×
10.11.2013
216.012.7d75

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ СФЕРИЧЕСКИХ ПОРОХОВ ДЛЯ СТРЕЛКОВОГО ОРУЖИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области получения сферических порохов (СФП) для стрелкового оружия. Получение СФП со стабильными физико-химическими и баллистическими характеристиками достигается путем обеспечения смешения пара с водой в пароструйном обогревателе, из которого теплоноситель выходит со строго заданной температурой и подается в рубашку реактора. Теплоноситель насосом по трубопроводу подают в пароструйный обогреватель, где за счет сопла увеличивают скорость теплоносителя. Одновременно в приемную камеру обогревателя подают под давлением пар, теплоноситель из сопла вместе с паром попадает в смесительную камеру длиной, равной 4-5 диаметрам трубопровода, и внутренним диаметром 0,7-0,8 от диаметра трубопровода. После смесительной камеры поток расширяют до исходного внутреннего диаметра трубопровода и теплоноситель подают в рубашку реактора. 1 ил., 1 табл., 5 пр.
Основные результаты: Способ получения сферических порохов для стрелкового оружия, характеризующийся тем, что первоначально заполняют систему обогрева реактора, включающую рубашку реактора, сборник и трубопроводы, водой, которую из сборника подают насосом в пароструйный обогреватель, смешивают с паром и полученную смесь в качестве теплоносителя подают в рубашку реактора с заданной температурой, отличающийся тем, что теплоноситель насосом по трубопроводу подают в пароструйный обогреватель под давлением 2,0-2,5 кгс/см со скоростью теплоносителя в трубопроводе 1,2-1,4 м/с к пароструйному обогревателю, где за счет сопла, установленного в пароструйном обогревателе, увеличивают скорость теплоносителя до 16-18 м/с, одновременно в приемную камеру диаметром, равным 1,4-1,5 от диаметра трубопровода, и длиной камеры, равной 2,0-2,5 от диаметра трубопровода подают под давлением 2,5-3,0 кгс/см пар, теплоноситель из сопла вместе с паром подают в смесительную камеру длиной, равной 4-5 диаметрам трубопровода, и внутренним диаметром 0,7-0,8 от диаметра трубопровода, после смесительной камеры поток расширяют до исходного внутреннего диаметра трубопровода и теплоноситель подают в рубашку реактора.

Изобретение относится к области получения сферических порохов (СФП) для стрелкового оружия.

Из литературных источников [1, 2] известны процессы, проводимые в реакторах, имеющих рубашку для нагрева смеси. В качестве теплоносителя для нагрева смеси используется вода, пар, этиленгликоль и др. Использование известных способов нагрева смеси в реакторах при получении СФП связано с увеличением длительности технологического процесса и невозможностью получения качественных характеристик пороха, например, по пористости, насыпной плотности и геометрическим размерам пороховых элементов.

В качестве ближайшего аналога авторами выбран способ обогрева реактора для получения сферических порохов [3], согласно которому первоначально заполняют систему обогрева реактора, включающую рубашку реактора, сборник и трубопроводы, водой, которую из сборника подают насосом в пароструйный обогреватель, смешивают с паром и полученную смесь в качестве теплоносителя подают в рубашку реактора с заданной температурой и обеспечением турбулентности потока смеси, при этом устанавливают разницу температур между входом и выходом смеси из рубашки реактора в пределах 1…2°С.

Недостатком такого способа обогрева реактора является то, что при смешении пара с водой в пароструйном обогревателе происходят гидроудары и перед подачей теплоносителя в рубашку реактора возможны колебания температур, что фиксируют термометры сопротивления, установленные перед подачей теплоносителя в рубашку реактора.

Техническим результатом является получение СФП со стабильными физико-химическими и баллистическими характеристиками путем обеспечения смешения пара с водой в пароструйном обогревателе, где из пароструйного обогревателя теплоноситель выходит со строго заданной температурой и подается в рубашку реактора.

Технический результат достигается тем, что теплоноситель насосом по трубопроводу подают в пароструйный обогреватель под давлением 2,0…2,5 кгс/см2 со скоростью теплоносителя в трубопроводе 1,2…1,4 м/с к пароструйному обогревателю, где за счет сопла, установленного в пароструйном обогревателе, увеличивают скорость теплоносителя до 16…18 м/с, одновременно в приемную камеру диаметром равным 1,4…1,5 от диаметра трубопровода и длиной камеры равной 2,0…2,5 от диаметра трубопровода подают под давлением 2,5…3,0 кгс/см2 пар, теплоноситель из сопла вместе с паром подают в смесительную камеру длиной равной 4…5 диаметрам трубопровода и внутренним диаметром 0,7…0,8 от диаметра трубопровода, после смесительной камеры поток расширяют до исходного внутреннего диаметра трубопровода и теплоноситель подают в рубашку реактора.

