×
20.10.2013
216.012.76cc

ТЕПЛООБМЕННАЯ ТРУБА

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к энергетике. Теплообменная труба, у которой канал выполнен с выступами и канавками, причем канал выполнен с геометрическими соотношениями: h/Д=0,03, l=(90-100)/h, l=(90-100)h, где h - высота выступа, мм, Д - внутренний диаметр теплообменной трубы, мм, l - длина выступа, мм, l - длина канавки, мм. Изобретение позволяет повысить энергетическую эффективность за счет снижения гидросопротивления. 4 ил., 1 табл.
Основные результаты: Теплообменная труба, канал которой выполнен с выступами и канавками, отличающаяся тем, что канал выполнен с геометрическими соотношениями:h/Д=0,03, l=(90-100)h, l=(90-100)h, гдеh - высота выступа, ммД - внутренний диаметр теплообменной трубы, ммl - длина выступа, ммl - длина канавки, мм
Реферат Свернуть Развернуть

Изобретение относится к области энергетики и может быть использовано на транспорте, в химической технологии и других отраслях техники.

Известна теплообменная труба (канал «е»), в которой в качестве интенсификатора теплообмена (ИТО) служат узкие (L<<t) кольцевые канавки на внутренней поверхности трубы. В этом канале взаимодействие потока и стенки полностью определяется теплообменом и трением в пристенных внутренних пограничных слоях (ВПС) ВПС1 и ВПС2, турбулизацию которых обеспечивает рециркуляционная зона (РЗ) [Гортышов Ю.Ф., Олимпиев В.В., Абдрахманов А.Р. Расчет турбулентной теплоотдачи и сопротивления в каналах с поперечными кольцевыми канавками // Изв. вузов. Авиационная техника. 1997. №3. С.56-68]. Механизм ИТО заключается в том, что РЗ размещена в канавке, что позволяет сократить размеры РЗ. Опыты с кольцевыми канавками проведены только для наружной поверхности труб в межтрубном потоке теплообменного аппарата (ТА) в ограниченном диапазоне характеристических параметров - : Re=3·103-2·104, где - относительный шаг выступов, Re - число Рейнольдса.

Наиболее близким аналогом к заявляемому изобретению является теплообменная труба (канал «б»), для которой характерны большой шаг и узкие выступы [Леонтьев А.И., Олимпиев В.В. Влияние интенсификаторов теплообмена на теплогидравлические свойства каналов (обзор) // Теплофизика высоких температур. 2007. №6. С.925-953]. Идея схемы потока следующая. После каждого выступа образуется РЗ1, на поверхности которой и далее за точкой присоединения xк≈6h, где h - высота выступа, развивается турбулентный внутренний пограничный слой - ВПС1 (толщиной δ). Под РЗ1 формируется возвратный ВПС2 (Малая РЗ2 не учитывается). Участок канала с шагом t - типовой (повторяющийся). Теплогидродинамическое взаимодействие потока со стенкой полностью определяется процессами переноса внутри ВПС1 и ВПС2. Основной вклад в интенсификацию теплообмена вносят факторы повышенной теплоотдачи в зоне присоединения и малого термического сопротивления тонкого обновленного турбулизированного ВПС1 за точкой присоединения. Главное назначение отрывной рециркуляционной области течения - РЗ1 - производство дополнительной турбулентности, воздействие которой на обновленный ВПС1 стимулирует процесс теплообмена около стенки (Отрыв потока, обновление пограничного слоя и образование РЗ1 - результат действия выступа).

Недостатком известных теплообменных труб является высокое гидросопротивление и низкая эффективность.

Задачей, на решение которой направлено заявляемое изобретение, является повышение энергетической эффективности за счет снижения гидросопротивления.

Технический результат достигается тем, что в теплообменной трубе, канал которой выполнен с выступами и канавками, согласно заявляемому изобретению канал выполнен с геометрическими соотношениями:

h/Д=0,03, l1=(90-100)/h, l2=(90-100)h, где

h - высота выступа, мм;

Д - внутренний диаметр теплообменной трубы, мм;

l1 - длина выступа, мм;

l2 - длина канавки, мм.

