. Например, сначала датчик 4 термоанемометра используют в пассивном режиме (нагревательный элемент датчика 4 отключен и задействован только его термочувствительный элемент) измерения температуры, а датчик 2 термоанемометра в активном режиме (у датчика 2 термоанемометра задействованы нагревательный и термочувствительный элементы) измерения. Регистрируют разницу температуры между показаниями датчика 2 и датчика 4 ΔT1. Далее, наоборот, датчик 4 термоанемометра используют в активном режиме измерения температуры, а датчик 2 термоанемометра - в пассивном режиме измерения температуры. Регистрируют разницу температуры между показаниями датчика 2 и датчика 4 ΔТ2. Если величина ΔT1 по модулю больше величины ΔТ2 по модулю, то поток направлен навстречу корпусу 3. Если величина ΔT1 по модулю больше величины ΔТ2 по модулю, то поток направлен навстречу корпусу 1.

Использование двух термоанемометров помимо своего прямого назначения еще и для определения состава флюида расширяет функциональные возможности предлагаемого скважинного датчика, а локализация датчиков температуры, скорости и состава флюида в одном малообъемном модуле повышает достоверность получаемой информации непосредственно в точке измерения в режиме реального времени.


СКВАЖИННЫЙ ДАТЧИК
Источник поступления информации: Роспатент

Showing 101-110 of 116 items.
09.06.2019
№219.017.7a5e

Способ определения текущей конденсатонасыщенности в призабойной зоне скважины в газоконденсатном пласте-коллекторе

Изобретение относится к разработке газоконденсатных месторождений и может быть использовано для определения текущей конденсатонасыщенности в призабойной зоне скважины в пласте-коллекторе. Техническим результатом изобретения является повышение точности определения текущего значения...
Тип: Изобретение
Номер охранного документа: 0002386027
Дата охранного документа: 10.04.2010
09.06.2019
№219.017.7a89

Способ определения текущей газонасыщенности в призабойной зоне скважины в залежи летучей нефти

Изобретение относится к разработке залежей летучей нефти и может быть использовано для определения текущей газонасыщенности в призабойной зоне добывающей скважины в пласте-коллекторе. Техническим результатом изобретения является повышение точности определения значения газонасыщенности в...
Тип: Изобретение
Номер охранного документа: 0002385413
Дата охранного документа: 27.03.2010
09.06.2019
№219.017.7f46

Комплексный прибор для исследования скважин

Изобретение относится к области геофизики и предназначено для проведения комплекса геофизических исследований нефтяных и газовых скважин, эксплуатируемых горизонтальным стволом. Техническим результатом является повышение информативности исследований, эффективности работы устройства, расширение...
Тип: Изобретение
Номер охранного документа: 0002442891
Дата охранного документа: 20.02.2012
09.06.2019
№219.017.7fca

Способ определения смачиваемости пористых материалов

Способ определения смачиваемости пористых материалов предусматривает размещение образца пористого материала в ячейке калориметра и обеспечение контакта образца со смачивающей жидкостью. Осуществляют постоянную регистрацию теплового потока в ячейку и на основании результатов измерения с учетом...
Тип: Изобретение
Номер охранного документа: 0002468353
Дата охранного документа: 27.11.2012
03.07.2019
№219.017.a417

Распознание расклинивающего агента с помощью мобильного устройства

Изобретение относится к анализу размеров и формы частиц. Техническим результатом является быстрый и репрезентативный анализ размеров и формы частиц. Способ анализа размеров и формы частиц, используемых в скважинных операциях, содержащий: получение изображения подложки, включающего эталон...
Тип: Изобретение
Номер охранного документа: 0002693201
Дата охранного документа: 01.07.2019
19.03.2020
№220.018.0d23

Способ вывода на режим скважины, пробуренной в естественно трещиноватом пласте

Изобретение относится к области технологий подготовки скважины, пробуренной в естественно трещиноватом пласте, к выводу на режим, в частности к оптимизации параметров, оказывающих непосредственное влияние на повышение продуктивности скважины после проведения гидравлического разрыва пласта...
Тип: Изобретение
Номер охранного документа: 0002717019
Дата охранного документа: 17.03.2020
21.03.2020
№220.018.0edc

Способ определения физических характеристик однородной среды и ее границ

Изобретение относится к области геофизики и может быть использовано для определения границ однородной среды при обработке сейсмических данных. Согласно заявленному способу осуществляют регистрацию гармонической волны, представляющей собой колебание физической величины вдоль одного...
Тип: Изобретение
Номер охранного документа: 0002717162
Дата охранного документа: 18.03.2020
07.06.2020
№220.018.2527

Способ определения межфазного натяжения между двумя флюидами

Изобретение относится к способам определения межфазного натяжения (МН) между двумя флюидами. Техническим результатом является повышение точности определения МН между двумя флюидами. В соответствии с изобретением предварительно определяют плотность флюидов при заданных давлении и температуре и...
Тип: Изобретение
Номер охранного документа: 0002722896
Дата охранного документа: 04.06.2020
31.07.2020
№220.018.3923

Способ определения работающих интервалов глубин нефтяных и газовых пластов

Изобретение относится к промыслово-геофизическим исследованиям, а именно, к способу скважинной акустической шумометрии. Технический результат заключается в повышении точности и достоверности определения работающих интервалов глубин нефтяных и газовых пластов. В соответствии со способом...
Тип: Изобретение
Номер охранного документа: 0002728123
Дата охранного документа: 28.07.2020
31.07.2020
№220.018.3952