На чертеже приведена схематическая конструкция пароструйного обогревателя, состоящего из сопла поз.1, приемной камеры поз.2 и камеры смешения поз.3.

Работает пароструйный обогреватель следующим образом: теплоноситель под давлением 2,0…2,5 кгс/см2 подается насосом по трубопроводу со скоростью 1,2…1,4 м/с в пароструйный обогреватель в сопловую часть поз.1. В сопловой части скорость теплоносителя увеличивается до 16…18 м/с. Одновременно в приемную камеру поз.2 диаметром 1,4…1,5 от диаметра трубопровода и длиной камеры равной 2,0…2,5 от диаметра трубопровода подают пар под давлением 2,5…3,0 кгс/см2. Теплоноситель из сопла вместе с паром подают в смесительную камеру поз.3 длиной равной 4…5 диаметрам трубопровода и внутренним диаметром 0,7…0,8 от диаметра трубопровода, где при скорости теплоносителя 2,8…2,9 м/с происходит интенсивное смешение пара с водой. При этом гидродинамических ударов не происходит и при выходе из смесительной камеры теплоноситель принимает заданную температуру. Из смесительной камеры теплоноситель в трубопроводе расширяется и подается в рубашку реактора со скоростью 1,2…1,4 м/с.

Снижение давления, создаваемого насосом менее 2,0 кгс/см2 и скорости теплоносителя менее 1,2 м/с, не обеспечивает стабильного смешения пара с водой, а увеличение давления более 2,5 кгс/см2 и скорости потока более 1,4 м/с связано с дополнительным сопротивлением при движении теплоносителя по трубопроводу.

Уменьшение скорости теплоносителя в сопловой части менее 16 м/с не обеспечивает стабильного перемешивания пара с водой в смесительной камере, а увеличение скорости теплоносителя в сопловой части более 18 м/с связано с дополнительными трудозатратами и расходом дополнительной электроэнергии.

Уменьшение диаметра приемной камеры менее 1,4 от диаметра трубопровода и длины камеры менее 2,0 от диаметра трубопровода не обеспечивает равномерного распределения подаваемого пара в объем теплоносителя, а увеличение диаметра приемной камеры более 1,5 и ее длины более 2,5 от диаметра трубопровода связано с увеличением габаритов пароструйного обогревателя. Уменьшение давления пара менее 2,5 кгс/см2 приводит к неравномерному смешению пара с водой, а увеличение давления пара более 3,0 кгс/см2 связано с дополнительными трудозатратами.

Уменьшение длины смесительной камеры менее 4 диаметров трубопровода и внутреннего диаметра смесительной камеры менее 0,7 диаметра связано с дополнительным сопротивлением потока и приводит к отдельным гидравлическим ударам, а увеличение длины смесительной камеры более 5 диаметров трубопровода и внутреннего диаметра более 0,8 от диаметра трубопровода положительного эффекта не дает. Уменьшение скорости теплоносителя в смесительной камере менее 2,8 м/с приводит к появлению гидроударов, а увеличение скорости теплоносителя в смесительной камере более 2,9 м/с положительного эффекта не дает.

Технологические режимы, физико-химические и баллистические характеристики СФП по разработанному авторами способу (примеры 1…3) и по известному способу (примеры 4, 5) приведены в таблице.

Таблица
Технологические режимы, физико-химические и баллистические характеристики СФП
Наименование показателя Пример (Пр.№1) Пр.№2 Пр.№3 Пр.№4 Пр.№5
Давление подаваемого теплоносителя в трубопроводах до пароструйного обогревателя, кгс/см2 2,0 2,2 2,5 2,0 2,5
Скорость теплоносителя в трубопроводе, м/с 1,2 1,3 1,4 1,2 1,4
Диаметр приемной камеры от диаметра трубопровода 1,4 1,45 1,5 1,6 1,7
Длина приемной камеры от диаметра трубопровода 2,0 2,2 2,5 1,8 3,0
Давление пара, кгс/см2 2,5 2,7 3,0 2,1 3,0
Длина смесительной камеры от диаметра трубопровода 4 4,5 5,0 2,0 6,0
Внутренний диаметр смесительной камеры от диаметра трубопровода 0,7 0,75 0,8 0,6 0,9
Скорость теплоносителя в смесительной камере, м/с 2,8 2,85 2,9 2,6 3,2
Скорость теплоносителя за пароструйным обогревателем, м/с 1,2 1,3 1,4 1,2 1,4
Насыпная плотность пороха, кг/дм3 0,926 0,936 0,945 0,915 0,920
Пористость, % 4,0 4,5 5,0 8,0 7,0
Химическая стойкость, мм рт.ст. 32 32 32 32 32
Баллистические характеристики
Масса заряда, г 0,83 0,85 0,91 0,80 0,81
Средняя скорость полета пуль, м/с 558 553 559 559 540