Сущность изобретения поясняется чертежами и таблицей, где на фиг.1 изображен канал предлагаемой теплообменной трубы, на фиг.2, 3, 4, табл.1 показаны результаты расчетов эффективности (интенсивность теплоотдачи, коэффициент гидравлического сопротивления, относительный энергетический коэффициент) каналов «е», «б» и «в».

Таким образом, для достижения технического результата предложена заявляемая конструкция теплообменной трубы (канал «в»). Канал «в» является последовательностью широких канавок l2=(90-100)h и широких выступов l1=(90-100)/h. Модель течения (и механизм ИТО) в этом канале основывается на тонких (обновленных) ВПС1; 2; 3, которые турбулизируются (внешняя турбулентность) вихревыми возмущениями от РЗ1, образующейся за обратным уступом при входе потока в канавку, и возмущениями, возникающими на прямом уступе при натекании потока на выступ.

Отрезок t канала «в» - типовой. При h/Д<0,05 происходит быстрая релаксация ВГТС1; 3 к состоянию «стандартного» ВПС на гладкой стенке. Соотношения толщин ВПС1 и ВПС3 - δ1; δ3 «Д» - позволяют отождествлять течение в трубе с течением на плоской стенке и для расчета ВПС воспользоваться теорией переноса на пластине. Целесообразно использовать интенсифицирующие процесс теплообмена элементы с размерами, не более толщины пограничного слоя. Это резко уменьшит гидравлическое сопротивление.

Основная часть термического сопротивления в потоке газов и жидкостей приходиться на пристенную область. Для чисел Прандтля Pr от 0,72 до 20 основная часть термического сопротивления потока приходится на вязкостный подслой и промежуточную область пограничного слоя (от 84% до 99%) (N.H.Afgan, FundamentalHeatandMassTransferResearchInTheDevelopmentOfNewHeatExchangersConcepts // 1993CHMTInternationalSymposiumOnNewDevelopmentInHeatExchangers.Lisbon. Portugal. PaperL.l). Поэтому интенсификация конвективной теплоотдачи должна осуществляться в вязкостном подслое и переходной области развитой турбулентности, что полностью подтверждает допущение о том, что высота элементов, интенсифицирующих процесс теплообмена, должна быть сравнима по размеру с суммарной толщиной вязкостного подслоя и промежуточной области пограничного слоя.

Оптимальная высота hопт выступов, шероховатостей и т.п. в трубах при течении газов и жидкостей определяется формулой:

, где

ε - коэффициент гидравлического сопротивления в трубе, который зависит от числа Рейнольдса Re (для турбулентного режима течения в трубе рассчитывается по формуле Блазиуса: ε=0,3164/Re0,25);

R - радиус трубы по гладкой части;

n - коэффициент, для газов n=30, для жидкостей n=5 (Мигай В.К. Повышение эффективности современных теплообменников. М.: Энергия, 1980).

Повышение теплоотдачи в трубе посредством кольцевых поперечных выступов αигли - коэффициент теплоотдачи в теплообменной трубе с кольцевыми поперечными выступами, αгл - коэффициент теплоотдачи в гладкой пустой трубе) позволяет получать более выгодное соотношение между количеством тепла Q, снятого со стенки трубы, и мощностью прокачивания теплоносителя через трубу N (Калинин Э.К. и др. Интенсификация теплообмена в каналах. М.: Машиностроение, 1972). Оптимальная высота выступов hопт в теплообменной трубе, позволяющая обеспечивать максимум соотношения αигл при возможно наибольшей величине Q/N, зависит от параметров потока в трубе: чисел Прандтля Pr и Рейнольдса Re, которые связаны с типом и расходом теплоносителя, его температурой. Оптимальная высота выступов hопт уменьшается при увеличении чисел Pr и Re турбулентного режима.

Расчет канала строится следующим образом.

