×
10.11.2013
216.012.7e1f

Результат интеллектуальной деятельности: СПОСОБ СЕПАРАЦИИ МИНЕРАЛЬНЫХ ЧАСТИЦ С ПРЕДВАРИТЕЛЬНОЙ ОБРАБОТКОЙ МАГНИТНЫМ КОЛЛОИДОМ

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу сепарации минеральных частиц, содержащих ценный компонент. Способ включает смешивание водной пульпы исходного сырья с дисперсией, содержащей коллоидные магнитные частицы, и обработку полученной смеси в магнитном поле для извлечения концентрата ценного компонента. При этом предварительно осуществляют стабилизацию дисперсии магнитных частиц обработкой в водной среде реагентами с обобщенной формулой A1-R-A2, где R - углеводородный радикал, выбранный из ряда С-C, группа А1 - СООН или CONOH, A2 - OH или СН(ОН), или обработкой в среде жидкого углеводорода реагентами с обобщенной формулой A1-R, где R - углеводородный радикал, выбранный из ряда С-С, группа А1 - СООН или CONOH. После стабилизации дисперсию обрабатывают функционализирующим реагентом и смешивают с пульпой исходного сырья. Извлечение концентрата ценного компонента и магнитных частиц осуществляют осаждением в гравитационном поле в виде магнитных флокул при напряженности поля в интервале 80-880 кА/м или на магнитных сепараторах в виде магнитных флокул при напряженности поля в интервале 32-800 кА/м. Технический результат заключается в повышении эффективности извлечения тонких минеральных частиц путем использования технологии омагничивания магнитным коллоидом с последующим выделением ценного компонента магнитными методами. 7 з.п. ф-лы, 5 табл., 5 пр.

Изобретение относится к области обогащения полезных ископаемых и может быть наиболее эффективно использовано при переработке измельченных руд, содержащих малые количества ценного минерала, представленного мелкими и тонкими частицами, в частности руд золота.

Известен способ использования магнитных частиц совместно с неорганическими коагулянтами и органическими флокулянтами для очистки воды от растворенных и взвешенных загрязнений. Использование магнитных частиц с последующим наложением магнитного поля позволяет значительно ускорить осаждение флоккул за счет их укрупнения и намагничивания (О.М. Urbain, and W.R. Stemen, U.S.Patent No.2,232,294, Feb.18, 1941).

Известен способ (С. de Latour, J.A.W.W.A., 68, 325, 443, 498, 1976), заключающийся в использовании высокоградиентной магнитной сепарации для выделения магнетита, нагруженного загрязнениями, для очистки воды от взвешенных частиц, бактерий, растворенных фосфатов.

Недостатком выше предложенных способов является то, что магнетит, применяемый в процессе как носитель, недостаточно прочно закрепляют загрязнения, которые в результате перемешивания с пульпой имеют свойство отделяться.

Наибольшая эффективность магнитных носителей обеспечивается при химической функционализации их поверхности, повышающей ее сорбционную активность и сродство к желаемым типам загрязнений. Наибольшая гибкость, при такой функционализации, обеспечиваются при коллоидной крупности частиц. В этом случае магнитные коллоидные частицы могут играть роль носителя, если на них происходит сорбция ионов или небольших молекул, либо выполнять функцию омагничивающего агента, который закрепляется па поверхности относительно крупных частиц, придавая им магнитные свойства. При использовании коллоидных частиц как носителей, повышенная эффективность обеспечивается также за счет большой удельной поверхности магнитного коллоида.

Наиболее близким к предлагаемому способу, по совокупности существенных признаков, является способ разделения полезных ископаемых, использующий магнитные методы, включающий диспергирование исходного сырья в водной среде, смешивание пульпы с водной дисперсией, содержащей магнитные частицы коллоидного размера, обработку полученной смеси в магнитном поле для извлечения концентрата ценного минерала (U.S. Patents 4, 225, 425 and 426, September 30, 1980).

К недостаткам ближайшего аналога следует отнести следующее: водная дисперсия, содержащая магнитные частицы имеет свойство недостаточно крепко закрепляться на поверхности минерала, в следствии чего при перемешивании магнитные частицы могут отделяться с поверхности минерала.