Продолжение таблицы
Разброс скорости полета пуль, м/с 13 6 15 22 25
Максимальное давление пороховых газов в баллистической группе, МПа
Среднее 221,0 233,2 258,8 258,8 259,8
Наибольшее 234,1 258,9 302,0 302,0 327,5

По техническим условиям: средняя скорость полета пуль в баллистической группе - не менее 550 м/с, разброс между наибольшим и наименьшим значениями скорости полета пуль - не более 35 м/с; максимальное давление пороховых газов в баллистической группе, МПа: среднее - не более 264, наибольшее - не более 313,7.

Из приведенных данных таблицы видно, что по разработанному авторами способу получения СФП (примеры 1…3) система «рубашка реактора-сборник теплоносителя-трубопроводы» заполнены теплоносителем, который подается насосом в пароструйный обогреватель и при смешении конденсата пара в смесительной камере пароструйного обогревателя происходит нагрев теплоносителя в течение не более 1 минуты до заданной температуры. Время нагрева смеси в реакторе при самых интенсивных тепловых нагрузках не превышает 15 минут. Общий цикл формирования 7,0…7,2 часа.

Полученный СФП имеет пористость пороховых элементов не более 5%, насыпная плотность в пределах 0,926…0,945 кг/дм3. При этом обеспечиваются стабильные баллистические характеристики как по скорости полета пуль, так и по давлению пороховых газов в канале ствола оружия.

По известному способу (примеры 4, 5) нагрев воды в сборнике длится 20 минут. Обогрев реактора происходит неравномерно, общий цикл получения СФП составляет 9,2 часа. При этом физико-химические и баллистические характеристики значительно ниже, чем по разработанному авторами способу. Кроме того, следует отметить, что по известному способу на стенках рубашки реактора происходит отложение солей (накипь), на удаление которой требуются дополнительные трудозатраты.

Литература:

1. Касаткин А.Г. Основные процессы и аппараты химической технологии. - М.: Химия, 1973. - 750 с.

2. Плановский А.Н., Николаев П.И. Процессы и аппараты химической технологии. - М.: Химия, 987. - 492 с.

3. Заявка №2010104369/02 (006142) от 08.02.2010.

Способ получения сферических порохов для стрелкового оружия, характеризующийся тем, что первоначально заполняют систему обогрева реактора, включающую рубашку реактора, сборник и трубопроводы, водой, которую из сборника подают насосом в пароструйный обогреватель, смешивают с паром и полученную смесь в качестве теплоносителя подают в рубашку реактора с заданной температурой, отличающийся тем, что теплоноситель насосом по трубопроводу подают в пароструйный обогреватель под давлением 2,0-2,5 кгс/см со скоростью теплоносителя в трубопроводе 1,2-1,4 м/с к пароструйному обогревателю, где за счет сопла, установленного в пароструйном обогревателе, увеличивают скорость теплоносителя до 16-18 м/с, одновременно в приемную камеру диаметром, равным 1,4-1,5 от диаметра трубопровода, и длиной камеры, равной 2,0-2,5 от диаметра трубопровода подают под давлением 2,5-3,0 кгс/см пар, теплоноситель из сопла вместе с паром подают в смесительную камеру длиной, равной 4-5 диаметрам трубопровода, и внутренним диаметром 0,7-0,8 от диаметра трубопровода, после смесительной камеры поток расширяют до исходного внутреннего диаметра трубопровода и теплоноситель подают в рубашку реактора.
СПОСОБ ПОЛУЧЕНИЯ СФЕРИЧЕСКИХ ПОРОХОВ ДЛЯ СТРЕЛКОВОГО ОРУЖИЯ
Источник поступления информации: Роспатент

Showing 121-130 of 185 items.
13.01.2017
№217.015.8208

Единый полный переменный заряд миномётного 82-мм выстрела

Изобретение относится к области вооружения, а именно к единому полному переменному заряду (ЕППЗ) для выстрела 3ВО36 к 82-мм миномету 2Б24. Включает дополнительный заряд (ДЗ) из модифицированного пироксилинового пороха (ПП) в жестких сгорающих картузах (ЖСК), размещенных на трубке стабилизатора...
Тип: Изобретение
Номер охранного документа: 0002601662
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.8419