Вычисляются местные коэффициенты αx для ВПС1 на отрезке от хk до l2

Nuxx·х/λ; Rex=w·x/v;

w - среднерасходная скорость в канале ⌀Д; λ, ν - коэффициенты теплопроводности и кинематической вязкости. Вносится поправка на влияние внешней турбулентности (Tu) на теплоотдачу ВПС 1

αхиx=1+[0,41·th(0,2Tu)].

,

n1=3,71·10-3·Tumax1,41.

αхи - местное истинное значение; Tu - локальная величина; Tumax=10%. Местные касательное напряжение трения и коэффициент сопротивления для ВПС1

; .

Расчет ВПС3 аналогичен.

Расчет локальной теплоотдачи для ВПС2 проводится с помощью универсальной функции для обратного уступа αx2xk=f(х/xk), где αxk вычисляется для ВПС1. Одинаковым образом рассчитывается трение ВПС2. Осреднение местных параметров ВПС1; 2; 3 позволяет получить средние величины α; τw на участке t (и во всем канале).

Суммарные потери давления на отрезке t

ΔρΣ=Δpm+Δpp+Δpc;

Δpm =Rm/(πД2/4):Rm=πДtτw;

Δpm - потери на трение; Rm - сила трения; Δрр; Δpc - местные потери на внезапные расширение и сужение при обтекании канавки. Коэффициент ε на участке t (и во всем канале) находится из формулы Дарси

.

Модель универсальна по числам Re и Pr.

При сравнении характеристик каналов условия их расчета одинаковы. h=0,03 принята из рекомендованного диапазона, Re=104-106. Проведены многовариантные расчеты с различными сочетаниями геометрических параметров ИТО для каждого канала. Например, в расчетах канала «в» размеры канавки и выступа изменялись (в различных комбинациях) в пределах ; ;

В качестве критерия эффективности канала и оптимального варианта размеров ИТО служил относительный энергетический коэффициент . При сопоставлении вариантов одного канала (при каждом Re) показателем наиболее высокой эффективности канала и оптимальных размеров ИТО являлся случай .

Некоторые результаты расчетов эффективности для всех каналов даны в табл.1 и на фиг.2-4.

Теплофизическое существо механизмов ИТО в этих каналах принципиально аналогичное, поэтому интенсивность теплоотдачи в них почти одинакова (см. табл.1, фиг.2). При детальной оценке можно отметить, что , при этом превышает примерно на 2%.

Относительная теплоотдача не зависит от числа Re ( ), т.к. характер функций Nu=f(Ren), идентичный для гладкого канала и каналов «е», «б» и «в». Модели всех каналов объективно отражают их свойства: при повышенных числах Re и нарастание сопротивления обгоняет увеличение теплоотдачи (см. табл.1).

Таблица 1
Эффективность и оптимальные размеры каналов
Канал «е» (t/h=100)
Re 10000 20000 30000 40000 50000 120000 250000 500000 750000 1000000
Nu/Nuгл 1,406 1,406 1,406 1,406 1,406 1,406 1,406 1,406 1,406 1,406
ε/εгл 0,948 1,128 1,248 1,341 1,418 1,765 2,12 2,521 2,79 2,998
(Е'/Е'гл)max 1,483 1,247 1,127 1,049 0,992 0,797 0,663 0,558 0,504 0,469
Канал «б» (t/h=100)
Re 10000 20000 30000 40000 50000 120000 250000 500000 750000 1000000
Nu/Nuгл 1,414 1,414 1,414 1,414 1,414 1,414 1,414 1,414 1,414 1,414
ε/εгл 1,011 1,193 1,314 1,408 1,486 1,836 2,194 2,598 2,868 3,078
(Е'/Е'гл)max 1,399 1,186 1,076 1,004 0,952 0,77 0,645 0,544 0,493 0,46
Канал «в» (l1=100h, l2=100h)
Re 10000 20000 30000 40000 50000 120000 250000 500000 750000 1000000
Nu/Nuгл 1,436 1,436 1,436 1,436 1,436 1,436 1,436 1,436 1,436 1,436
ε/εгл 1,483 1,588 1,655 1,707 1,748 1,929 2,105 2,297 2,423 2,519
(Е'/Е'гл)max 0,968 0,904 0,867 0,841 0,821 0,747 0,682 0,625 0,593 0,57

Размерные коэффициенты ε для всех каналов автомодельны относительно числа Re-ε≠f/(Re), что свойственно дискретной и песчано-зернистой шероховатости Никурадзе в режиме полного проявления шероховатости.

