×
10.11.2013
216.012.7d39

Результат интеллектуальной деятельности: ДВИГАТЕЛЬНАЯ УСТАНОВКА КОСМИЧЕСКОГО ЛЕТАТЕЛЬНОГО АППАРАТА (ВАРИАНТЫ) И СПОСОБ ЕЕ ЭКСПЛУАТАЦИИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к ракетно-космической технике. Двигательная установка включает криогенный бак с экранно-вакуумной теплоизоляцией, расходный клапан, бустерный насос, трубопровод питания, камеру сгорания двигателя и заборное устройство криогенного бака, содержащее нижнее днище криогенного бака, накопитель капиллярного типа с теплообменником под сеточным разделителем и дроссельное устройство. На входе в камеру сгорания двигателя установлен двухпозиционный пуско-отсечной клапан, обеспечивающий до запуска двигателя выход испаренной криогенной жидкости за пределы космического летательного аппарата, и вводящий в процессе и после запуска двигателя криогенную жидкость в камеру сгорания двигателя. Двигательная установка по первому варианту содержит канал, сообщающий выход из теплообменника с полостью между расходным клапаном и бустерным насосом, обеспечивающий постоянное захолаживание конструкции двигателя до пуска двигателя и между его запусками. Двигательная установка по второму варианту содержит трубопровод с компенсатором перемещений, сообщающий выход из теплообменника с трубопроводом питания за бустерным насосом. Способ эксплуатации двигательной установки включает подачу криогенной жидкости из накопителя в теплообменник через дроссельное устройство и охлаждение криогенной жидкости в накопителе с помощью теплообменника. До очередного запуска двигателя сообщают трубопровод питания двигателя с дренажно-подпорным трубопроводом, далее при очередном запуске и штатной работе двигателя сообщают трубопровод питания двигателя с камерой сгорания двигателя, по окончании работы двигателя сообщают трубопровод питания двигателя с дренажно-подпорным трубопроводом для обеспечения охлаждения конструкции двигателя до следующего его запуска. Достигается улучшение массовых характеристик двигательной установки космического летательного аппарата и повышение надежности ее функционирования. 3 н.п. ф-лы, 2 ил.

Изобретение относится к ракетно-космической технике и может быть применено в качестве жидкостной ракетной двигательной установки космического летательного аппарата в условиях ее многоразового включения.

При хранении в космическом летательном аппарате криогенного топлива в космических условиях между запусками двигателя имеет место прогрев заборного устройства и прилегающей к нему криогенной жидкости с возможным образованием паровой фазы. Средства хранения и подачи криогенной жидкости в двигатель, в состав которых входит заборное устройство, должны при заливке и запуске двигателя обеспечить поступление в него криогенной жидкости без паровых включений, при этом температура криогенной жидкости должна быть ниже температуры насыщения при давлении в баке космического летательного аппарата.

Прототипом является двигательная установка, включающая криогенный бак, бустерный насос, трубопровод питания, камеру сгорания двигателя и заборное устройство криогенного бака, содержащее нижнее днище криогенного бака, накопитель капиллярного типа с теплообменником под сеточным разделителем и дроссельным устройством для подачи криогенной жидкости с заданным расходом из накопителя капиллярного типа в теплообменник, для обеспечения запуска двигателя.

Прототипом способа эксплуатации двигательной установки является способ, включающий подачу криогенной жидкости из накопителя в теплообменник через дроссельное устройство и охлаждение криогенной жидкости в накопителе с помощью теплообменника. (Оба прототипа описаны в книге «Капиллярные системы отбора жидкости из баков космических летательных аппаратов». Авторы: В.В. Багров, А.В. Курпатенков, В.Н. Поляев, А.Л. Синцов, В.Ф. Сухоставец. Москва, УНПЦ «Энергомаш», 1977 г., стр.99-105).

Согласно известной двигательной установке накопитель криогенной жидкости, предназначенный для удержания жидкости, установлен на нижнем днище бака и представляет собой цилиндрическую обечайку с конусной крышкой.

