×
27.10.2013
216.012.7abd

Результат интеллектуальной деятельности: СПОСОБ ОЦЕНКИ ТЕРМОДИНАМИЧЕСКОГО РАВНОВЕСИЯ ГАЗОЖИДКОСТНОЙ СМЕСИ ПРИ ПРОВЕДЕНИИ ФИЛЬТРАЦИОННЫХ ЭКСПЕРИМЕНТОВ

Вид РИД

Изобретение

№ охранного документа
0002497083
Дата охранного документа
27.10.2013
Аннотация: Способ оценки термодинамического равновесия газожидкостной смеси при проведении фильтрационных экспериментов предусматривает закачивание в многофазный сепаратор газовой и жидкой фаз с заданными объемным соотношением фаз в потоке и расходами. В процессе закачки регистрируют объемы газовой и жидкой фаз в сепараторе и рассчитывают скорость накопления каждой фазы в сепараторе. О степени термодинамического равновесия фаз судят по расхождению между скоростями закачки фаз и скоростями их накопления в сепараторе. Технический результат - возможность проверки равновесия газожидкостной смеси и оценки качества пары газ-жидкость (газ-конденсат) не только перед, но и в процессе, а также после фильтрационного эксперимента. 3 з.п. ф-лы, 2 ил.

Изобретение относится к способам экспериментального исследования фильтрации газо-жидкостной смеси и может быть использовано, например, в лабораториях, специализирующихся на специальном анализе керна, в частности, измерении фазовых проницаемостей при многофазной фильтрации смешивающихся флюидов (например, газоконденсатная смесь) через керн горных пород.

В процессе проведения лабораторных экспериментов по многофазной фильтрации флюидов через керны горных пород критическим фактором является качество подготовки самих флюидов. В отличие от случая однофазной фильтрации для измерения фазовой проницаемости (ФП) по каждому флюиду крайне необходимо, чтобы все флюиды находились в термодинамическом равновесии, которое определяется стабилизацией давления и температуры. Ситуация осложняется при использовании таких пар флюидов как газ-конденсат, где газовая и жидкая фазы характеризуются схожими физическими свойствами. Если фазы не находятся в термодинамическом равновесии, то между ними происходят фазовые переходы, то есть уменьшение объема одной из фаз с увеличением объема остальных фаз. Последнее обстоятельство делает практически невозможным контролируемую закачку каждой из фаз с фиксированной объемной скоростью.

Обычно, флюидная пара газ-конденсат готовится либо в термодинамической ячейке (PVT-ячейке, PVT-бомбе) или в специальном контейнере (баллоне) при некоторых заданных давлении и температуре. Термодинамическое равновесие для фиксированных давления и температуры считается достигнутым после стабилизации давления фаз. По различным причинам для экспериментальных исследований бывает удобно разделять (сепарировать) фазы (жидкую и газовую) в разные контейнеры.

Часто возникает необходимость в транспортировке и хранении контейнеров с разделенными фазами, например, перемещение из лаборатории термодинамических исследований флюидов в лабораторию потоковых (фильтрационных) исследований керна. В этом случае очень вероятно нарушение термодинамического равновесия фаз вследствие изменчивости внешних условий (температуры, давления, механического воздействия). Даже спустя продолжительное время после температурной стабилизации в контейнерах, фазы после их смешения, вероятнее всего, выйдут из состояния термодинамического равновесия, и не достигнут исходного состояния (после приготовления равновесной газоконденсатной смеси). В результате, пара флюидов, закачиваемая в керн, может быть термодинамически неравновесной.

В случае пары газ-конденсат этот эффект выражается в возникновении фазовых переходов: из газа в жидкость и наоборот. Как следствие, объемное соотношение фаз, заданное на закачивающих насосах, может значительно отличаться от объемного соотношения фаз для флюида перед входом в керн. На практике в большинстве случаев предполагается, что флюиды, поступающие в керн, уже находятся в термодинамическом равновесии, что, как правило, никак не проверяется.

Все существующие эксперименты по фильтрации газоконденсатной смеси через керн горных пород можно условно разделить на две группы: закачка смеси в однофазном (газообразном) состоянии с последующим разделением на газовую и жидкую фазы и накоплением жидкой фазы (газового конденсата) в керне вследствие падения давления, вызванного фильтрацией, и раздельная закачка одновременно обеих газовой и жидкой фаз с различными объемными долями в потоке в кернодержатель (керн). Если целью фильтрационного эксперимента является определение фазовых проницаемостей, то наиболее приемлемым вариантом является одновременная закачка обеих газовой и жидкой фаз, находящихся в термодинамическом равновесии.