На большей части диапазона чисел Re сопротивление канала «в» заметно ниже величины (до 20%), (см. фиг.3), что связано с меньшим количеством РЗ на единицу длины в канале «в». Улучшенная теплоотдача и пониженное сопротивление привели к повышенной эффективности канала «в» по сравнению с другими (см. табл.1, фиг.4). В равных условиях эффективность канала «в» выше, чем показатель проверенного практикой высокоэффективного канала «б» (см. фиг.4).

Согласно расчетам предлагаемая теплообменная труба (интенсифицированный канал «в») при Re>2·105 обладает высокой теплогидравлической эффективностью.

Особое позитивное качество предлагаемой теплообменной трубы типа «в»: в широкой области чисел Re максимальная эффективность достигается при одинаковых размерах выступа и канавки l1=l2=100/г, табл.1. В случае формирования (производства) интенсификаторов методом накатки внутренняя и наружная поверхности теплообменной трубы будет иметь одинаковые форму и размеры, тогда в частных условиях Re; Pr=idem для трубного и продольного межтрубного потоков в ТА (например, водо-водяных) эффективность и коэффициенты а внутри и снаружи трубы будут равны.

Использование предлагаемой теплообменной трубы позволит повысить энергетическую эффективность за счет снижения гидросопротивления.

Следовательно, открывается возможность реализации высокоэффективного варианта теплообменного аппарата (ТА) и значительной экономии электроэнергии и конструкционных материалов.

Теплообменная труба, канал которой выполнен с выступами и канавками, отличающаяся тем, что канал выполнен с геометрическими соотношениями:h/Д=0,03, l=(90-100)h, l=(90-100)h, гдеh - высота выступа, ммД - внутренний диаметр теплообменной трубы, ммl - длина выступа, ммl - длина канавки, мм
ТЕПЛООБМЕННАЯ ТРУБА
ТЕПЛООБМЕННАЯ ТРУБА
ТЕПЛООБМЕННАЯ ТРУБА
ТЕПЛООБМЕННАЯ ТРУБА
Источник поступления информации: Роспатент

Showing 11-20 of 164 items.
10.01.2014
№216.012.957f

Способ определения места повреждения на линиях электропередачи по спектру переходного процесса

Изобретение относится к электротехнике и электроэнергетике и может быть использовано в устройствах защиты для определения дальности до места повреждения в трехфазных распределительных сетях среднего класса напряжений с изолированной, компенсированной или заземленной через резистор нейтралью....
Тип: Изобретение
Номер охранного документа: 0002503965
Дата охранного документа: 10.01.2014
27.01.2014
№216.012.9d16

Регулируемое акустоэлектронное устройство

Изобретение относится к области акустоэлектроники и может быть использовано в составе регулируемых устройств, а именно регулируемой ультразвуковой линии задержки в частотном диапазоне 10-1000 МГц с применением в различных радиоэлектронных системах обработки информации. Технический результат...
Тип: Изобретение
Номер охранного документа: 0002505920
Дата охранного документа: 27.01.2014
27.02.2014
№216.012.a731

Теплообменная труба

Предлагаемое изобретение относится к области энергетики и может быть использовано на транспорте, в химической технологии и других отраслях техники. В теплообменной трубе, канал которой выполнен с выступами и канавками, согласно заявляемому изобретению, канал образован гладкими участками трубы и...
Тип: Изобретение
Номер охранного документа: 0002508516
Дата охранного документа: 27.02.2014
10.04.2014
№216.012.b0d0