Для предотвращения высыхания фазоразделяющих экранов (сеточный разделитель) на боковой поверхности накопителя и его крышке расположен охлаждающий змеевик. Змеевик установлен также на днище бака, что предотвращает поступление тепла к накопителю от двигателя (кислородного бустерного насоса) и других элементов конструкции.

В накопителе предусмотрена конструкция переохлаждения жидкости, состоящая из заборного устройства и теплообменника. Теплообменник предназначен для охлаждения находящегося в накопителе кислорода между запусками и в период запуска двигателя. В процессе запуска двигателя элементы конструкции двигателя захолаживаются за счет протока кислорода из накопителя через бустерный насос, трубопровод питания и основной турбонасосный агрегат в двигатель. Сброс кислорода осуществляется через камеру сгорания двигателя.

Охладителем в змеевике и теплообменнике является хранимый в накопителе жидкий кислород, который во время полета поступает из накопителя через дроссельное устройство в теплообменник и в змеевик, где из-за уменьшения давления насыщения и соответственно снижения температуры появляется разница между температурой охладителя и конструкцией. Жидкость в змеевике и теплообменнике частично испаряется, и через клапан и дренажный трубопровод удаляется за борт в окружающее пространство (практический вакуум). Это устройство термостатирования испарительного типа.

Такое устройство обеспечения температуры жидкости и конструкции имеет следующие недостатки:

- Из-за неполного испарения кислорода в теплообменнике имеет место неэффективное использование холодозапаса криогенной жидкости, что приводит к непроизводительному выбросу кислорода и ухудшению массовых характеристик двигательной установки.

- Наличие клапанов на выходе из каналов охлаждения и необходимость управления ими усложняет работу системы управления и снижает надежность функционирования двигательной установки.

- Захолаживание прогретой конструкции двигателя проводится непосредственно в процессе его запуска. В условиях кипения и парообразования криогенной жидкости на неохлажденных, элементах конструкции расход кислорода в начале запуска не стабилен. Затягивается время выхода двигателя на номинальный режим, при этом происходит непроизводительный выброс кислорода, что приводит к ухудшению массовых характеристик двигательной установки. Задачей предложенной двигательной установки космического летательного аппарата и способа ее эксплуатации является улучшение массовых характеристик двигательной установки космического летательного аппарата и повышение надежности ее функционирования.

Задача по первому варианту решается за счет того, что в двигательную установку космического летательного аппарата, включающую криогенный бак, с экранно-вакуумной теплоизоляцией, расходный клапан, бустерный насос, трубопровод питания, камеру сгорания двигателя и заборное устройство криогенного бака, содержащее нижнее днище криогенного бака, накопитель капиллярного типа с теплообменником под сеточным разделителем и дроссельным устройством для подачи криогенной жидкости с заданным расходом из накопителя капиллярного типа в теплообменник, введен канал, сообщающий выход из теплообменника с полостью между расходным клапаном и бустерным насосом, обеспечивающий постоянное захолаживание конструкции двигателя до пуска двигателя и между его запусками, причем в канале установлена подпорная шайба, поддерживающая заданное давление и температуру криогенной жидкости в теплообменнике.

На входе в камеру сгорания двигателя установлен двухпозиционный пуско-отсечной клапан, обеспечивающий до запуска двигателя, с помощью подсоединенного к нему дренажно-подпорного трубопровода, выход испаренной криогенной жидкости за пределы космического летательного аппарата. А в процессе и после запуска двигателя двухпозиционный пуско-отсечной клапан вводит криогенную жидкость в камеру сгорания двигателя, при этом проходное сечение дренажно-подпорного трубопровода совместно с подпорной шайбой выбирают обеспечивающим давление в полости двигателя выше давления замерзания криогенной жидкости.