Основная задача изобретения, заключается в повышении эффективности извлечения тонких минеральных частиц, путем использования технологии омагничивания магнитным коллоидом с последующим выделением ценного компонента магнитными методами.

Достигается это тем, что в способе сепарации минеральных частиц, содержащих ценный компонент включающий диспергирование исходного сырья в водной среде, смешивание полученной пульпы с дисперсией, содержащей коллоидные магнитные частицы, обработку полученной смеси в магнитном поле для извлечения концентрата ценного компонента, предварительно осуществляют стабилизацию дисперсии магнитных частиц обработкой в водной среде реагентами обобщенной формулой A1-R-A2, где R - углеводородный радикал выбранный из ряда С3-C18, группа A1 -COOH или CONOH, A2 -ОН или СН(ОН) или обработкой в среде жидкого углеводорода реагентами обобщенной формулой A1-R, где R - углеводородный радикал выбранный из ряда С3-C18, А1-СООН или CONOH, после стабилизации дисперсию обрабатывают функционализирующим реагентом и смешивают с пульпой исходного сырья, содержащий ценный компонент, а извлечение из смеси минеральных частиц концентрата ценного компонента и магнитных частиц осуществляют осаждением в гравитационном поле, в виде магнитных флоккул при напряженности поля в интервале 80-880 кА/м или на магнитных сепараторах, в виде магнитных флоккул при напряженности поля в интервале 32-800 кА/м.

Для обработки дисперсии магнитных частиц в водной среде используют функционализирующий реагент обобщенной формулой A3-R-А4, где R - углеводородный радикал выбранный из ряда С3-C18, A3-СООН или CONOH, a A4-SH или OCS(SH)

Для обработки дисперсии магнитных частиц в среде жидкого углеводорода используют функционализирующий реагент обобщенной формулы A4-R, где R - углеводородный радикал выбранный из ряда С3-C18, группа A4-SH или OCS(SH).

Обработку полученной смеси осуществляют в пористой матрице, в магнитном поле, с осаждением магнитных флокул на носителях, а немагнитные частицы удаляют потоком воды.

Для интенсификации процесса флокуляции в смесь добавляют суспензию магнетита в количестве 0,1-10% от массы сырья.

Напряженность магнитного поля выбирают в пределах от 720-880 кА/м.

В качестве носителей используют железную дробь 3-6 мм.

В качестве носителей используют стальную шерсть.

Сущность предложенного способа заключается в том, что минеральные частицы (крупностью 0.n-n*10 мкм) т.е. (0,1-90 мкм) подвергаются перемешиванию с магнитными коллоидами. В результате перемешивания коллоиды налипают па поверхность минерала, которые могут быть выделены при помощи магнитных методов обогащения. Процесс преобразования поверхностных свойств минеральных частиц в магнитные свойства, проводится с использованием, в качестве носителя, магнитного коллоида, который способен селективно закрепляться на частицах ценных минералов. Это позволяет повысить извлечение металла в концентрат и снизить извлечение в хвосты.

Для получения дисперсии, содержащей коллоиды магнетита, используют функционализирующие и стабилизирующие реагенты. Их выбор зависит от типа руды, т.е. выбираются реагенты группы которых, активны по отношению к ценному минералу.

Возможность практического применения нового метода выделения минеральных частиц на реальной руде проверена на убогой по содержанию золота руде (золотоносное месторождение кор выветривания).

Руда малосульфидная, содержание золота, по данным пробирного анализа, 2,8 г/т. Преобладающая крупность золотин - менее 0,044 мм. Наиболее распространенные рудные минералы в пробе являются, пирит и арсенопирит.

Способ осуществляется следующим образом.

Исходную золотосодержащую руду измельчают до содержания 70-85% класса 0,1-0,15 мм при отношении Т:Ж=2:1. Полученную пульпу смешивают с магнитными коллоидами. Полученный продукт отделяется с помощью магнитных методов обогащения. Эффективность обогащения оценивалась показателями извлечение металла в концентрат (Е, %) и содержанием металла в хвостах (βхв, %). Влияние формы коллоидов магнетита на технологические показатели представлены в таблице 1.