Некоторые исследователи (см. например, Н. Calisgan and S. Akin, Near Critical Gas Condensate Relative Permeability of Carbonates, The Open Petroleum Engineering Journal, 1, 30-41 1874-8341/08, 2008, Bentham) поступают следующим образом: перед каждым тестом поровое пространство керна полностью насыщается обогащенной метанолом жидкой фазой, которая растворяет любое остаточное количество н-гексана. Температура фильтрационной системы устанавливается согласно требованиям эксперимента. Обогащенная метанолом жидкая фаза входит в термодинамическое равновесие с фазой н-гексана. В итоге, обогащенная н-гексаном фаза закачивается в керн с требуемым объемным расходом. Однако в этом случае исследователи никак не проверяют наличие термодинамического равновесия между фазами.

Известен способ проверки термодинамического равновесия газа и конденсата, который состоит в использовании прозрачной термодинамической (PVT) ячейки и визуальном наблюденим границы раздела между газовой и жидкой фазами. Пример такой системы описан в Н.L. Chen, S.D. Wilson, and Т.G. Monger-McClure. 1999, Determination of Relative Permeability and Recovery for North Sea Gas-Condensate Reservoirs. SPE Reservoir Eval. & Eng. 2 (4), August 1999.

Многие исследователи готовят раздельно газ и конденсат перед экспериментом и помещают контейнеры с фазами в фильтрационную установку, всего лишь предполагая наличие термодинамического равновесия между фазами (см., например, М. Jamiolahmady, M. Sohraby, S. Ireland. 2008, Gas condensate relative permeabilities in propped porous media: coupling versus inertia. SPE Annual Technical Conference and Exhibition, SPE 115726).

Технический результат, достигаемый при реализации изобретения, заключается в обеспечении возможности проверки равновесности газожидкостной смеси и оценки качества пары газ-жидкость (газ-конденсат) не только перед, но и в процессе, а также после фильтрационного эксперимента. Предложенную последовательность действий можно выполнять для оперативного контроля качества флюидов независимо от самого фильтрационного эксперимента.

В соответствии с предлагаемым способом оценки термодинамического равновесия газожидкостной смеси газовую и жидкую фазу с заданными объемным соотношением в потоке и расходами по меньшей мере один раз закачивают с большой скоростью в многофазный сепаратор, регистрируют в процессе закачки объемы газовой и жидкой фаз в сепараторе, рассчитывают скорость накопления каждой фазы в сепараторе и вычисляют расхождение между скоростями закачки фаз и скоростями их накопления в сепараторе, по которому судят о степени термодинамического равновесия фаз.

Изобретение поясняется чертежами, где на фиг.1 показана гидравлическая схема установки для двухфазной фильтрации через керн, на фиг.2 - результаты фильтрационного эксперимента.

Предлагаемый способ может быть использован при работе на стандартном оборудовании для фильтрационных экспериментов на керне (например: Coretest Systems RPS-850, Гло-Бел УИК-5(3)), которое включает в свой состав следующие элементы (фиг.1): 1, 2 - поршневые насосы; 3 - контейнер флюидов высоких давления и температуры; 4 - нагревательная лента с теплоизоляцией; 5, 6 - поршневые контейнеры; 7 - кернодержатель; 8 - дифференциальный манометр; 9 - термостатированная камера; 10 - система поддержания обжимного (горного) давления; 11 - датчик температуры; 12, 13 -терморегуляторы; 14-22 - датчики давления; 23 - двухфазный сепаратор высокого давления с ультразвуковым уровнемером; 24 - обратный клапан (регулятор обратного давления); 25 - керн.

Основным аппаратным узлом для предлагаемого способа является сепаратор 23 флюидов, рассчитанный на высокую температуру и давление, и оснащенный уровнемером. Сепаратор может иметь различную конструкцию и принцип работы. При опробовании и тестировании предложенного способа был использован сепаратор SFS-032 производства компании Coretest Systems. Примерный принцип работы сепаратора следующий: смесь жидкостей снизу поступает в сепаратор, где под действием силы тяжести более плотная фаза остается в нижней части сепаратора, а более легкая накапливается в верхней части, при этом отбор ведется либо из верхней, либо из нижней части, т.е. отбирается либо только более легкая, либо только более плотная фаза. Далее, определяется положение границы раздела фаз и, с учетом геометрических размеров сепаратора, определяется объем фаз, находящихся в сепараторе.