Задача по второму варианту решается за счет того, что в двигательную установку космического летательного аппарата, включающую криогенный бак с экранно-вакуумной теплоизоляцией, расходный клапан, бустерный насос, трубопровод питания, камеру сгорания двигателя и заборное устройство криогенного бака, содержащее нижнее днище криогенного бака, накопитель капиллярного типа с теплообменником под сеточным разделителем и дроссельное устройство для подачи криогенной жидкости с заданным расходом из накопителя капиллярного типа в теплообменник, введен трубопровод с компенсатором перемещений. Трубопровод сообщает выход из теплообменника с трубопроводом питания за бустерным насосом, обеспечивающий постоянное захолаживание конструкции двигателя до пуска двигателя и между его запусками. В трубопроводе установлена подпорная шайба, поддерживающая заданное давление и температуру криогенной жидкости в теплообменнике, а компенсатор перемещений трубопровода обеспечивает компенсацию технологических и относительных перемещений конструкции в процессе монтажа трубопровода и эксплуатации двигательной установки.

На входе в камеру сгорания двигателя установлен двухпозиционный пуско-отсечной клапан, обеспечивающий до запуска двигателя, с помощью подсоединенного к нему дренажно-подпорного трубопровода, выход испаренной криогенной жидкости за пределы космического летательного аппарата. А в процессе и после запуска двигателя двухпозиционный пуско-отсечной клапан вводит криогенную жидкость в камеру сгорания двигателя, при этом проходное сечение дренажно-подпорного трубопровода совместно-с подпорной шайбой выбирают обеспечивающим давление в полости двигателя выше давления замерзания криогенной жидкости.

Задача решается за счет того, что в способе эксплуатации двигательной установки, включающим подачу криогенной жидкости из накопителя в теплообменник через дроссельное устройство и охлаждение криогенной жидкости в накопителе с помощью теплообменника, сначала до очередного запуска двигателя сообщают трубопровод питания двигателя с дренажно-подпорным трубопроводом, при этом обеспечивается прохождение криогенной жидкости через подпорную шайбу и выход испаренной в процессе охлаждения конструкции двигателя криогенной жидкости за пределы космического летательного аппарата. Далее при очередном запуске и штатной работе двигателя сообщают трубопровод питания двигателя с камерой сгорания двигателя, затем по окончании работы двигателя сообщают трубопровод питания двигателя с дренажно-подпорным трубопроводом для обеспечения охлаждения конструкции двигателя до следующего его запуска.

На фиг.1 схематично представлена двигательная установка космического летательного аппарата по первому варианту, на фиг.2 схематично представлена двигательная установка космического летательного аппарата по второму варианту, где:

1. криогенный бак с экранно-вакуумной теплоизоляцией;

2. расходный клапан;

3. бустерный насос;

4. трубопровод питания двигателя;

5. камера сгорания двигателя;

6. нижнее днище криогенного бака;

7. накопитель капиллярного типа;

8. теплообменник;

9. сеточный разделитель;

10. дроссельное устройство;

11. трубопровод;

12. компенсатор перемещений;

13. подпорная шайба;

14. двухпозиционный пуско-отсечной клапан;

15. дренажно-подпорный трубопровод;

16. основной турбонасосный агрегат;

17. канал;

18. выход из теплообменника;

19. полость между расходным клапаном и бустерным насосом.

По первому варианту в двигательную установку космического летательного аппарата, включающую криогенный бак с экранно-вакуумной теплоизоляцией 1, расходный клапан 2, бустерный насос 3, трубопровод питания двигателя 4, камеру сгорания двигателя 5 и заборное устройство криогенного бака, содержащее нижнее днище криогенного бака 6, накопитель капиллярного типа 7 с теплообменником 8 под сеточным разделителем 9 и дроссельное устройство 10 для подачи криогенной жидкости с заданным расходом из накопителя капиллярного типа 7 в теплообменник 8, введен канал 17, сообщающий выход из теплообменника 18 с полостью между расходным клапаном и бустерным насосом 19, обеспечивающий постоянное захолаживание конструкции двигателя до пуска двигателя и между его запусками, причем в канале 17 установлена подпорная шайба 13, поддерживающая заданное давление и температуру криогенной жидкости в теплообменнике 8.

Канал 17, например, может быть выполнен в виде патрубка, сообщающего выход из теплообменника 18 с полостью между расходным клапаном и бустерным насосом 19, или в виде сообщения выхода из теплообменника 18 с полостью между расходным клапаном и бустерным насосом 19 с помощью сверлений в теле фланцевого соединения криогенного бака с экранно-вакуумной теплоизоляцией 1 и расходного клапана 2.

