×
20.10.2013
216.012.75d0

СПОСОБ ПОЛУЧЕНИЯ ЭЛЕМЕНТАРНОЙ СЕРЫ ИЗ ВЫСОКОКОНЦЕНТРИРОВАННЫХ СЕРОВОДОРОДСОДЕРЖАЩИХ ГАЗОВ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002495820
Дата охранного документа
20.10.2013
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к способу получения элементарной серы из высококонцентрированных сероводородсодержащих газов, включающему окисление сероводорода кислородом в неподвижном слое гранулированного катализатора при повышенной температуре и конденсацию получаемой серы на теплообменной поверхности. Способ характеризуется тем, что процесс проводят в одну стадию, причем окисление ведут в слое катализатора, размещенном между теплообменными поверхностями, расположенными под углом от 45 до 90 градусов к горизонтали, а направление подачи газа составляет угол от 0 до 90 градусов к горизонтали, при этом отношение толщины слоя к размеру гранул катализатора составляет 5-10:1. Использование настоящего способа позволяет расширить пределы применимости способа, интенсифицировать процесс, упростить технологию, снизить материалоемкость и повысить энергетическую эффективность. 1 з.п. ф-лы, 3 пр.
Реферат Свернуть Развернуть

Изобретение относится к способу получения серы путем окисления высококонцентрированных сероводородсодержащих газов кислородом и может найти применение в газоперерабатывающей, химической, нефтехимической и других отраслях промышленности в процессах переработки и обезвреживания сероводородсодержащих газов, содержащих до 90% сероводорода.

В настоящее время остро стоит проблема обезвреживания и утилизации сероводорода, выделяющегося в больших количествах при разработке газоконденсатных и нефтяных месторождений. Применяющиеся каталитические методы не позволяют глубоко проводить очистку и связаны с высокими энергозатратами.

Известен способ очистки отдувочных газов скважин с содержанием сероводорода (30-50 об.%) путем окисления в серу в кипящем слое нанесенного магнийоксидного катализатора, взятого в виде сферических гранул, при температуре 250-350°C [Авторское свидетельство СССР №1608109, 1990 г., МПК C01B 17/04]. Недостатком способа является сложность в управлении процессом, связанная с необходимостью контроля й регулирования кипящего слоя катализатора, а также высокие потери катализатора из-за истирания. При содержании сероводорода в газе более 50% усложняется также отвод тепла из зоны окисления, т.к. увеличение теплообменной поверхности приводит к нарушению режима кипящего слоя. Конденсацию серы проводят на последующей стадии процесса в отдельном аппарате, оснащенном теплообменной поверхностью, что также является фактором, усложняющим процесс.

Известны способы получения серы из высококонцентрированных газов (до 50 об.%), согласно которым окисление сероводорода проводится в две стадии в двух последовательных реакторах, причем в первом реакторе, осуществляется окисление в кипящем слое катализатора при соотношении O2/H2S, равном 0,5-0,51, при температуре 250-300°C, а на второй стадии, согласно способу [Авторское свидетельство СССР № 1627507, 1991 г., МПК C01B 17/04] проводится в неподвижном слое катализатора при температуре 140-155°C, а по способу [Патент РФ №1723761, 1995 г., МПК C01B 17/04] на второй стадии окисление ведут с использованием блочного катализатора сотовой структуры, снижая температуру с 140-155°C в начале слоя до 110-120°C в конце слоя со скоростью 6,6-15°C/с. В этих способах не устраняется недостаток, присущий способу окисления высококонцентрированных сероводородсодержащих газов [А.С. №1608109, 1990 г.], а именно сложность процесса, связанная с двухстадийностью и сложностью управления процессом окисления сероводорода в кипящем слое катализатора и отвода тепла реакции при концентрации сероводорода выше 50 об.%, а также необходимость конденсации серы в отдельном аппарате, после каждой стадии окисления, регулирования подачи кислорода по ступеням окисления. Съем серы с единицы объема катализатора в этих процессах еще ниже, чем по способу [А.С. №1608109, 1990 г.].