Предлагаемый способ оценки термодинамического равновесия газожидкостной смеси основана на следующем принципе: если две или более фазы, которые закачиваются в сепаратор по обводной линии (минуя кернодержатель), находятся в термодинамическом равновесии, то их объемное отношение в сепараторе должно быть равно объемному отношению при закачке (задается параметрами насосов) при целевых давлении и температуре.

Способ может быть реализован следующим образом.

Перед началом, во время или после фильтрационного (потокового) эксперимента для оценки степени термодинамического равновесия между газовой и жидкой (конденсатной) фазами, выполняют следующую последовательность действий.

Подготовливают сепаратор 23 к работе: заполняют сепаратор обеими фазами при экспериментальных давлении и температуре путем одновременной закачки насосом 2 газа и насосом 1 конденсата по обводной линии, минуя кернодержатель 7.

Посредством насосов 2 и 1 осуществляют закачку газовой и жидкой фаз с заданными фиксированными отношением объемов газа и конденсата в потоке и расходами газа и конденсата по обводной линии, минуя кернодержатель 7, и одновременно регистрируют объемы газовой и жидкой фаз, вышедших из насосов, а также объемы фаз внутри сепаратора. В промышленном оборудовании нефтегазовой отрасли для измерения объемов в сепараторе, среди прочих, широко применяется ультразвуковой акустический уровнемер. В последнем случае, объемы фаз внутри сепаратора определяются исходя из положения границы раздела фаз, определенной по времени прохождения до нее акустической волны, а также с учетом геометрических размеров сепаратора.

Вычисляют скорость накопления фаз в сепараторе, используя данные о суммарном объеме закачанных фаз, геометрических размерах сепаратора, положении границы раздела фаз, а также, учитывая отводимую фазу, т.е. учитывая, что из сепаратора отводится либо только легкая (газовая), либо только тяжелая (конденсат) фаза, при этом, предполагая, что суммарный объем обеих фаз закачиваемый насосами (суммарная скорость закачки) равен объему отводимой из сепаратора фазы (скорости отбора отводимой фазы).

Для повышения точности повторяют предыдущие действия с различными суммарными скоростями закачки. Также, для повышения достоверности полученных данных, можно проводить закачку при различных соотношениях расходов фаз, т.е. при различных долях фаз в потоке.

Вычисляют расхождение между скоростями закачки фаз и скоростями их накопления в сепараторе.

В случае если расхождение между объемной скоростью закачки и скоростью накопления фаз в сепараторе пренебрежимо мало или сравнимо с погрешностью определения объема с помощью сепаратора, то считается, что фазы флюида находятся в термодинамическом равновесии, и могут быть использованы в фильтрационном эксперименте на керне. Однако, если расхождение превышает некоторое допустимое (желаемое) граничное значение, то считается, что испытуемая пара флюидов не находится в термодинамическом равновесии и не должна быть использована в фильтрационном эксперименте на керне.

Способ был успешно протестирован и применен в процессе проведения реального газоконденсатного фильтрационного эксперимента с результатами, показанными на фиг.2. Перед началом эксперимента все элементы фильтрационной установки, показанной на фиг.1, были заполнены газом и конденсатом (проба 2) при экспериментальных давлении и температуре.. На фиг.2 хорошо видно, что разность между закачанным объемом конденсата и объемом конденсата, рассчитанным по показаниям сепаратора на выходе из кернодержателя, примерно равна ошибке определения объема по показаниям сепаратора, то есть ±0.02 см3. В процессе фильтрационного эксперимента проба 2 была израсходована, и в термодинамической лаборатории была приготовлена новая проба 3, которая была заряжена в фильтрационную установку. В результате применения предложенного способа для проверки степени термодинамического уравновешенности фаз обнаружилась большая потеря (убыль) конденсата из сепаратора (проба 3 на фиг.2). Проба 3 была признана термодинамически неравновесной и непригодной для участия в фильтрационном эксперименте даже после нескольких дней стабилизации при целевых давлении и температуре (проба 3 от 29 и 30.12.10 на фиг.2). После подробного исследования процедуры подготовки пробы 3 (приготовление в термодинамической лаборатории, транспортировка, загрузки в фильтрационную установку) был исправлен ряд недостатков и нарушений. Последняя пара флюидов (проба 5 на фиг.2) была проверена на равновесность с помощью предложенной методики, признана удовлетворительной и, далее, использована в фильтрационном эксперименте.