На входе в камеру сгорания двигателя 5 установлен двухпозиционный пуско-отсечной клапан 14, обеспечивающий до запуска двигателя, с помощью подсоединенного к нему дренажно-подпорного трубопровода 15, выход испаренной криогенной жидкости за пределы космического летательного аппарата. А в процессе и после запуска двигателя двухпозиционный пуско-отсечной клапан 14 вводит криогенную жидкость в камеру сгорания двигателя 5, при этом проходное сечение дренажно-подпорного трубопровода 15 совместно с подпорной шайбой 13 выбирают обеспечивающим давление в полости двигателя выше давления замерзания криогенной жидкости.

По второму варианту в двигательную установку космического летательного аппарата, включающую криогенный бак с экранно-вакуумной теплоизоляцией 1, расходный клапан 2, бустерный насос 3, трубопровод, питания двигателя 4, камеру сгорания двигателя 5 и заборное устройство криогенного бака, содержащее нижнее днище криогенного бака 6, накопитель капиллярного типа 7 с теплообменником 8 под сеточным разделителем 9 и дроссельное устройство 10 для подачи криогенной жидкости с заданным расходом из накопителя капиллярного типа 7 в теплообменник 8, введен трубопровод 11 с компенсатором перемещений 12. Трубопровод 11 сообщает выход из теплообменника 8 с трубопроводом питания 4 за бустерным насосом 3, обеспечивающий постоянное захолаживание конструкции двигателя до пуска двигателя и между его запусками. В трубопроводе 11 установлена подпорная шайба 13, поддерживающая заданное давление и температуру криогенной жидкости в теплообменнике 8, а компенсатор перемещений 12 трубопровода 11 обеспечивает компенсацию технологических и относительных перемещений конструкции в процессе монтажа трубопровода 11 и эксплуатации двигательной установки.

На входе в камеру сгорания двигателя 5 установлен двухпозиционный пуско-отсечной клапан 14, обеспечивающий до запуска двигателя, с помощью подсоединенного к нему дренажно-подпорного трубопровода 15, выход испаренной криогенной жидкости за пределы космического летательного аппарата. А в процессе и после запуска двигателя двухпозиционный пуско-отсечной клапан 14 вводит криогенную жидкость в камеру сгорания двигателя 5, при этом проходное сечение дренажно-подпорного трубопровода 15 совместно с подпорной шайбой 13 выбирают обеспечивающим давление в полости двигателя выше давления замерзания криогенной жидкости.

Сообщение выхода из теплообменника 18 с полостью между расходным клапаном и бустерным насосом 19 по первому варианту позволяет за счет охлаждения трубопровода питания двигателя 4, бустерного насоса 3 и основного турбонасосного агрегата 16 двигателя во время полета между запусками двигателя существенно уменьшить теплоприток к заборному устройству криогенного бака 6 теплопроводностью по конструкции и излучением, а также снизить потребный расход криогенной жидкости через теплообменник 8. Позволяет также поднять давление в трубопроводе питания двигателя 4 выше тройной точки криогенной жидкости (например, жидкого кислорода), что исключает образование криогенного льда на расходном клапане 2 и тем самым повышает надежность функционирования космического летательного аппарата. Постоянное до запуска охлаждение конструкции двигателя улучшает условия его запуска, а отсутствие клапана за теплообменником 8 исключает необходимость управления его работой при смене режимов полета космического летательного аппарата.

При сообщении теплообменника 8 с трубопроводом питания двигателя 4 за бустерным насосом 3 по второму варианту сохраняются положительные качества, перечисленные выше по первому варианту.

Однако, из-за отсутствия клапана в теплообменнике 8 во время работы бустерного агрегата 3 криогенная жидкость из трубопровода питания двигателя 4, где давление выше, чем давление в криогенном баке с экранно-вакуумной теплоизоляцией 1, поступит по теплообменнику 8 и через дроссельное устройство 10 в полость накопителя капиллярного типа 7 под сеточным разделителем 9. В виду малого проходного сечения дроссельного устройства 10 расход через него не превысит 10-2% от величины расхода через бустерный агрегат 3, поэтому влиянием этого расхода на работу и характеристики двигательной установки можно пренебречь.