Пример 1

Исходную золотосодержащую руду измельчают до содержания 70-85% класса 0,1-0,15 мм при отношении Т:Ж=2:1. Полученную пульпу смешивают с коллоидами магнетита предварительно приготовленные в форме стабилизированного и функционализированного водного магнитного коллоида. Магнитные коллоидные частицы (размером, например, 5-50 нм) стабилизируются раствором белка содержащим фрагменты состава A1-R-A2, где R - С9, группа А1 - СООН, группа А2 - ОН, в водном растворе. Стабилизированный коллоид обрабатывается ксантогенатом (C4H9OS2K) содержащим фрагменты состава A3-R-A4, где R - С4, группа A3 - СООН, а группа А4 - SH, содержащим функциональные группы, активные по отношению к ценному минералу. Результаты исследования представлены в таблице 2.

Пример 2

Способ осуществляется как в примере 1, отличием является то, что в данном опыте коллоиды магнетита подаются в форме эмульгированного в воде магнитного коллоидного раствора в аполярных жидкостях. Стабилизированный коллоидный раствор магнетита в керосине эмульгируется в воде с добавлением ксантогената (C4H9OS2K) содержащим фрагменты состава А4 - R, где R - C4, а группа А4 - SH, и стабилизирующего реагента, в качестве которого удобно использовать алифатические спирты (C4H9OH) содержащим фрагменты состава A2-R, где R - С4, группа А2-ОН, все смешивается, эмульсия образуется за счет обычного встряхивания смеси. Выделение ценного компонента осуществляется магнитными методами обогащения. Результаты исследования представлены в таблице 3.

Пример 3

Исходную золотосодержащую руду с содержанием 70-85% класса 0,01 мм. смешивают с коллоидами магнетита предварительно приготовленные в форме стабилизированного и функционализированного водного магнитного коллоида или в форме эмульгированного в воде магнитного коллоидного раствора в аполярных жидкостях. Выделение ценного компонента осуществляется на высокоградиентных сепараторах. В качестве носителя магнитных частиц используется стальная шерсть. Результаты исследования представлены в таблице 2, 3.

Пример 4

Способ осуществляется как в примере 1, отличием является то, что выделение ценного компонента осуществляется магнитной флокуляцией, а для интенсификации процесса добавляется суспензия Fe3O4 в количестве 0,1-10% от массы сырья. Отделение магнитных флоккул осуществляется осаждением в гравитационном поле при напряженности поля в интервале 80-880 кА/м или на сепараторах в виде магнитных флоккул при напряженности поля в интервале 32-800 кА/м, табл.2, 3.

Результаты исследования представлены в таблице 5.

Пример 5

Способ осуществляется как в примере 2, отличием является то, что в данном опыте в качестве извлекаемого ценного компонента служит Cu. Исходную руду измельчают до содержания 70-85% класса 0,1-0,15 мм при отношении Т:Ж=2:1. Полученную пульпу смешивают с коллоидами магнетита предварительно приготовленные в форме эмульгированного в воде магнитного коллоидного раствора в аполярных жидкостях. Стабилизированный коллоидный раствор магнетита в керосине эмульгируется в воде с добавлением ксантогената (C4H9OS2K) содержащим фрагменты состава А4 - R, где R - С4, а группа А4 - SH, и стабилизирующего реагента, в качестве которого удобно использовать олеиновую кислоту (С17Н33СООН) содержащим фрагменты состава A2-R, где R - С17, группа А2-СООН, все смешивается, эмульсия образуется за счет обычного встряхивания смеси. Выделение ценного компонента осуществляется магнитными методами обогащения. Результаты исследования представлены в таблице 4.

Предложенный способ позволит сократить потери золота при переработке руд и вовлечь в производство тонковкрапленные руды, руды кор выветривания, руды с упорным золотом, техногенные образования.