СПОСОБ ОЦЕНКИ ТЕРМОДИНАМИЧЕСКОГО РАВНОВЕСИЯ ГАЗОЖИДКОСТНОЙ СМЕСИ ПРИ ПРОВЕДЕНИИ ФИЛЬТРАЦИОННЫХ ЭКСПЕРИМЕНТОВ
СПОСОБ ОЦЕНКИ ТЕРМОДИНАМИЧЕСКОГО РАВНОВЕСИЯ ГАЗОЖИДКОСТНОЙ СМЕСИ ПРИ ПРОВЕДЕНИИ ФИЛЬТРАЦИОННЫХ ЭКСПЕРИМЕНТОВ
Источник поступления информации: Роспатент

Showing 51-60 of 112 items.
27.10.2015
№216.013.8a88

Система и способ выполнения операции интенсификации

Группа изобретений относится к вариантам способа выполнения операции интенсификации. Способ содержит получение объединенных данных о месте расположения скважины (например, геомеханические, геологические и/или геофизические свойства подземной формации и/или геометрические свойства механических...
Тип: Изобретение
Номер охранного документа: 0002567067
Дата охранного документа: 27.10.2015
27.11.2015
№216.013.940f

Способ определения давления в скважине

Изобретение относится к области исследования нефтяных и газовых скважин и предназначено для корректировки результатов измерений давления в высокопродуктивных скважинах, проведенных во время испытания скважины. Техническим результатом является повышение точности определения давления в скважине....
Тип: Изобретение
Номер охранного документа: 0002569522
Дата охранного документа: 27.11.2015
10.12.2015
№216.013.9662

Устройство для каротажного электромагнитного зондирования (варианты)

Изобретение относится к области геофизических исследований в скважинах и может быть использовано для измерения электрических характеристик горных пород, находящихся вокруг скважин, бурящихся на нефть и газ. Технический результат: расширение информации о неоднородной проводимости породы,...
Тип: Изобретение
Номер охранного документа: 0002570118
Дата охранного документа: 10.12.2015
20.01.2016
№216.013.a3fa

Способ определения скорости распространения акустических волн в пористой среде

Изобретение относится к области акустического анализа пористых материалов и может быть использовано для исследования образцов керна. Согласно предложенному способу определения скорости распространения акустических волн в пористой среде облучают по меньшей мере два образца пористой среды,...
Тип: Изобретение
Номер охранного документа: 0002573620
Дата охранного документа: 20.01.2016
10.04.2016
№216.015.2f13

Способ определения профиля закачки воды в нагнетательной скважине

Изобретение относится к области геофизических исследований нефтяных и газовых скважин, а именно к определению профиля закачки воды в нагнетательных скважинах. Технический результат - повышение точности определения профиля закачки с использованием нестационарной термометрии скважины. По способу...
Тип: Изобретение
Номер охранного документа: 0002580547
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2f67

Способ определения пористости образца породы

Использование: для определения пористости образца породы. Сущность изобретения заключается в том, что способ определения пористости образца породы предусматривает определение общего минералогического состава образца, определение относительного объемного содержания каждого минерала и определение...
Тип: Изобретение
Номер охранного документа: 0002580174
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2f70

Способ размещения источников сейсмических сигналов для системы наблюдений в сейсморазведке

Изобретение относится к области геофизики и может быть использовано для проведения сейсморазведки. Выбирают стандартную систему наблюдений, содержащую источники сейсмических сигналов, расположенные на поверхности возбуждения, и приемники сейсмических сигналов, расположенные на поверхности...
Тип: Изобретение
Номер охранного документа: 0002580155
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2fad

Способ акустического каротажа

Изобретение относится к области геофизики и может быть использовано в процессе геофизических исследований скважин. Согласно заявленному способу в скважине размещают с возможностью перемещения акустический каротажный прибор, содержащий по меньшей мере один источник направленных акустических...
Тип: Изобретение
Номер охранного документа: 0002580209
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.320c

Способ определения изменений параметров пористой среды под действием загрязнителя

Использование: для неразрушающего анализа образцов пористых материалов. Сущность изобретения заключается в том, что производят начальное насыщение образца пористой среды электропроводящей жидкостью, или совместно электропроводящей жидкостью и неэлектропроводящим флюидом, или только...
Тип: Изобретение
Номер охранного документа: 0002580177
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.3218

Способ размещения приемников сейсмических сигналов для системы наблюдений в сейсморазведке