Способ получения двухосновного сферического пороха для стрелкового оружия

Изобретение относится к получению двухосновных сферических порохов (СФП) для стрелкового оружия. Сферические элементы, состоящие из нитроцеллюлозы, нитроглицерина, дифениламина, динитротолуола, централита II, графита и влаги, флегматизируют в аппарате-флегматизаторе флегматизирующей эмульсией....
Тип: Изобретение
Номер охранного документа: 0002602904
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.8499

Способ получения одноосновного сферического пороха для стрелкового оружия

Изобретение относится к получению одноосновных сферических порохов для стрелкового оружия. Пороховые элементы, состоящие из нитроцеллюлозы, дифениламина, графита и влаги, флегматизируют в аппарате-флегматизаторе флегматизирующей эмульсией. В аппарат-флегматизатор заливают воду, при турбулентном...
Тип: Изобретение
Номер охранного документа: 0002602906
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.8b8a

Способ получения сферического пороха для патронов стрелкового оружия

Изобретение относится к получению сферических порохов (СФП) для стрелкового оружия, а именно к регенерации этилацетата после 30-40 циклов его использования в технологическом процессе для дальнейшего использования этилацетата в технологическом цикле. Используемый в технологическом процессе...
Тип: Изобретение
Номер охранного документа: 0002604235
Дата охранного документа: 10.12.2016
13.01.2017
№217.015.8fe0

Способ получения сферических порохов

Изобретение относится к способу отгонки растворителя из пороховых элементов при получении сферического пороха для стрелкового оружия. После ввода сернокислого натрия в дисперсионную среду ведут отгонку растворителя путем подъема температуры теплоносителя с 68°С до 86-87°С. В процессе подъема...
Тип: Изобретение
Номер охранного документа: 0002605252
Дата охранного документа: 20.12.2016
25.08.2017
№217.015.a087

Способ бронирования твердотопливных зарядов

Изобретение относится к изготовлению бронированных твердотопливных зарядов, покрытие которых исключает горение забронированных поверхностей. Бронирование термостойкого заряда топлива осуществляется в две стадии. На первой стадии на поверхность топливной шашки кистью наносят клей ЭЛ-20 на основе...
Тип: Изобретение
Номер охранного документа: 0002606612
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a159

Способ нанесения защитного покрытия на целлюлозный материал

Изобретение относится к способу получения защитных покрытий на целлюлозных материалах и изделий из них. Способ включает создание на материале слоя подложки и основного защитного покрытия, причем в качестве подложки на поверхность наносится поливинилацетат (ПВА) путем окунания изделия в водную...
Тип: Изобретение
Номер охранного документа: 0002606608
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a28e

Мощный некорродирующий ударно-воспламеняющий состав для капсюля-воспламенителя к патронам стрелкового оружия

Изобретение относится к ударно-воспламеняющим составам для капсюля-воспламенителя к патронам стрелкового оружия. Состав содержит тринитрорезорцинат свинца, нитрат бария, тетразен и сульфид сурьмы (нано-антимоний) с размером частиц 70-100 Нм, как основной компонент горючего и сенсибилизатора....
Тип: Изобретение
Номер охранного документа: 0002607211
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a7f9

Способ определения степени замещения метилцеллюлозы ик-спектроскопией

Разработан способ определения степени замещения метилцеллюлозы, основанный на применении приставки НПВО к ИК-спектрометру, не требующий операций пробоподготовки и позволяющий работать непосредственно с веществами в твердом агрегатном состоянии. Образцы, в виде порошков, спектрометрируют в...
Тип: Изобретение
Номер охранного документа: 0002611381
Дата охранного документа: 21.02.2017
25.08.2017
№217.015.a934

Термостойкий газогенерирующий состав

Изобретение относится к термостойким газогенерирующим составам, применяемым и эксплуатируемым в температурном диапазоне от минус (70±3)°C до плюс (155±5)°C. Газогенерирующий состав содержит окислитель - 1,3,5-тринитро-1,3,5-триазациклогексан или смесь 1,3,5-тринитро-1,3,5-триазациклогексана и...
Тип: Изобретение
Номер охранного документа: 0002611506
Дата охранного документа: 27.02.2017
Showing 121-130 of 209 items.
13.01.2017
№217.015.8419