Цифроаналоговый преобразователь

Изобретение относится к области электроники, а именно к цифроаналоговым преобразователям. Техническим результатом является упрощение конструкции и повышение быстродействия цифроаналогового преобразователя при сохранении точности преобразования за счет формирования двухполярного выходного...
Тип: Изобретение
Номер охранного документа: 0002510979
Дата охранного документа: 10.04.2014
10.04.2014
№216.012.b3f2

Горелка для сжигания газа

Изобретение относится к технологии сжигания газообразного топлива в топках котлов и печах. Задачей изобретения является повышение качества сжигания топлива на всех режимах работы горелки. Технический результат достигается тем, что в горелку для сжигания газа, содержащую цилиндрический корпус,...
Тип: Изобретение
Номер охранного документа: 0002511783
Дата охранного документа: 10.04.2014
10.04.2014
№216.012.b43c

Теплообменная труба

Предлагаемое изобретение относится к области энергетики и может быть использовано на транспорте, в химической технологии и других отраслях техники. В теплообменной трубе канал образован гладкими участками трубы и выступами, при этом выступы выполнены с дополнительным интенсификатором...
Тип: Изобретение
Номер охранного документа: 0002511859
Дата охранного документа: 10.04.2014
10.04.2014
№216.012.b497

Газотурбинный двигатель со свободнопоршневым генератором газа

Газотурбинный двигатель со свободнопоршневым генератором газа (СПГГ) состоит из связанных между собой СПГГ, газосборника и газовой турбины. СПГГ содержит рабочий цилиндр двигателя, рабочие поршни двигателя, поршни компрессора, синхронизирующий механизм движения рабочих поршней двигателя и...
Тип: Изобретение
Номер охранного документа: 0002511952
Дата охранного документа: 10.04.2014
10.05.2014
№216.012.c0d9

Способ измерения пористости хлебобулочного изделия и устройство для осуществления

Изобретение относится к области технологического контроля пористости хлебобулочных изделий в процессе их производства и может быть использовано при отработке оптимального режима технологии получения заданной пористости в цеховых лабораторных условиях. В способе измерения пористости...
Тип: Изобретение
Номер охранного документа: 0002515118
Дата охранного документа: 10.05.2014
10.05.2014
№216.012.c0dc

Способ определения допустимых величины и длительности перегрузки силового маслонаполненного трансформаторного оборудования

Изобретение относится к области электроэнергетики, в частности к автоматизированным системам управления и диагностики трансформаторного оборудования электрических подстанций. Технический результат: повышение эксплуатационной надежности трансформаторного оборудования за счет более достоверного...
Тип: Изобретение
Номер охранного документа: 0002515121
Дата охранного документа: 10.05.2014
10.05.2014
№216.012.c13a

Цифровое прогнозирующее и дифференцирующее устройство

Изобретение относится к цифровому прогнозирующему и дифференцирующему устройству. Технический результат заключается в упрощении аппаратной реализации и расширении функциональных возможностей устройства. Прогнозирующее и дифференцирующее устройство содержит блок сглаживания, блок прогноза,...
Тип: Изобретение
Номер охранного документа: 0002515215
Дата охранного документа: 10.05.2014
Showing 11-20 of 179 items.
27.05.2013
№216.012.442d

Алюмокремниевый флокулянт

Изобретение может быть использовано для осветления природной воды в теплоэнергетике. Кремнийорганическая жидкость «Силор» образуется в процессе химической деструкции отходов кремнийорганических резиновых смесей и изделий на основе силиконовых каучуков. Кремнийорганическую жидкость «Силор»...
Тип: Изобретение
Номер охранного документа: 0002483030
Дата охранного документа: 27.05.2013
27.05.2013
№216.012.454a

Способ бесконтактной дистанционной диагностики состояния высоковольтных полимерных изоляторов

