×
27.10.2013
216.012.7896

СПОСОБ ФОРМИРОВАНИЯ МАГНИТОТЕРАПЕВТИЧЕСКОГО ВОЗДЕЙСТВИЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к медицинской технике, а именно к средствам для комплексной магнитотерапии. Способ заключается в размещении по всему телу пациента в два слоя, над и под ним, идентичных модулей в виде формирователей электромагнитного поля, подаче на них электрических сигналов регулируемой частоты и скважности через устройства управления от управляющей ЭВМ. Каждый формирователь электромагнитного поля включает трехкомпонентный индуктор, который совместно с мостовыми токовыми драйверами, локальным устройством управления в виде микроконтроллера и подключенными к нему схемами датчика измерения температуры и датчиков уровня токов и напряженности магнитного поля формирует ячейку-модуль, входящую в состав одной из двенадцати матриц ячеек-модулей, снабженную персональным адресом. Управляющая ЭВМ выделяет из идентичных ячеек-модулей ведущую ячейку-модуль для формирования сигнала синхронизации ведомым ячейкам-модулям. Формируют три набора сигналов, каждый из которых включает сигнал широтно-импульсной модуляции и сигнал полярности для обеспечения индивидуального воздействия магнитным полем от ведомых ячеек-модулей. Устройство осуществляет способ формирования магнитотерапевтического воздействия с созданием общей магнитотерапевтической среды. Использование изобретения позволяет расширить возможности формирования воздействия за счет создания векторно-управляемого магнитного поля. 2 н. и 4 з.п. ф-лы, 4 ил.
Реферат Свернуть Развернуть

Изобретение относится к области медицинской техники и может быть использовано для создания лечебно-диагностических систем комплексной магнитотерапии нового поколения, предназначенных для лечения широкого круга заболеваний.

Известен способ формирования магнитотерапевтического воздействия, реализованный в устройстве [1]. Данный способ основан на создании в магнитной системе из трех концентрических катушек индуктивности, расположенных взаимно перпендикулярно формируя сферу, внутренний объем которой является рабочим. Магнитное поле в такой системе способно изменяться по значению напряженности и направлению в пространстве с течением времени. Однако в указанном способе воздействие производится на ограниченный участок тела человека, при этом должно также выполняться требование, чтобы подвергаемый воздействию участок конечности оказался полностью в рабочем объеме камеры сферической формы и ограниченных размеров, что не позволяет реализовать воздействие на некоторые локальные участки на поверхности тела человека.

Известен способ формирования магнитотерапевтического воздействия реализованный в устройстве [2]. Данный способ предполагает формирование магнитотерапевтического воздействия с помощью трех ориентированных источников магнитного поля, оси которых взаимно перпендикулярны, а рабочая область находится вне внутреннего пространства обмоток излучателей. Формирование двух магнитных полей в таком трехкоординатном излучателе осуществляют индукторами-электромагнитами, длины которых превышают диаметр их обмоток, а формирование третьего магнитного поля - намотанной по их окружности круглой катушкой, диаметр которой превышает ее длину. Оси индукторов-электромагнитов устанавливают параллельно относительно плоскости круга катушки. Такая система позволяет управлять поворотом суммарного вектора магнитной индукции поля в трехмерном пространстве и как следствие формировать сложное пространственно-временное поле. Однако данная система ориентирована на формирование локального воздействия на малую часть тела человека.

Вышеперечисленные способы характеризуются тем, что магнитное поле в них может воздействовать только на локальные участки, в том числе на отдельные биологически активные точки биообъекта, но не позволяет комплексно воздействовать на целую систему организма (например, кровеносную) или весь организм.

Известен способ формирования магнитотерапевтического воздействия [3, 4], основанный на принципе формирования общей магнитотерапевтической среды путем подачи электрических сигналов в n индукторов, расположенных вокруг всего пациента. В данном способе используются одинаковые излучающие элементы, образованные как секции индукторов в виде ремней для различных частей тела пациента и размещенные на общем основании кушетки параллельно друг другу. При этом каждый из индукторов позволяет обеспечить только два направления вектора магнитной индукции поля. Наряду с этим, данное устройство исключает организацию специализированного локального воздействия на очаг заболевания.