Вместо применяемых реагентов могут быть использованы любые их аналоги, применение которых при современном состоянии уровня техники и технологии позволяет снизить себестоимость обогащения.

Таблица 1
Влияние формы коллоидов магнетита на технологические показатели
Параметры Значения
E, % βхв, %
Форма коллоидов Fe3O4 В форме стабилизированного и функционализированного водного магнитного коллоида; 83,81 0,75
В форме эмульгированного в воде магнитного коллоидного раствора в аполярных жидкостях. 80,10 0,98

Таблица 2
Влияние методов извлечения ценного компонента при подаче частиц в форме стабилизированного и функционализированного водного магнитного коллоида на технологические показатели
Параметры Значения
E, % βхн, %
Осаждением в гравитационном поле 69,96 0,93
На магнитном сепараторе с напряженностью 320 кА/м 74,04 0,85
На высокоградиентных сепараторах 84,49 0,73
На высокоградиентных сепараторах:
- Напряженность магнитного поля, кА/м
720 78,54 0,86
800 81,63 0,80
880 83,73 0,76
- Носитель
Дробь 3 мм 85,84 0,69
Дробь 6 мм 84,39 0,73
Стальная шерсть марки 00 86,90 0,61
Стальная шерсть марки 0 86,27 0,63

Таблица 3
Влияние методов извлечения ценного компонента при подаче частиц в форме эмульгированного в воде магнитного коллоидного раствора в аполярных жидкостях на технологические показатели
Параметры Значения
E, % βхв, %
Осаждением в гравитационном поле 69,20 0,95
На магнитном сепараторе с напряженностью 120 кА/м 72,85 0,88
На высокоградиентных сепараторах 100,00 0,00
На высокоградиентных сепараторах:
- Напряженность магнитного поля, кА/м
440 75,65 0,95
640 80,58 0,84
880 83,73 0,76
- Носитель
Дробь 3 мм 85,05 0,71
Дробь 6 мм 83,73 0,76
Стальная шерсть марки 00 86,53 0,64
Стальная шерсть марки 0 85,39 0,68

Таблица 4
Влияние методов извлечения ценного компонента при подаче частиц в форме эмульгироваипого в воде магнитного коллоидного раствора в аполярных жидкостях на технологические показатели
Параметры Значения
Е,% βхв, %
Осаждением в гравитационном поле 47,55 3,1
На магнитном сепараторе с напряженностью 120 Ка/м 60,94 2,5
На высокоградиентных сепараторах в пористой матрице 71,59 1,8
На высокоградиентных сепараторах в пористой матрице:
- Напряженность магнитного поля, кА/м
440 65,21 2,2
640 68,61 2
880 70,10 1,9
- Носитель
Дробь 3 мм 67,98 2
Дробь 6 мм 63,3 2,3
Стальная шерсть марки 00 71,69 1,7
Стальная шерсть марки 0 74,50 1,65

Таблица 5
Влияние суспензии магнетита на технологические показатели
Параметры Значения Е, % βхв, %
Суспензия магнетита, % от массы сырья 0,1 77,86 0,69
3 86,02 0,45
10 91,56 0,28

Источник поступления информации: Роспатент

Showing 201-210 of 234 items.
20.11.2015
№216.013.92b3

Вискозиметр

Изобретение относится к области измерительных средств, в частности для измерения вязкости жидких сред при различных температурах и прозрачности. Для достижения технического результата в корпусе (1) вискозиметра установлен теплоизолированный снаружи нагреватель (2) с цилиндрической полостью (5),...
Тип: Изобретение
Номер охранного документа: 0002569173
Дата охранного документа: 20.11.2015
27.11.2015
№216.013.949c

Способ определения величины подработки твердеющей закладки при механическом разрушении рудного массива

Изобретение относится к горной промышленности, а именно к подземной разработке месторождений полезных ископаемых, с заполнением выработанного пространства твердеющей закладкой. Техническим результатом является определение длины полости, оставшейся в закладочном массиве после отработки рудного...
Тип: Изобретение
Номер охранного документа: 0002569663
Дата охранного документа: 27.11.2015
27.11.2015
№216.013.9567