При сообщении выхода из теплообменника 18 с полостью между расходным клапаном и бустерным насосом 19 по первому варианту перетекание криогенной жидкости в криогенный бак с экранно-вакуумной теплоизоляцией 1 из-за незначительной разницы давления между полостью накопителя капиллярного типа 7 под сеточным разделителем 9 и давлением за расходным клапаном 2 при работе двигательной установки практически отсутствует.

Теплообменник 8 охлаждает криогенную жидкость в полости накопителя капиллярного типа 7 под сеточным разделителем 9 до температуры не ниже температуры насыщения криогенной жидкости при давлении в теплообменнике 8, создаваемом за счет введения подпорной шайбы 13 в канал 17 по первому варианту в трубопровод 11 по второму варианту. Таким образом, подпорная шайба 13 заданного проходного сечения обеспечивает требуемую температуру криогенной жидкости на выходе из криогенного бака с экранно-вакуумной теплоизоляцией 1 при запуске двигателя.

Двигательная установка космического летательного аппарата, включающая криогенный бак с экранно-вакуумной теплоизоляцией 1, расходный клапан 2, бустерный насос 3, трубопровод питания двигателя 4, камеру сгорания двигателя 5 и заборное устройство криогенного бака, содержащее нижнее днище криогенного бака 6, накопитель капиллярного типа 7 с теплообменником 8 под сеточным разделителем 9 и дроссельным устройством 10 для подачи криогенной жидкости с заданным расходом из накопителя капиллярного типа 7 в теплообменник 8, работает следующим образом.

Во время заправки и стоянки заправленного криогенного бака с экранно-вакуумной теплоизоляцией 1 из-за наличия в полости двигателя атмосферного давления, которое значительно выше рабочего давления в теплообменнике 8, проходящая через дроссельное устройство 10 в теплообменник 8 криогенная жидкость не газифицируется и не понижает температуру нижнего днища криогенного бака 6 и установленного на нем заборного устройства криогенного бака. Однако, криогенная жидкость, попадая в трубопровод питания двигателя 4 по каналу 17 по первому варианту или по трубопроводу 11 по второму варианту, испаряется, охлаждает элементы конструкции двигателя, подготавливая его к первому запуску, и через дренажи удаляется в атмосферу. При этом температура заборного устройства криогенного бака и нижнего днища криогенного бака 6 соответствует температуре жидкости в криогенном баке с экранно-вакуумной теплоизоляцией 1. После прохождения космическим летательным аппаратом атмосферы и снижения давления в трубопроводе питания двигателя 4, в процессе последующего полета космического летательного аппарата криогенная жидкость за дроссельным устройством 10 газифицируется, ее температура становится ниже температуры жидкости в криогенном баке с экранно-вакуумной теплоизоляцией 1 и соответствует температуре насыщения при давлении, обеспечиваемым подпорной шайбой 13. За счет разницы между температурой криогенной жидкости в нижней части криогенного бака с экранно-вакуумной теплоизоляцией 1, температурой заборного устройства криогенного бака и температурой криогенной жидкости в теплообменнике 8 охлаждается заборное устройство криогенного бака и криогенная жидкость в полости накопителя капиллярного типа 7 под сеточным разделителем 9. В теплообменник 8 за счет передачи тепла теплопроводностью по конструкции также поступает теплоприток от бустерного насоса 3, что приводит к испарению криогенной жидкости в теплообменнике 8. По мере охлаждения криогенной жидкости в накопителе капиллярного типа 7 под сеточным разделителем 9 в теплообменнике 8 уменьшается доля испаряющейся криогенной жидкости. Испаренная и частично испаренная криогенная жидкость поступает в трубопровод питания двигателя 4, где за счет теплообмена с конструкцией доиспаряется, понижая температуру элементов конструкции двигателя и увеличивая надежность его запуска. Криогенная жидкость, поступающая из теплообменника 8, повышает давление в трубопроводе питания двигателя 4 выше его тройной точки (например, для жидкого кислорода ~ 0,146·10-3 МПа), исключая возможность образования криогенного льда на расходном клапане 2 и тем самым повышая надежность запуска двигателя.