Известен способ формирования магнитотерапевтического воздействия, реализованный в устройстве [5] и заключающийся в подаче на N индукторов, расположенных на пациенте, от единого блока формирования импульсных последовательностей электрических сигналов регулируемой частоты, скважности и амплитуды в течение заданного промежутка времени. Однако единый блок формирования электрических сигналов ставит в зависимость количество линий соединения и сложность организации самого блока от требуемого числа индукторов, а известно [6], что чем выше пространственно-временная неоднородность магнитного поля, тем выше его биологическая активность.

Известен способ формирования магнитотерапевтического воздействия на основе кольцевого магнитопровода из 2m сегментов, реализованный в устройстве [7]. На магнитопроводе размещена m-фазная обмотка, подключенная к управляемому источнику питания. Управляемый источник питания включает генераторы сигналов и систему управления, выходами подключенную к входам генераторов, а каждая фазная обмотка состоит из двух соединенных последовательно катушек, размещенных на диаметрально расположенных сегментах каждого индуктора и подключенных к выходу соответствующего генератора сигналов. При этом система управления осуществляет программирование амплитуды, частоты и сдвига фаз каждого генератора сигналов. Однако данная система позволяет получить поля разной конфигурации только вдоль оси лечебной камеры и имеет малое количество индукторов, что уменьшает пространственно-временную неоднородность магнитного поля по сравнению с системами с большим количеством индукторов.

Наиболее близкими являются способ и устройство формирования магнитотерапевтического воздействия [8] и [5], которые предполагают использование n одинаковых индукторов-электромагнитов, расположенных по всему пациенту для формирования общей магнитотерапевтической среды. При этом на индукторы в форме двоичных импульсных последовательностей регулируемой частоты и скважности в течение заданного промежутка времени подаются электрические сигналы. В способе и устройстве также реализуется возможность управления параметрами формируемого магнитного поля в зависимости от индивидуальных и осознанных ощущений пациента. Существенным недостатком данных способа и устройства является возможность создания каждым индуктором только двух направлений вектора магнитной индукции поля, а также отсутствие возможности независимо управлять каждым индуктором. В результате отсутствуют возможности создать локальные узкоспециализированные воздействия, и также невозможность организовать комбинации методик, сочетающих в себе общее воздействие на организм и области специализированного локального воздействия.

Техническим результатом предлагаемого изобретения как способа является расширение функциональных возможностей и повышение эффективности формирования сигналов магнитотерапевтического воздействия.

Технический результат достигается тем, что для формирования магнитотерапевтического воздействия размещают по всему телу пациента в два слоя, над и под ним, идентичные модули в виде формирователей электромагнитного поля, подают на них электрические сигналы в форме двоичных последовательностей регулируемой частоты и скважности в течение заданного промежутка времени через соответствующие устройства управления от управляющей ЭВМ, причем каждый формирователь электромагнитного поля включает трехкомпонентный индуктор, который совместно с мостовыми токовыми драйверами, локальным устройством управления в виде микроконтроллера, и подключенными к нему схемами датчика измерения температуры и датчиков уровня токов и напряженности магнитного поля, формирует ячейку-модуль, входящую в состав одной из двенадцати матриц ячеек-модулей, снабженную персональным адресом, а управляющая ЭВМ выделяет из идентичных ячеек-модулей ведущую ячейку-модуль для формирования сигнала синхронизации, через которую передаются сигналы управления ведомым ячейкам-модулям, при этом формируют три набора сигналов, каждый из которых включает сигнал широтно-импульсной модуляции и сигнал полярности для обеспечения индивидуального воздействия магнитным полем от ведомых ячеек-модулей. Кроме того, в персональный адрес ячейки-модуля включают информацию о ее пространственном расположении, а ячейка-модуль снабжается схемами датчика измерения температуры и датчиков уровня токов и напряженности магнитного поля, при этом информация о перегреве или замыкании используется локальным устройством управления для коррекции формируемого на ячейке-модуле магнитного поля и передачи информации на ЭВМ для сравнения с заданными параметрами и коррекции.

Техническим результатом предлагаемого изобретения как устройства является расширение функциональных возможностей и повышение эффективности формирования сигналов магнитотерапевтического воздействия.