Изобретение относится к области геофизики и может быть использовано при проведении сейсморазведки. Выбирают стандартную систему наблюдений, содержащую источники сейсмических сигналов, расположенные на поверхности возмущения, и приемники сейсмических сигналов, расположенные на поверхности...
Тип: Изобретение
Номер охранного документа: 0002580206
Дата охранного документа: 10.04.2016
Showing 51-60 of 81 items.
27.06.2015
№216.013.5a69

Способ повышения точности измерений расхода многофазной смеси в трубопроводе

Предложенное изобретение относится к процедуре контроля многофазных смесей при их транспортировке по трубопроводу, в процессе которого исключают процесс пробкообразования. Предложенный способ повышения точности измерений расхода многофазной смеси в трубопроводе заключается в том, что определяют...
Тип: Изобретение
Номер охранного документа: 0002554686
Дата охранного документа: 27.06.2015
20.09.2015
№216.013.7bf2

Способ характеристики неоднородности и определения теплопроводности материалов (варианты) и устройство для его осуществления

Изобретение относится к области изучения теплофизических свойств материалов и может быть использовано для определения теплопроводности материалов. Способы характеристики неоднородности и определения теплопроводности материалов предусматривают нагрев поверхности образцов неоднородных материалов...
Тип: Изобретение
Номер охранного документа: 0002563327
Дата охранного документа: 20.09.2015
27.10.2015
№216.013.8a88

Система и способ выполнения операции интенсификации

Группа изобретений относится к вариантам способа выполнения операции интенсификации. Способ содержит получение объединенных данных о месте расположения скважины (например, геомеханические, геологические и/или геофизические свойства подземной формации и/или геометрические свойства механических...
Тип: Изобретение
Номер охранного документа: 0002567067
Дата охранного документа: 27.10.2015
27.11.2015
№216.013.940f

Способ определения давления в скважине

Изобретение относится к области исследования нефтяных и газовых скважин и предназначено для корректировки результатов измерений давления в высокопродуктивных скважинах, проведенных во время испытания скважины. Техническим результатом является повышение точности определения давления в скважине....
Тип: Изобретение
Номер охранного документа: 0002569522
Дата охранного документа: 27.11.2015
10.12.2015
№216.013.9662

Устройство для каротажного электромагнитного зондирования (варианты)

Изобретение относится к области геофизических исследований в скважинах и может быть использовано для измерения электрических характеристик горных пород, находящихся вокруг скважин, бурящихся на нефть и газ. Технический результат: расширение информации о неоднородной проводимости породы,...
Тип: Изобретение
Номер охранного документа: 0002570118
Дата охранного документа: 10.12.2015
20.01.2016
№216.013.a3fa

Способ определения скорости распространения акустических волн в пористой среде

Изобретение относится к области акустического анализа пористых материалов и может быть использовано для исследования образцов керна. Согласно предложенному способу определения скорости распространения акустических волн в пористой среде облучают по меньшей мере два образца пористой среды,...
Тип: Изобретение
Номер охранного документа: 0002573620
Дата охранного документа: 20.01.2016
10.04.2016
№216.015.2f13

Способ определения профиля закачки воды в нагнетательной скважине

Изобретение относится к области геофизических исследований нефтяных и газовых скважин, а именно к определению профиля закачки воды в нагнетательных скважинах. Технический результат - повышение точности определения профиля закачки с использованием нестационарной термометрии скважины. По способу...
Тип: Изобретение
Номер охранного документа: 0002580547
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2f67

Способ определения пористости образца породы

Использование: для определения пористости образца породы. Сущность изобретения заключается в том, что способ определения пористости образца породы предусматривает определение общего минералогического состава образца, определение относительного объемного содержания каждого минерала и определение...
Тип: Изобретение
Номер охранного документа: 0002580174
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2f70

Способ размещения источников сейсмических сигналов для системы наблюдений в сейсморазведке

Изобретение относится к области геофизики и может быть использовано для проведения сейсморазведки. Выбирают стандартную систему наблюдений, содержащую источники сейсмических сигналов, расположенные на поверхности возбуждения, и приемники сейсмических сигналов, расположенные на поверхности...
Тип: Изобретение
Номер охранного документа: 0002580155
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2fad

Способ акустического каротажа

Изобретение относится к области геофизики и может быть использовано в процессе геофизических исследований скважин. Согласно заявленному способу в скважине размещают с возможностью перемещения акустический каротажный прибор, содержащий по меньшей мере один источник направленных акустических...
Тип: Изобретение
Номер охранного документа: 0002580209
Дата охранного документа: 10.04.2016
+ добавить свой РИД