Способ определения распределения объемных долей флюидов по стволу скважины

Изобретение относится к промыслово-геофизическим исследованиям и предназначено для определения объемных долей флюидов по стволу скважины. Техническим результатом заявленного изобретения является повышение точности, достоверности и надежности определения объемных долей флюидов по стволу...
Тип: Изобретение
Номер охранного документа: 0002728119
Дата охранного документа: 28.07.2020
Showing 81-90 of 90 items.
04.04.2018
№218.016.338a

Способ определения профиля притока флюида в многопластовой скважине

Изобретение относится к области геофизических исследований нефтяных и газовых скважин, а именно к определению профиля притока добываемого флюида в многопластовых скважинах с несколькими интервалами перфорации. Технический результат заключается в повышении точности определения профиля притока...
Тип: Изобретение
Номер охранного документа: 0002645692
Дата охранного документа: 27.02.2018
10.05.2018
№218.016.40c4

Способ и устройство для распознавания режимов течения газожидкостного потока в горизонтальном трубопроводе

Изобретение относится к измерительной технике и может быть использовано для распознавания режимов течения газожидкостного потока в горизонтальных трубопроводах в нефтяной, химической, пищевой и других отраслях промышленности. Предложен способ для распознавания режимов течения газожидкостного...
Тип: Изобретение
Номер охранного документа: 0002648974
Дата охранного документа: 28.03.2018
28.06.2018
№218.016.6859

Способ определения профиля теплопроводности горных пород в скважине

Изобретение относится к геофизическим исследованиям скважин и может найти применение для определения тепловых свойств пластов горных пород, окружающих скважины. Технический результат заключается в обеспечении возможности одновременного определения теплопроводности пород и радиуса скважины,...
Тип: Изобретение
Номер охранного документа: 0002658856
Дата охранного документа: 25.06.2018
23.02.2019
№219.016.c6f6

Способ определения профиля притока в низкодебитных горизонтальных скважинах с многостадийным гидроразрывом пласта

Изобретение относится к области геофизических исследований нефтедобывающих скважин на нефтяных месторождениях с низкопроницаемыми коллекторами в условиях неоднозначности замеров, выполненных на притоке флюида в забойных условиях, в частности, к определению профиля притока флюидов, поступающих в...
Тип: Изобретение
Номер охранного документа: 0002680566
Дата охранного документа: 22.02.2019
09.06.2019
№219.017.7f46

Комплексный прибор для исследования скважин

Изобретение относится к области геофизики и предназначено для проведения комплекса геофизических исследований нефтяных и газовых скважин, эксплуатируемых горизонтальным стволом. Техническим результатом является повышение информативности исследований, эффективности работы устройства, расширение...
Тип: Изобретение
Номер охранного документа: 0002442891
Дата охранного документа: 20.02.2012
09.06.2019
№219.017.7fca

Способ определения смачиваемости пористых материалов

Способ определения смачиваемости пористых материалов предусматривает размещение образца пористого материала в ячейке калориметра и обеспечение контакта образца со смачивающей жидкостью. Осуществляют постоянную регистрацию теплового потока в ячейку и на основании результатов измерения с учетом...
Тип: Изобретение
Номер охранного документа: 0002468353
Дата охранного документа: 27.11.2012
31.07.2020
№220.018.3aa1

Способ взаимной калибровки датчиков температуры скважинного флюида, установленных на перфорационной колонне

Изобретение относится к области измерений давления и температуры в скважине во время перфорации и последующего опробования скважины. Технический результат заключается в обеспечении взаимной калибровки датчиков температуры в скважине до проведения перфорации, что в свою очередь обеспечивает...
Тип: Изобретение
Номер охранного документа: 0002728116
Дата охранного документа: 28.07.2020
10.05.2023
№223.018.5321

Способ определения работающих интервалов в действующих скважинах

Изобретение относится к области геофизических исследований действующих нефтедобывающих скважин, оборудованных обсадной металлической колонной, в частности к способам определения работающих интервалов притока/поглощения, и может быть использовано при контроле технического состояния скважины....
Тип: Изобретение
Номер охранного документа: 0002795225
Дата охранного документа: 02.05.2023
15.05.2023
№223.018.5bfb

Способ определения поинтервальной скорости и расхода жидкости в скважине

Изобретение относится к области исследования скважин с работающими интервалами притока или поглощения и может быть использовано при геофизическом сопровождении разработки нефтяных месторождений. Способ определения поинтервальной скорости и расхода жидкости в скважине включает серию измерений...
Тип: Изобретение
Номер охранного документа: 0002753129
Дата охранного документа: 11.08.2021
15.05.2023
№223.018.5bfc

Способ определения поинтервальной скорости и расхода жидкости в скважине

Изобретение относится к области исследования скважин с работающими интервалами притока или поглощения и может быть использовано при геофизическом сопровождении разработки нефтяных месторождений. Способ определения поинтервальной скорости и расхода жидкости в скважине включает серию измерений...
Тип: Изобретение
Номер охранного документа: 0002753129
Дата охранного документа: 11.08.2021
+ добавить свой РИД