Технический результат достигается тем, что устройство для формирования магнитотерапевтического воздействия содержит идентичные модули, включающие формирователи электромагнитного поля, подключенные через соответствующие устройства управления, выполненные с возможностью подачи на модули электрических сигналов в форме двоичных последовательностей регулируемой частоты и скважности в течение заданного промежутка времени, к управляющей ЭВМ. Каждый формирователь электромагнитного поля включает трехкомпонентный индуктор, подключенный через мостовые токовые драйверы к локальному устройству управления, при этом формирователь электромагнитного поля, мостовые токовые драйверы, локальное устройство управления в виде микроконтроллера, и подключенные к нему схемы датчика измерения температуры и датчиков уровня токов и напряженности магнитного поля формируют ячейку-модуль, входящую в состав одной из двенадцати матриц ячеек-модулей, при этом ячейки-модули подключены к шине управляющей ЭВМ через линию запроса прерывания и линию синхронизации и снабжены персональным адресом, а управляющая ЭВМ выполнена с возможностью формирования из идентичных ячеек-модулей ведущей ячейки-модуля, для формирования сигнала синхронизации, через которую передаются данные ведомым ячейкам-модулям. Кроме того, двенадцать матриц ячеек-модулей включают два одинаковых набора из шести матриц ячеек-модулей: для воздействия на голову пациента, для воздействия на туловище пациента и четыре матрицы для воздействия на каждую руку и ногу, а выход каждого из трех мостовых токовых драйвера ячейки-модуля подключен через соответствующий токоизмерительный резистор к одному из входов АЦП, интегрированного в микроконтроллер.

На фиг.1 представлена система, формирующая магнитотерапевтическое воздействие и реализующая данный способ. На фиг.2 представлен способ пространственного размещения ячеек-модулей. На фиг.3 представлено устройство одной из идентичных ячеек-модулей системы, формирующей магнитотерапевтическое воздействие по предлагаемому способу. На фиг.4, на примере группы из трех излучателей, представлен принцип суперпозиции создаваемых ими магнитных полей.

В состав системы, управляемой ЭВМ 1, входят: 2 - ведущая ячейка-модуль и 3.l, … 3.i, … 3.m - ведомые ячейки-модули, вся совокупность которых образует магнитотерапевтическую решетку 4.

Предлагаемая система 4 управляется ЭВМ 1 по стандартному интерфейсу 9 путем взаимодействия с одной из ячеек-модулей 2 системы, выделенной ЭВМ в качестве ведущей. Ячейка-модуль 2 также соединена по специализированному внутреннему интерфейсу 8 со всеми остальными ячейками-модулями системы, являющимися ведомыми 3.l, … 3.i, … 3.m. Специализированный интерфейс 8 содержит шину 5, линию синхронизации 6 и общую для всех ячеек-модулей линию запроса прерывания 7 (фиг.1).

Пространственно ячейки-модули размещают по всему телу пациента в два слоя, над и под ним и собирают из ячеек-модулей 12 матриц так, что в слое над и слое под пациентом образуют одинаковые наборы из 6 матриц для каждого из слоев. Таким образом, магнитотерапевтическая решетка 4 системы включает: 2 матрицы размером для воздействия на голову пациента, 2 матрицы размером 2N×М для воздействия на туловище пациента, и по 2 матрицы размером N×М для воздействия на каждую руку и ногу или содержит идентичных ячеек-модулей (фиг.2).

В состав каждой ячейки-модуля входят: 10, 11 - средства интеграции в систему; 12 - локальное устройство управления в виде микроконтроллера; 13, 14, 15 - мостовые токовые драйверы; 21 - формирователь электромагнитного поля в виде трехкомпонентного индуктора; 16 - схема датчика измерения температуры; 17 - схема измерения напряженности магнитного поля в виде трехкомпонентного датчика Холла и 18, 19, 20 - датчики уровня токов в виде токоизмерительных резисторов (фиг.3).

В предлагаемых ячейках-модулях 2,3.l, …, 3.m локальное устройство управления 12 соединено с набором мостовых токовых драйверов 13, 14, 15, к каждому из которых подключена соответствующая обмотка L1, L2, L3 трехкомпонентного индуктора - формирователя электромагнитного магнитного поля 21 и датчики измерения уровня тока на основе резисторов 18, 19, 20.