Известен способ получения элементарной серы из газов, содержащих до 30% сероводорода, путем окисления сероводорода в две стадии, причем в каждой стадии окисление ведут в стационарном слое гранулированного катализатора с раздельной подачей кислорода в количестве, обеспечивающем отношение кислорода к сероводороду равное 0,25-0,3, и на второй 0,5-1,15. Образующаяся в реакции сера конденсируется и улавливается в последовательно расположенных промежуточных поглотительных емкостях после каждой стадии процесса [Авторское свидетельство СССР №856974, 1981 г., МПК C01B 17/04]. Недостатком способа является сложность процесса, связанная с двухстадийностью окисления, что усложняет регулирование подачи кислорода по ступеням, а также необходимостью конденсации серы после каждой ступени окисления. Использование данного двухстадийного процесса приводит к дальнейшему снижению интенсивности процесса по сравнению с вышеуказанными аналогами [А.С. № 1627507, П. №1723761], что выражается в том, что съем серы не превышает 1-1,5 кг с 1 литра катализатора за 1 час. Данный способ не позволяет получать серу из газов, в которых содержание сероводорода превышает 30%.

Наиболее близким аналогом изобретения является способ получения элементарной серы из газов, содержащих до 30% сероводорода, путем окисления сероводорода в две стадии, заключающийся в том, что сероводородсодержащий газ - "кислый газ" с установки аминовой очистки попутного газа, содержащий 28 об.% сероводорода, смешивают с воздухом, обеспечивая мольное соотношение O2/H2S равное 0,25, и подают в реактор первой каталитической ступени, где при температуре 280°C и объемной скорости 3600 ч-1 проводят окисление сероводорода. Образующуюся в реакторе серу конденсируют на выносном теплообменном аппарате первой каталитической ступени и выводят с установки, а обедненный сероводородом газ смешивают с дополнительным количеством воздуха, поддерживая мольное соотношение O2/H2S, равное 1,0, и направляют во вторую каталитическую ступень, также состоящую из реактора и узла конденсации серы, из которой выводят балансовое количество серы. Съем серы составляет 1,2 кг/ ч. Выход серы на исходный сероводород составляет 99,5% [Алхазов и др. Пути каталитического обезвреживания природного газа с большим содержанием сероводорода // Тезисы докладов региональной научно-производственной конференции «Проблемы комплексного освоения Астраханского газоконденсатного месторождения», г.Астрахань, апрель 1987, М.: 1987, с.217-218.]. Увеличение числа ступеней процесса позволяет проводить окисление газов, содержание сероводорода в которых превышает 50%. Однако использование этого способа, хотя и решает проблему переработки высококонцентрированных газов с получением серы, однако приводит к еще большему усложнению процесса из-за его многоступенчатости, и еще большему снижению съема серы с единицы объема катализатора.

Задача изобретения - расширение пределов применимости способа, интенсификация процесса, упрощение технологии, снижение материалоемкости и повышение энергетической эффективности.

Технический результат, который может быть получен при осуществлении способа:

- расширение пределов применимости способа за счет возможности переработки высококонцентрированных сероводородсодержащих газов с получением серы, с содержанием сероводорода вплоть до 90 об.%.;

- интенсификация процесса за счет повышения съема серы с единицы объема катализатора;

- упрощение технологии за счет проведения процесса в одну стадию;

- повышение селективности процесса за счет предотвращения локальных перегревов катализатора;

- снижение материалоемкости за счет уменьшения количества единиц оборудования и загрузки катализатора;

- повышение энергетической эффективности за счет отвода более высокопотенциального тепла (водяного пара более высокого давления или иного охлаждающего агента более высокой температуры).