Изобретение относится к области электроизмерительной. Осуществляют пассивный прием электромагнитным и акустическим приемниками одновременно электромагнитного и акустического излучений от частичных разрядов, индикацию и совместную компьютерную обработку сигналов, согласно предлагаемому...
Тип: Изобретение
Номер охранного документа: 0002483315
Дата охранного документа: 27.05.2013
27.05.2013
№216.012.45cc

Система беспроводной атмосферной оптической связи на объектах с высоким уровнем электромагнитных помех

Изобретение относится к области оптической связи, в частности к атмосферным системам передачи информации. Технический результат состоит в повышении помехоустойчивости и вероятности гарантированной связи на объектах, имеющих высокий уровень помех и шумов, как в радиодиапазоне, так и в оптической...
Тип: Изобретение
Номер охранного документа: 0002483445
Дата охранного документа: 27.05.2013
10.06.2013
№216.012.492c

Гидравлический таран

Изобретение относится к гидротаранным установкам. В гидравлическом таране напорный колпак 11 выполнен составным из жестко закрепленных между собой верхней, средней и нижней частей. Верхняя часть выполнена в виде корпуса возвратного клапана 14, в полости которого размещен подпружиненный...
Тип: Изобретение
Номер охранного документа: 0002484312
Дата охранного документа: 10.06.2013
20.06.2013
№216.012.4b6c

Применение шлама, образующегося на водоподготовительной установке, в качестве сорбента при очистке газовых выбросов тэс

Изобретение относится к области производства сорбентов. В качестве сорбента для очистки газов предложен шлам, образующийся при совместной коагуляции и известковании сырой воды на водоподготовительной установке тепловых электрических станций. Шлам имеет химический состав:...
Тип: Изобретение
Номер охранного документа: 0002484890
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4bb4

Устройство для сварки полимерных трубчатых элементов

Изобретение относится к сварке термопластов путем их электрического нагрева и последующего сжатия между собой, а именно к устройствам для сварки полимерных трубчатых элементов, в частности фитинга и трубы. Оно может найти применение в системах отопления, водоснабжения, газоснабжения при монтаже...
Тип: Изобретение
Номер охранного документа: 0002484962
Дата охранного документа: 20.06.2013
10.07.2013
№216.012.5482

Устройство для обработки призабойной зоны скважины и способ обработки призабойной зоны скважины

Изобретение относится к нефтедобывающей промышленности и может быть использовано для повышения эффективности обработки призабойной зоны скважины. Устройство для обработки призабойной зоны скважины, содержащее воздушную камеру с атмосферным давлением, выполненную длиной 20-50 м и соединенную при...
Тип: Изобретение
Номер охранного документа: 0002487237
Дата охранного документа: 10.07.2013
27.09.2013
№216.012.7035

Способ информационного квч воздействия на живой организм

Способ информационного КВЧ воздействия на живой организм относится к области биологии и медицины и может быть использован для стимуляции жизнедеятельности живых организмов или растений, в частности для лечения ряда заболеваний человека и животных. Технический результат - упрощение процесса и...
Тип: Изобретение
Номер охранного документа: 0002494376
Дата охранного документа: 27.09.2013
27.09.2013
№216.012.70bc

Способ контроля провиса провода линии электропередачи

Изобретение относится к электротехнике. Способ включает размещение на проводе подвесного датчика температуры, а под проводом - контрольного устройства. При помощи первого и второго ультразвуковых приемопередатчиков осуществляют посредством контрольного устройства совместно с подвесным датчиком...
Тип: Изобретение
Номер охранного документа: 0002494511
Дата охранного документа: 27.09.2013
27.10.2013
№216.012.78be

Способ получения сорбента для газовой хроматографии

Изобретение относится к аналитической газовой хроматографии, в частности к способам создания сорбентов для анализа органических веществ, в том числе и загрязнителей окружающей среды. Предложен способ получения сорбента для газовой хроматографии, предусматривающий нанесение на твердый носитель...
Тип: Изобретение
Номер охранного документа: 0002496572
Дата охранного документа: 27.10.2013
+ добавить свой РИД