При этом к локальному устройству управления 12 подключены схема измерения температуры 16, схема измерения напряженности магнитного поля 17, средства для интеграции в систему 10 магнитотерапевтической решетки 4 и средства интеграции 11 для взаимодействия с управляющей ЭВМ 1.

Суть способа формирования магнитотерапевтического воздействия заключается в следующем. По всему телу пациента размещают в два слоя, над и под ним, идентичные ячейки-модули в виде формирователей электромагнитного поля, каждый из которых включает: трехкомпонентный индуктор, мостовой токовый драйвер, локальное устройство управления - микроконтроллер и схемы с датчиками для измерения температуры, уровня токов и напряженности магнитного поля.

Из всех ячеек-модулей формируют двенадцать матриц и с помощью управляющей ЭВМ по присвоенным персональным адресам выделяют ведущую ячейку-модуль, которая вырабатывает сигнал синхронизации. Подают от управляющей ЭВМ через ведущую ячейку-модуль электрические сигналы ведомым ячейкам-модулям в форме двоичных последовательностей регулируемой частоты и скважности в течение заданного промежутка времени. Все информационные параметры магнитного поля задаются в виде трех наборов сигналов, состоящих из сигналов широтно-импульсной модуляции и сигналов полярности, которые распределяются управляющей ЭВМ между всеми ячейками-модулями в соответствии с их пространственным расположением и представляют собой их индивидуальные данные магнитотерапевтического воздействия.

Контроль правильности функционирования ячеек-модулей и их допустимых значений параметров обеспечивается локальным устройством управления и датчиками для измерения температуры, уровня токов и напряженности магнитного поля. При этом информация о перегреве или замыкании индукторов используется локальным устройством управления для коррекции формируемого в ячейке-модуле магнитного поля и передачи информации на ЭВМ для сравнения с заданными параметрами и общей коррекции магнитотерапевтического воздействия.

Каждый формирователь электромагнитного поля содержит три индуктора-электромагнита один, из которых выполнен в форме кольцевой обмотки, а два других расположены внутри и в плоскости первого и ориентированны взаимно ортогонально.

На примере из трех таких индукторов рассмотрим формируемое ими магнитное поле (фиг.4). Сигналы данных для всех трех индукторов-электромагнитов формируются независимо. В результате, суммарная составляющая поля в заданной точке пространства, создаваемая только i-ым индуктором BSi (i=1…k, где k - число индукторов в системе) равна геометрической сумме векторов магнитной индукции Bi,x, Bi,y, Bi,z, создаваемых каждым из трех индукторов-электромагнитов. Например, для индуктора 3.2 на фиг.4 в точке A, не учитывая магнитное поле, формируемое другими трехкомпонентными индукторами системы, имеет место BS1, определяемая как геометрическая сумма В1,x, В1,y, В1,z от каждой из трех обмоток индуктора 3.2.

Для формирования магнитотерапевтического воздействия используется множество трехкомпонентных индукторов, размещенных над и под пациентом и имеющих определенное пространственное положение. Суммарный вектор магнитной индукции поля BS∑ в любой заданной точке рабочего пространства системы, будет равен геометрической сумме векторов магнитной индукции полей BSi, создаваемых каждым ее отдельным индуктором. Например, для системы из трех индукторов 3.1, 3.2, 3.3 в точке C, результирующий вектор B находится как геометрическая сумма результирующих векторов в данной точке B1, B2, B3 от каждого из индукторов 3.1, 3.2, 3.3.

В отличие от известных способов [3, 4, 9], векторно-управляемое поле такой системы может быть концентрированно направлено на очаг заболевания. В отличие от [2] воздействовать такой системой можно не только локально, но и комплексно или на весь организм или на одну из его систем. У предложенной матричной структуры объединения формирователей электромагнитного поля имеется также возможность создавать комбинацию общего воздействия в сочетании со специализированными локальными областями воздействия - этого не позволяет реализовать ни одна из имеющихся похожих систем.