Испаренная и нагретая за счет контакта с конструкцией двигателя криогенная жидкость через двухпозиционный пуско-отсечной клапан 14 и дренажно-подпорный трубопровод 15 удаляется за пределы космического летательного аппарата, при этом проходное сечение дренажно-подпорного трубопровода 15 обеспечивает давление в трубопроводе питания двигателя 4 выше тройной точки криогенной жидкости. При запуске двигателя открывается расходный клапан 2, раскручивается вал бустерного насоса 3, двухпозиционный пуско-отсечной клапан 14 перекрывает дренажно-подпорный трубопровод 15 и открывает подачу криогенной жидкости в камеру сгорания двигателя 5.

Предложенная двигательная установка космического летательного аппарата и способ ее эксплуатации обеспечивает повышение массовых характеристик двигательной установки космического летательного аппарата за счет сокращения от 50 до 100% расхода криогенной жидкости (например, жидкого кислорода) на предпусковое захолаживание двигателя, и увеличение надежности функционирования двигательной установки космического летательного аппарата за счет повышение эффективности термостатирования криогенной жидкости в накопителе капиллярного типа 7 под сеточным разделителем 9 в требуемом температурном режиме с помощью подпорной шайбы 13, размещенной на выходе из теплообменника 8, а также за счет постоянного захолаживания конструкции двигателя малым расходом криогенной жидкости через подпорную шайбу 13 до пуска двигателя и между его запусками, при этом обеспечивается снижение теплопритоков к заборному устройству криогенного бака.

Кроме того, повышение давления в трубопроводе питания двигателя 5 выше тройной точки криогенной жидкости исключает образование криогенного льда на расходном клапане 2, повышая надежность запуска двигателя.


ДВИГАТЕЛЬНАЯ УСТАНОВКА КОСМИЧЕСКОГО ЛЕТАТЕЛЬНОГО АППАРАТА (ВАРИАНТЫ) И СПОСОБ ЕЕ ЭКСПЛУАТАЦИИ
ДВИГАТЕЛЬНАЯ УСТАНОВКА КОСМИЧЕСКОГО ЛЕТАТЕЛЬНОГО АППАРАТА (ВАРИАНТЫ) И СПОСОБ ЕЕ ЭКСПЛУАТАЦИИ
Источник поступления информации: Роспатент

Showing 271-280 of 377 items.
26.08.2017
№217.015.ddb4

Система фиксации космонавта при передвижении по внешней поверхности космического объекта (варианты) и способ её эксплуатации (варианты)

Группа изобретений относится к космической технике, а именно к средствам обеспечения безопасной деятельности на внешней поверхности космического объекта (КО), например орбитальной станции (ОС). Система фиксации космонавта при передвижении по внешней поверхности КО включает поручни, жестко...
Тип: Изобретение
Номер охранного документа: 0002624895
Дата охранного документа: 07.07.2017
26.08.2017
№217.015.dde2

Система фиксации космонавта при передвижении по внешней поверхности космического объекта и способ её эксплуатации

Группа изобретений относится к страховочным средствам внекорабельной деятельности космонавта, а также может быть использована в других видах монтажных работ. Система фиксации включает в себя поручни, закрепленные на внешней поверхности космического объекта, и закрепленную на скафандре...
Тип: Изобретение
Номер охранного документа: 0002624891
Дата охранного документа: 07.07.2017
26.08.2017
№217.015.ddfd

Способ определения максимальной выходной мощности солнечных батарей космического аппарата

Изобретение относится к электроснабжению космических аппаратов (КА) с помощью солнечных батарей (СБ). Способ включает разворот панели СБ в рабочее положение, измерение напряжения (U) и тока (I) от СБ в моменты, когда излучение от Земли поступает на нерабочую сторону панели СБ, и определение...
Тип: Изобретение
Номер охранного документа: 0002624885
Дата охранного документа: 07.07.2017
26.08.2017
№217.015.de1c

Устройство для измерения массы рабочего тела, газообразного при нормальных условиях, в баллоне электроракетной двигательной установки и способ определения его массы