Газосборное устройство алюминиевого электролизера

Изобретение относится к газосборному устройству алюминиевого электролизера. Газосборное устройство алюминиевого электролизера содержит прямые и угловые секции, подвешенные с помощью зацепов по периметру анодного кожуха. Секции выполнены пустотелыми и между их внутренней и наружной стенками...
Тип: Изобретение
Номер охранного документа: 0002569866
Дата охранного документа: 27.11.2015
10.12.2015
№216.013.9898

Алюминиевый сплав

Изобретение относится к алюминиевым сплавам, предназначенным для производства электропроводников, работающих при высоких температурах. Алюминиевый сплав содержит, мас.%: лантан и церий в сумме до 9, никель до 0,7, стронций до 0,001, алюминий - остальное, при соотношении церия к лантану...
Тип: Изобретение
Номер охранного документа: 0002570684
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.98c0

Буровое шарошечное долото

Изобретение относится к буровой технике, а именно к конструкциям шарошечных долот, предназначенных для бурения скважин в горнорудной, нефтяной и газовой промышленности и в строительстве дорог, каналов, трубопроводов и др. Технический результат заключается в повышении эффективности работы и...
Тип: Изобретение
Номер охранного документа: 0002570724
Дата охранного документа: 10.12.2015
27.12.2016
№216.013.9e16

Способ предупреждения и подавления пылегазовых выбросов в карьере

Изобретение относится к горной промышленности и может быть использовано при борьбе с пылегазовыми выбросами на рудных, нерудных и угольных карьерах. Техническим результатом предлагаемого решения является повышение эффективности гидравлического подавления пылегазовых скоплений при нестационарном...
Тип: Изобретение
Номер охранного документа: 0002572100
Дата охранного документа: 27.12.2015
10.02.2016
№216.014.c3fe

Сплав на основе палладия 850 пробы

Изобретение относится к металлургии ювелирных сплавов на основе палладия 850 пробы, применяемых для изготовления ювелирных изделий. Сплав на основе палладия 850 пробы содержит, мас.%: палладий - 85,0-85,5, золото - 2,0-2,5, родий - 0,01-0,5, серебро - остальное. Сплав обладает более низкой по...
Тип: Изобретение
Номер охранного документа: 0002574936
Дата охранного документа: 10.02.2016
20.02.2016
№216.014.cde1

Устройство для определения параметров заложения нисходящих наклонных скважин и шпуров

Изобретение относится к горному делу и предназначено для определения пространственного положения нисходящих скважин и шпуров. Предложено устройство для определения параметров заложения нисходящих наклонных скважин и шпуров, содержащее основание с размещенными на нем круговым уровнем и...
Тип: Изобретение
Номер охранного документа: 0002575196
Дата охранного документа: 20.02.2016
10.02.2016
№216.014.e882

Устройство для съемки сечений горных камерных выработок

Изобретение относится к приборам, используемым в горной промышленности для съемки сечения выработанного пространства. Устройство для съемки сечений горных камерных выработок состоит из пластины, лазерных дальномеров, закрепленных на пластине и соединенных между собой и с механизмом...
Тип: Изобретение
Номер охранного документа: 0002575141
Дата охранного документа: 10.02.2016
27.05.2016
№216.015.444a

Токоподвод обожженного анода алюминиевого электролизера

Изобретение относится к токоподводу обожженного анода алюминиевого электролизера. Токоподвод содержит токоподводящую штангу, траверсу, удерживающую токоподводящие ниппели, обеспечивающую распределение электрического тока между ними, при этом токоподводящие ниппели выполнены в виде...
Тип: Изобретение
Номер охранного документа: 0002585601
Дата охранного документа: 27.05.2016
Showing 201-210 of 219 items.
20.11.2015
№216.013.8fd6

Способ получения циклогексан-транс-1,2-d,l-диаминотетрахлорида платины (iv)