Устройство работает следующим образом. Все ячейки-модули 2, 3.l, …, 3.m магнитотерапевтической решетки 4 являются взаимозаменяемыми и настраиваются для работы в соответствии с присвоенным персональным адресом. Управляющая ЭВМ 1 до этапа выполнения лечебной методики формирует индивидуальные данные магнитотерапевтического воздействия для каждой ячейки-модуля и передает их с указанием персонального адреса по стандартному интерфейсу 9 ведущей ячейке-модулю 2. Данные, предназначенные для нее, ячейка-модуль 2 оставляет у себя, а данные, предназначенные ведомым ячейкам-модулям 3.l, …, 3.m отправляет по шине 5. После распределения индивидуальных данных управляющая ЭВМ 7 запускает этап выполнения лечебной методики, на котором ведущая ячейка-модуль 2 формирует синхросигналы в линию 6, обеспечивая возможность синхронной работы всем ячейкам-модулям системы; обрабатывает запросы прерываний от ведомых ячеек-модулей 3.l, …, 3.m, которые они выставляются на линию 7; собирает текущую информацию о состоянии ячеек-модулей по шине 5 и передает ее управляющей ЭВМ 7, от которой, в свою очередь, принимает новую информацию о коррекции магнитотерапевтического воздействия и отправляет ее ведомым ячейкам-модулям 3.l, …, 3.m. В результате имеет место автоматизированная система ячеек-модулей с трехкомпонентными индукторами, образованными в матрицы и способными хранить распределенные индивидуальные данные магнитотерапевтического воздействия с возможностью их синхронного воспроизведения в виде организованного и структурированного магнитного поля. При этом система реализует канал обратной связи с ЭВМ, предназначенный для передачи информации о текущем состоянии ячеек-модулей и вырабатываемых параметров воздействия с возможностью оперативной коррекции данных.

Ячейка-модуль функционирует следующим образом. В соответствии с записанными в локальное устройство управления 12 данными, им формируется индивидуальные три набора сигналов. Каждый из этих наборов включает: сигнал широтно-импульсной модуляции (ШИМ) и сигнал полярности, которые поступают по разным линиям связи на мостовые токовые драйверы 13, 14, 15. Сигналы обеспечивают протекание заданного уровня токов I1, I2, I3 в двух направлениях через каждую из обмоток L1, L2, L3 трехкомпонентного индуктора магнитного поля 21, которые подключены к одной из диагоналей соответствующего мостового токового драйвера. Причем ток, протекающий через каждую обмотку L1, L2, L3 трехкомпонентного индуктора предварительно сглаживается фильтром для исключения высокочастотного сигнала модуляции и поступает на нижнюю ветвь мостового токового драйвера относительно его напряжения питания, а далее на соответствующий токоизмерительный резистор 18, 19, 20 (фиг.3). При этом возникающие падения напряжения U1, U2, U3 на токоизмерительных резисторах 18, 19, 20 подаются на встроенный аналого-цифровой преобразователь (АЦП) локального устройства управления 12, что позволяет контролировать реальные значения токов, протекающих через каждую обмотку, а также регистрировать токи короткого замыкания витков обмоток. Микроконтроллер 12 одновременно контролирует и обрабатывает информацию, поступающую с датчика температуры 16 и датчика напряженности магнитного поля (Холла) 17. В случае перегрева или замыкания обмоток через индуктор 21 прекращается пропускание токов, и локальное устройство управления 12 фиксирует неисправность, а также сигнализирует об этом управляющую ЭВМ 1. Информация с датчика Холла 17 используется локальным устройством управления 12 для контроля адекватности и коррекции параметров формируемого магнитотерапевтического воздействия. Ведущая ячейка-модуль взаимодействует с одной стороны с управляющей ЭВМ 1 по стандартному интерфейсу 9 посредством средств интеграции в систему 11, а с другой стороны с помощью шины данных 5 через средство интеграции 10, линии запроса прерывания 7 и линии синхронизации 6 со всеми остальными ведомыми ячейками-модулями магнитотерапевтической решетки 4. При этом линия запроса прерывания 7 предназначена для быстрого информирования управляющей ЭВМ 1 о неисправности ведущей ячейки-модуля 2, микроконтроллер 72 которой может остановить работу всех ячеек-модулей системы командой по шине данных 5.