Способ получения двухосновного сферического пороха для стрелкового оружия

Изобретение относится к получению двухосновных сферических порохов (СФП) для стрелкового оружия. Сферические элементы, состоящие из нитроцеллюлозы, нитроглицерина, дифениламина, динитротолуола, централита II, графита и влаги, флегматизируют в аппарате-флегматизаторе флегматизирующей эмульсией....
Тип: Изобретение
Номер охранного документа: 0002602904
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.8499

Способ получения одноосновного сферического пороха для стрелкового оружия

Изобретение относится к получению одноосновных сферических порохов для стрелкового оружия. Пороховые элементы, состоящие из нитроцеллюлозы, дифениламина, графита и влаги, флегматизируют в аппарате-флегматизаторе флегматизирующей эмульсией. В аппарат-флегматизатор заливают воду, при турбулентном...
Тип: Изобретение
Номер охранного документа: 0002602906
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.8b8a

Способ получения сферического пороха для патронов стрелкового оружия

Изобретение относится к получению сферических порохов (СФП) для стрелкового оружия, а именно к регенерации этилацетата после 30-40 циклов его использования в технологическом процессе для дальнейшего использования этилацетата в технологическом цикле. Используемый в технологическом процессе...
Тип: Изобретение
Номер охранного документа: 0002604235
Дата охранного документа: 10.12.2016
13.01.2017
№217.015.8fe0

Способ получения сферических порохов

Изобретение относится к способу отгонки растворителя из пороховых элементов при получении сферического пороха для стрелкового оружия. После ввода сернокислого натрия в дисперсионную среду ведут отгонку растворителя путем подъема температуры теплоносителя с 68°С до 86-87°С. В процессе подъема...
Тип: Изобретение
Номер охранного документа: 0002605252
Дата охранного документа: 20.12.2016
25.08.2017
№217.015.a087

Способ бронирования твердотопливных зарядов

Изобретение относится к изготовлению бронированных твердотопливных зарядов, покрытие которых исключает горение забронированных поверхностей. Бронирование термостойкого заряда топлива осуществляется в две стадии. На первой стадии на поверхность топливной шашки кистью наносят клей ЭЛ-20 на основе...
Тип: Изобретение
Номер охранного документа: 0002606612
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a159

Способ нанесения защитного покрытия на целлюлозный материал

Изобретение относится к способу получения защитных покрытий на целлюлозных материалах и изделий из них. Способ включает создание на материале слоя подложки и основного защитного покрытия, причем в качестве подложки на поверхность наносится поливинилацетат (ПВА) путем окунания изделия в водную...
Тип: Изобретение
Номер охранного документа: 0002606608
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a28e

Мощный некорродирующий ударно-воспламеняющий состав для капсюля-воспламенителя к патронам стрелкового оружия

Изобретение относится к ударно-воспламеняющим составам для капсюля-воспламенителя к патронам стрелкового оружия. Состав содержит тринитрорезорцинат свинца, нитрат бария, тетразен и сульфид сурьмы (нано-антимоний) с размером частиц 70-100 Нм, как основной компонент горючего и сенсибилизатора....
Тип: Изобретение
Номер охранного документа: 0002607211
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a7f9

Способ определения степени замещения метилцеллюлозы ик-спектроскопией

Разработан способ определения степени замещения метилцеллюлозы, основанный на применении приставки НПВО к ИК-спектрометру, не требующий операций пробоподготовки и позволяющий работать непосредственно с веществами в твердом агрегатном состоянии. Образцы, в виде порошков, спектрометрируют в...
Тип: Изобретение
Номер охранного документа: 0002611381
Дата охранного документа: 21.02.2017
25.08.2017
№217.015.a934

Термостойкий газогенерирующий состав

Изобретение относится к термостойким газогенерирующим составам, применяемым и эксплуатируемым в температурном диапазоне от минус (70±3)°C до плюс (155±5)°C. Газогенерирующий состав содержит окислитель - 1,3,5-тринитро-1,3,5-триазациклогексан или смесь 1,3,5-тринитро-1,3,5-триазациклогексана и...
Тип: Изобретение
Номер охранного документа: 0002611506
Дата охранного документа: 27.02.2017
25.08.2017
№217.015.b82e

Резиновая смесь для изготовления акустических покрытий

Изобретение относится к резиновой промышленности и может быть использовано в производстве многослойных, перфорированных крупногабаритных звукоизолирующих полимерных покрытий, применение которых обеспечивает снижение уровней первичной и вторичной акустических полей защищаемого объекта,...
Тип: Изобретение
Номер охранного документа: 0002615378
Дата охранного документа: 04.04.2017
+ добавить свой РИД