Предлагаемое изобретение относится к области электроракетных двигательных установок (ЭРДУ) и может быть использовано в системах хранения и подачи рабочего тела ЭРДУ. Устройство для измерения массы рабочего тела, газообразного при нормальных условиях, в баллоне электроракетной двигательной...
Тип: Изобретение
Номер охранного документа: 0002624688
Дата охранного документа: 05.07.2017
26.08.2017
№217.015.de7e

Способ определения выходного тока солнечной батареи космического аппарата

Изобретение относится к электроснабжению космических аппаратов (КА) с помощью солнечных батарей (СБ). Способ включает разворот панели СБ в рабочее положение и измерение тока от СБ в моменты, когда излучение от Земли поступает на нерабочую сторону панели СБ. Определяют текущее значение угла...
Тип: Изобретение
Номер охранного документа: 0002624763
Дата охранного документа: 06.07.2017
26.08.2017
№217.015.df0b

Способ определения характеристик оптического канала передачи информационного сигнала

Способ определения характеристик оптического канала передачи информационного сигнала включает в себя измерение затухания оптического канала от источника оптического излучения до приемника оптического излучения. При этом производят перемещение лазерного пучка согласованно с линейным перемещением...
Тип: Изобретение
Номер охранного документа: 0002624976
Дата охранного документа: 11.07.2017
29.12.2017
№217.015.fa09

Приёмник-преобразователь лазерного излучения

Изобретение может быть использовано в беспроводных системах дистанционного энергопитания воздушных или космических объектов. Предложенный приемник-преобразователь лазерного излучения включает несущую силовую конструкцию с установленной на ней приемной плоскостью площадью S, на внешней стороне...
Тип: Изобретение
Номер охранного документа: 0002639738
Дата охранного документа: 22.12.2017
19.01.2018
№218.016.00b2

Способ контроля текущего состояния панели солнечной батареи космического аппарата

Изобретение относится к космической технике. Способ контроля текущего состояния панели солнечной батареи (СБ) космического аппарата (КА) включает поворот панели СБ в положения, при которых рабочая поверхность СБ освещена Солнцем, измерение значений тока от СБ, сравнение определяемого параметра,...
Тип: Изобретение
Номер охранного документа: 0002629647
Дата охранного документа: 30.08.2017
19.01.2018
№218.016.00c0

Способ управления космическим кораблём при сближении с кооперируемым космическим аппаратом

Изобретение относится к операциям сближения и стыковки космических аппаратов (КА) на околокруговой орбите, например, грузового космического корабля в качестве КА и международной космической станции в качестве кооперируемого КА (ККА). После выведения КА на опорную орбиту определяют параметры...
Тип: Изобретение
Номер охранного документа: 0002629644
Дата охранного документа: 30.08.2017
19.01.2018
№218.016.00e2

Способ испытания пневмогидравлической системы

Изобретение относится к ракетно-космической технике и может быть применено в различных видах техники, где используется пневмогидравлическая система. Заявленный способ испытания пневмогидравлической системы включает подачу контрольного газа в пневмогидравлическую систему, контроль испытательного...
Тип: Изобретение
Номер охранного документа: 0002629697
Дата охранного документа: 31.08.2017
Showing 271-280 of 307 items.
25.08.2017
№217.015.d35e

Способ управления космическим аппаратом дистанционного зондирования земли

Изобретение относится к управлению полетом специализированных космических аппаратов (КА). Способ включает построение инерциальной солнечной ориентации КА системой силовых гироскопов, измерение векторов их кинетических моментов, поддержание данной ориентации с одновременной разгрузкой...
Тип: Изобретение
Номер охранного документа: 0002621933
Дата охранного документа: 08.06.2017
26.08.2017
№217.015.d394

Космический модуль

Изобретение относится к космической технике, а именно к малым космическим модулям (КМ). КМ содержит силовой корпус блочного типа в виде скрепленных ребер правильной призмы с торцевыми панелями, имеющими вырезы для корпуса оптико-электронного модуля (ОЭМ) и для крепления блока реактивной...
Тип: Изобретение
Номер охранного документа: 0002621783
Дата охранного документа: 07.06.2017
26.08.2017
№217.015.dda6