Ведущая ячейка-модуль, наделенная особенными функциями, выполняет задачи: распределения индивидуальных данных магнитотерапевтического воздействия, поступающих от управляющей ЭВМ 7 и сбора информации для ЭВМ 7 от всех ячеек-модулей системы о температуре трехкомпонентных индукторов, об их уровне токов через каждую из трех обмоток и о величине напряженности магнитного поля индукторов. При этом ведущая ячейка-модуль формирует сигнал синхронизации в линию 6, воспринимаемый ведомыми ячейками-модулями и обеспечивающий синхронность распределения индивидуальных данных магнитотерапевтического воздействия между всеми ячейками-модулями и воспроизведения ими заданных параметров магнитного поля в рабочем пространстве магнитотерапевтической решетки 4.

Конструкция из двенадцати матриц ячеек-модулей предлагаемого устройства, включающая два одинаковых набора из шести матриц ячеек-модулей, размещенных непосредственно над и под головой, туловищем, руками и ногами пациента с одной стороны позволяет воздействовать магнитным полем на весь его организм. С другой стороны данная конструкция исключает избыточность ячеек-модулей, поле которых не направленно на пациента. Такая избыточность возникает, если магнитотерапевтическая решетка 4 выполнена всего из двух матриц, расположенных в нижнем и верхнем слоях. Достоинством конструкции устройства также является возможность предварительного пространственного распределения индивидуальных данных магнитотерапевтического воздействия между всеми ячейками-модулями системы, что позволяет создавать локальные области со специальным или вихревым магнитным полем и воздействовать отдельно, концентрировано на проблемные участки тела пациента.

Таким образом, предложенный способ и устройство для его осуществления позволяют формировать сложно распределенные в пространстве и изменяющиеся во времени, по амплитуде и направлению магнитные поля, а также создавать локальные, общие и комбинированные воздействия, что увеличивает разнообразие лечебных методик, и, как следствие, позволяет достигнуть лучших результатов. Унификация ячейки-модуля магнитотерапевтической решетки позволит существенно упростить изготовление, настройку, обслуживание и ремонт данной системы и повысить ее уровень автоматизации управления.

Литература

1. Патент РФ №2247583, кл. A61N 2/02, 2003 г.

2. Патент РФ №2322273, кл. A61N 2/00, 2006 г.

3. Патент РФ №2003361, кл. A61N 2/02, 1993 г.

4. Патент РФ №2188677, кл. A61N 2/00, 2000 г.

5. Патент РФ №2195974, кл. A61N 2/00, 2000 г.

6. Белькевич В.И., Берлин Ю.В., Бувин Г.М. Аппарат для лечения бегущим импульсным магнитным полем // Электронная промышленность, 1985, №1. - С.61.

7. Патент РФ №2241502, кл. A61N 2/02, 2003 г.

8. Патент РФ №2153369, кл. A61N 2/04, 1999 г.

9. Патент РФ №2056868, кл. A61N 2/00, 1996 г.


СПОСОБ ФОРМИРОВАНИЯ МАГНИТОТЕРАПЕВТИЧЕСКОГО ВОЗДЕЙСТВИЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ ФОРМИРОВАНИЯ МАГНИТОТЕРАПЕВТИЧЕСКОГО ВОЗДЕЙСТВИЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ ФОРМИРОВАНИЯ МАГНИТОТЕРАПЕВТИЧЕСКОГО ВОЗДЕЙСТВИЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ ФОРМИРОВАНИЯ МАГНИТОТЕРАПЕВТИЧЕСКОГО ВОЗДЕЙСТВИЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
Источник поступления информации: Роспатент

Showing 41-50 of 97 items.
10.04.2015
№216.013.3c8c

Обнаружитель-измеритель радиоимпульсных сигналов

Изобретение относится к радиолокации и предназначено для обнаружения когерентно-импульсных неэквидистантных радиосигналов и измерения радиальной скорости движущегося объекта. Достигаемый технический результат - повышение точности измерения. Указанный результат достигается тем, что...
Тип: Изобретение
Номер охранного документа: 0002546988
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3d37