Изобретение относится к области получения соединений платиновых металлов и фармацевтики, в частности к способу получения циклогексан-транс-1,2-d,l-диаминотетрахлорида платины(IV). Способ включает образование гексахлороплатината(IV) циклогексан-транс-1,2-d,l-диаммония из раствора...
Тип: Изобретение
Номер охранного документа: 0002568438
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.8fec

Струнный грохот

Изобретение относится к технике просеивания и разделения сыпучих материалов по крупности, преимущественно горной массы. Технический результат - повышение эффективности разделения горной массы на классы по крупности. Устройство содержит бункер-питатель и просевающие поверхности, установленные...
Тип: Изобретение
Номер охранного документа: 0002568460
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.907d

Штамм бактерии komagataeibacter xylinus - продуцент бактериальной целлюлозы

Изобретение относится к области биотехнологии. Штамм Komagataeibacter xylinus депонирован во Всероссийской коллекции промышленных микроорганизмов (ВКПМ) под регистрационным номером ВКПМ В-12068. Бактериальная целлюлоза может быть использована для восстановительной хирургии, тканевой...
Тип: Изобретение
Номер охранного документа: 0002568605
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.9294

Способ управления процессом эксплуатации шарошечного долота

Изобретение относится к горной промышленности и может быть использовано при шарошечном бурении взрывных и разведочных буровых скважин на горных предприятиях. Технический результат заключается в обеспечении эффективности использования долота. Способ управления процессом эксплуатации шарошечного...
Тип: Изобретение
Номер охранного документа: 0002569141
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.92b3

Вискозиметр

Изобретение относится к области измерительных средств, в частности для измерения вязкости жидких сред при различных температурах и прозрачности. Для достижения технического результата в корпусе (1) вискозиметра установлен теплоизолированный снаружи нагреватель (2) с цилиндрической полостью (5),...
Тип: Изобретение
Номер охранного документа: 0002569173
Дата охранного документа: 20.11.2015
27.11.2015
№216.013.949c

Способ определения величины подработки твердеющей закладки при механическом разрушении рудного массива

Изобретение относится к горной промышленности, а именно к подземной разработке месторождений полезных ископаемых, с заполнением выработанного пространства твердеющей закладкой. Техническим результатом является определение длины полости, оставшейся в закладочном массиве после отработки рудного...
Тип: Изобретение
Номер охранного документа: 0002569663
Дата охранного документа: 27.11.2015
27.11.2015
№216.013.9567

Газосборное устройство алюминиевого электролизера

Изобретение относится к газосборному устройству алюминиевого электролизера. Газосборное устройство алюминиевого электролизера содержит прямые и угловые секции, подвешенные с помощью зацепов по периметру анодного кожуха. Секции выполнены пустотелыми и между их внутренней и наружной стенками...
Тип: Изобретение
Номер охранного документа: 0002569866
Дата охранного документа: 27.11.2015
10.12.2015
№216.013.9898

Алюминиевый сплав

Изобретение относится к алюминиевым сплавам, предназначенным для производства электропроводников, работающих при высоких температурах. Алюминиевый сплав содержит, мас.%: лантан и церий в сумме до 9, никель до 0,7, стронций до 0,001, алюминий - остальное, при соотношении церия к лантану...
Тип: Изобретение
Номер охранного документа: 0002570684
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.98c0

Буровое шарошечное долото

Изобретение относится к буровой технике, а именно к конструкциям шарошечных долот, предназначенных для бурения скважин в горнорудной, нефтяной и газовой промышленности и в строительстве дорог, каналов, трубопроводов и др. Технический результат заключается в повышении эффективности работы и...
Тип: Изобретение
Номер охранного документа: 0002570724
Дата охранного документа: 10.12.2015
27.12.2016
№216.013.9e16

Способ предупреждения и подавления пылегазовых выбросов в карьере

Изобретение относится к горной промышленности и может быть использовано при борьбе с пылегазовыми выбросами на рудных, нерудных и угольных карьерах. Техническим результатом предлагаемого решения является повышение эффективности гидравлического подавления пылегазовых скоплений при нестационарном...
Тип: Изобретение
Номер охранного документа: 0002572100
Дата охранного документа: 27.12.2015
+ добавить свой РИД