Электропривод

Изобретение относится к машиностроению, а более конкретно к электроприводам. Электропривод содержит корпус с расточкой, подшипниковый щит, кронштейн с электродвигателем с шестерней и цилиндрический зубчатый редуктор. Кронштейн выполнен в виде двух фланцев, соединенных друг с другом аксиальными...
Тип: Изобретение
Номер охранного документа: 0002624886
Дата охранного документа: 07.07.2017
26.08.2017
№217.015.dda9

Средство и способ защиты искусственных объектов от воздействия факторов космического пространства

Группа изобретений относится к области защиты сооружаемых на Луне объектов от радиации, экстремальных температур и микрометеороидов. Средство защиты содержит оболочку, заполненную реголитом и изготовленную из материала на основе стекловолокна с пределами рабочих температур от -200°C до +550°C и...
Тип: Изобретение
Номер охранного документа: 0002624893
Дата охранного документа: 07.07.2017
26.08.2017
№217.015.ddb4

Система фиксации космонавта при передвижении по внешней поверхности космического объекта (варианты) и способ её эксплуатации (варианты)

Группа изобретений относится к космической технике, а именно к средствам обеспечения безопасной деятельности на внешней поверхности космического объекта (КО), например орбитальной станции (ОС). Система фиксации космонавта при передвижении по внешней поверхности КО включает поручни, жестко...
Тип: Изобретение
Номер охранного документа: 0002624895
Дата охранного документа: 07.07.2017
26.08.2017
№217.015.dde2

Система фиксации космонавта при передвижении по внешней поверхности космического объекта и способ её эксплуатации

Группа изобретений относится к страховочным средствам внекорабельной деятельности космонавта, а также может быть использована в других видах монтажных работ. Система фиксации включает в себя поручни, закрепленные на внешней поверхности космического объекта, и закрепленную на скафандре...
Тип: Изобретение
Номер охранного документа: 0002624891
Дата охранного документа: 07.07.2017
26.08.2017
№217.015.ddfd

Способ определения максимальной выходной мощности солнечных батарей космического аппарата

Изобретение относится к электроснабжению космических аппаратов (КА) с помощью солнечных батарей (СБ). Способ включает разворот панели СБ в рабочее положение, измерение напряжения (U) и тока (I) от СБ в моменты, когда излучение от Земли поступает на нерабочую сторону панели СБ, и определение...
Тип: Изобретение
Номер охранного документа: 0002624885
Дата охранного документа: 07.07.2017
26.08.2017
№217.015.de1c

Устройство для измерения массы рабочего тела, газообразного при нормальных условиях, в баллоне электроракетной двигательной установки и способ определения его массы

Предлагаемое изобретение относится к области электроракетных двигательных установок (ЭРДУ) и может быть использовано в системах хранения и подачи рабочего тела ЭРДУ. Устройство для измерения массы рабочего тела, газообразного при нормальных условиях, в баллоне электроракетной двигательной...
Тип: Изобретение
Номер охранного документа: 0002624688
Дата охранного документа: 05.07.2017
26.08.2017
№217.015.de7e

Способ определения выходного тока солнечной батареи космического аппарата

Изобретение относится к электроснабжению космических аппаратов (КА) с помощью солнечных батарей (СБ). Способ включает разворот панели СБ в рабочее положение и измерение тока от СБ в моменты, когда излучение от Земли поступает на нерабочую сторону панели СБ. Определяют текущее значение угла...
Тип: Изобретение
Номер охранного документа: 0002624763
Дата охранного документа: 06.07.2017
26.08.2017
№217.015.df0b

Способ определения характеристик оптического канала передачи информационного сигнала

Способ определения характеристик оптического канала передачи информационного сигнала включает в себя измерение затухания оптического канала от источника оптического излучения до приемника оптического излучения. При этом производят перемещение лазерного пучка согласованно с линейным перемещением...
Тип: Изобретение
Номер охранного документа: 0002624976
Дата охранного документа: 11.07.2017
+ добавить свой РИД