Фазометр радиоимпульсных сигналов

Изобретение относится к измерительной технике и предназначено для измерения доплеровских сдвигов фаз (радиальной скорости объекта) неэквидистантных когерентно-импульсных радиосигналов на фоне шума; может быть использовано в радиолокационных и навигационных системах для однозначного измерения...
Тип: Изобретение
Номер охранного документа: 0002547159
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3e90

Способ выявления наличия дефектов узлов и агрегатов автомобиля в реальном времени и устройство для его осуществления

Группа изобретений относится к области диагностики, в частности к вибродиагностике, и может быть использована для выявления наличия дефектов в узлах и агрегатах автомобиля. Способ заключается в том, что виброакустический сигнал усиливают, фильтруют, дискретизируют по времени. Затем на каждом...
Тип: Изобретение
Номер охранного документа: 0002547504
Дата охранного документа: 10.04.2015
20.04.2015
№216.013.420b

Устройство для неразрушающей дифференциальной векторной трехмерной магнитоскопии

Изобретение относится к информационно-измерительной технике, представляет собой устройство для измерения магнитных полей и может быть использовано для неразрушающего контроля внутренней структуры ферромагнитных объектов. Устройство содержит множество плоских круглых измерительных контуров,...
Тип: Изобретение
Номер охранного документа: 0002548405
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.4419

Устройство измерения пространственно неоднородного постоянного или меняющегося во времени магнитного поля

Изобретение относится к измерительной технике, представляет собой многоканальное устройство измерения пространственно неоднородного магнитного поля и может быть использовано при регистрации исходных данных, необходимых для построения диаграммы распределения магнитного поля. Устройство состоит...
Тип: Изобретение
Номер охранного документа: 0002548931
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.4509

Способ стабилизации параметров высоковольтных импульсов

Изобретение относится к газоразрядной технике, в частности к схемам генераторов высоковольтных импульсов с газоразрядным коммутатором тока и индуктивным накопителем энергии, и может быть использовано при создании генераторов высоковольтных импульсов со стабильными параметрами. Технический...
Тип: Изобретение
Номер охранного документа: 0002549171
Дата охранного документа: 20.04.2015
27.04.2015
№216.013.4670

Способ управления газоразрядной индикаторной панелью постоянного тока

Изобретение относится к области приборов тлеющего разряда с холодным катодом, в частности к газоразрядным индикаторным панелям постоянного тока и методам их управления. Способ включает в себя нагрев газоразрядных индикаторных панелей постоянного тока, возбуждение и поддержание разряда в их...
Тип: Изобретение
Номер охранного документа: 0002549536
Дата охранного документа: 27.04.2015
10.05.2015
№216.013.4973

Полупроводниковый диод с отрицательным сопротивлением

Изобретение относится к области полупроводниковой электроники. В диоде с отрицательным дифференциальным сопротивлением согласно изобретению объединены два комплементарных полевых транзистора в единую вертикальную структуру с параллельно расположенными каналами, между которыми образуется...
Тип: Изобретение
Номер охранного документа: 0002550310
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.4978

Доплеровский фазометр пассивных помех

Изобретение относится к измерительной технике и предназначено для измерения доплеровских сдвигов фазы пассивных помех; может быть использовано в адаптивных устройствах режектирования пассивных помех для измерения тригонометрических функций (косинуса и синуса) текущих значений доплеровской фазы...
Тип: Изобретение
Номер охранного документа: 0002550315
Дата охранного документа: 10.05.2015
20.06.2015
№216.013.55a9

Способ обнаружения траектории маневрирующего объекта

Предлагаемое изобретение относится к радиолокации и может быть использовано в радиолокационной технике для обнаружения траектории маневрирующего объекта. Достигаемый технический результат изобретения - повышение вероятности обнаружения траектории маневрирующего объекта. Указанный результат...
Тип: Изобретение
Номер охранного документа: 0002553459
Дата охранного документа: 20.06.2015
Showing 41-50 of 100 items.
27.02.2015
№216.013.2bf6

Способ времяпролетного масс-анализа и устройство для его осуществления

Изобретение относится к области масс-спектрометрии и может быть использовано для расширения аналитических возможностей масс-анализаторов времяпролетного типа. Технический результат - повышение чувствительности и расширение динамического диапазона времяпролетных масс-спектрометров путем...
Тип: Изобретение
Номер охранного документа: 0002542722
Дата охранного документа: 27.02.2015
27.02.2015
№216.013.2bf7

Способ масс-анализа с преобразованием фурье

Изобретение относится к области масс-спектрометрии высокого разрешения. Технический результат - улучшение масс-габаритных и эксплуатационных характеристик масс-спектрометров с преобразованием Фурье путем повышения давления в измерительных ячейках. Способ обеспечивает n-кратное сокращение...
Тип: Изобретение
Номер охранного документа: 0002542723
Дата охранного документа: 27.02.2015
10.04.2015
№216.013.3c77

Способ измерения угловых координат воздушных целей с помощью доплеровской рлс

Изобретение относится к радиолокации, а именно к радиолокационным станциям (РЛС) наблюдения за воздушной обстановкой, работающим в режиме узкополосной доплеровской фильтрации. Технический результат направлен на однозначное измерение угловых координат обнаруженных воздушных целей в зоне...
Тип: Изобретение
Номер охранного документа: 0002546967
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3c8c

Обнаружитель-измеритель радиоимпульсных сигналов

Изобретение относится к радиолокации и предназначено для обнаружения когерентно-импульсных неэквидистантных радиосигналов и измерения радиальной скорости движущегося объекта. Достигаемый технический результат - повышение точности измерения. Указанный результат достигается тем, что...
Тип: Изобретение
Номер охранного документа: 0002546988
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3d37

Фазометр радиоимпульсных сигналов

Изобретение относится к измерительной технике и предназначено для измерения доплеровских сдвигов фаз (радиальной скорости объекта) неэквидистантных когерентно-импульсных радиосигналов на фоне шума; может быть использовано в радиолокационных и навигационных системах для однозначного измерения...
Тип: Изобретение
Номер охранного документа: 0002547159
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3e90

Способ выявления наличия дефектов узлов и агрегатов автомобиля в реальном времени и устройство для его осуществления

Группа изобретений относится к области диагностики, в частности к вибродиагностике, и может быть использована для выявления наличия дефектов в узлах и агрегатах автомобиля. Способ заключается в том, что виброакустический сигнал усиливают, фильтруют, дискретизируют по времени. Затем на каждом...
Тип: Изобретение
Номер охранного документа: 0002547504
Дата охранного документа: 10.04.2015
20.04.2015
№216.013.420b

Устройство для неразрушающей дифференциальной векторной трехмерной магнитоскопии

Изобретение относится к информационно-измерительной технике, представляет собой устройство для измерения магнитных полей и может быть использовано для неразрушающего контроля внутренней структуры ферромагнитных объектов. Устройство содержит множество плоских круглых измерительных контуров,...
Тип: Изобретение
Номер охранного документа: 0002548405
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.4419

Устройство измерения пространственно неоднородного постоянного или меняющегося во времени магнитного поля

Изобретение относится к измерительной технике, представляет собой многоканальное устройство измерения пространственно неоднородного магнитного поля и может быть использовано при регистрации исходных данных, необходимых для построения диаграммы распределения магнитного поля. Устройство состоит...
Тип: Изобретение
Номер охранного документа: 0002548931
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.4509

Способ стабилизации параметров высоковольтных импульсов

Изобретение относится к газоразрядной технике, в частности к схемам генераторов высоковольтных импульсов с газоразрядным коммутатором тока и индуктивным накопителем энергии, и может быть использовано при создании генераторов высоковольтных импульсов со стабильными параметрами. Технический...
Тип: Изобретение
Номер охранного документа: 0002549171
Дата охранного документа: 20.04.2015
27.04.2015
№216.013.4670

Способ управления газоразрядной индикаторной панелью постоянного тока

Изобретение относится к области приборов тлеющего разряда с холодным катодом, в частности к газоразрядным индикаторным панелям постоянного тока и методам их управления. Способ включает в себя нагрев газоразрядных индикаторных панелей постоянного тока, возбуждение и поддержание разряда в их...
Тип: Изобретение
Номер охранного документа: 0002549536
Дата охранного документа: 27.04.2015
+ добавить свой РИД