Указанный технический результат достигается тем, что в способе получения элементарной серы из высококонцентрированных сероводородсодержащих газов, включающем окисление сероводорода кислородом в неподвижном слое гранулированного катализатора при повышенной температуре и конденсацию получаемой серы на теплообменной поверхности, согласно изобретению процесс проводят в одну стадию, причем окисление ведут в слое катализатора, размещенном между теплообменными поверхностями, расположенными под углом от 45 до 90 градусов к горизонтали, а направление подачи газа составляет угол от 0 до 90 градусов к горизонтали, при этом отношение толщины слоя к размеру гранул катализатора составляет 5-10:1. В качестве реактора может быть использован аппарат с внутренними теплообменными поверхностями спирально-радиального типа.

В заявляемом способе расположение слоя катализатора между теплообменными поверхностями обеспечивает возможность конденсации серы на этих поверхностях, а также позволяет отводить тепло реакции прямого окисления высококонцентрированного сероводорода и тепло конденсации серы непосредственно из зоны реакции.

Расположение теплообменных поверхностей под углом от 45 до 90 градусов к горизонтали позволяет полностью выводить сконденсированную серу из зоны реакции.

Направление подачи газа под углом от 0 до 90 градусов к горизонтали предотвращает противоточное движение газа и сконденсированной серы.

Отношение толщины слоя катализатора к размеру гранул 5-10:1 позволяет обеспечить эффективный теплообмен (отсутствие локальных перегревов катализатора) и газофазный транспорт паров серы от гранул катализатора к теплообменной поверхности (предотвращается конденсация серы на гранулах катализатора).

Предлагаемый способ получения элементарной серы осуществляется следующим образом. Высококонцентрированный (до 90 об.% H2S) сероводородсодержащий газ смешивают со стехиометрическим количеством кислородсодержащего газа, например, воздуха, и при температуре 200-250°C и давлении 0,1-10 МПа направляют в реактор, где приводят в контакт с гранулированным катализатором, расположенным в неподвижном слое между теплообменными поверхностями, соблюдая пространственное расположение теплообменных поверхностей и направления движения газа, указанное выше. В межкатализаторное пространство реактора, ограниченное теплообменными поверхностями, подают хладоагент в количестве, достаточном для отвода тепла реакции. Образовавшаяся жидкая сера конденсируется на теплообменных поверхностях, стекает в низ реактора и выводится из него. Газ, очищенный от сероводорода, также выводят из реактора.

В качестве реактора могут быть использованы, например, аппараты с внутренними теплообменными поверхностями спирально-радиального типа.

В доступной научно-технической и патентной литературе не был обнаружен способ получения элементарной серы из высококонцентрированных сероводородсодержащих газов, заключающийся в том, что проводят окисление сероводорода кислородом в неподвижном слое гранулированного катализатора и конденсацию получаемой серы на теплообменной поверхности в одну стадию, причем окисление ведут в слое катализатора, размещенном между теплообменными поверхностями, расположенными под углом от 45 до 90 градусов к горизонтали, а направление подачи газа составляет угол от 0 до 90 градусов к горизонтали, при этом отношение толщины слоя к размеру гранул катализатора составляет 5-10:1. Таким образом, заявляемое изобретение соответствует критерию патентоспособности «новизна».

Исследованиями авторов было доказано, что проведение окисления в слое катализатора, размещенном между теплообменными поверхностями, расположенными под углом от 45 до 90 градусов к горизонтали, при том, что направление подачи газа составляет угол от 0 до 90 градусов к горизонтали, а отношение толщины слоя к размеру гранул катализатора составляет 5-10:1, позволяет осуществить процесс в одну стадию, что упрощает способ, а также обеспечивает расширение пределов применимости способа, интенсификацию процесса, снижение материалоемкости и повышение энергетической эффективности. Таким образом, заявляемое изобретение соответствует критерию патентоспособности «изобретательский уровень».

Сущность изобретения иллюстрируется следующими примерами:

Пример 1. Высококонцентрированный (90 об.% H2S) сероводородсодержащий газ смешивают со стехиометрическим количеством воздуха и при температуре 250°C и давлении 0,15 МПа направляют в реактор, представляющий собой аппарат с внутренними теплообменными поверхностями спирально-радиального типа, где проводят окисление сероводорода в неподвижном слое гранулированного катализатора АОК-75-44 ТУ 6-68-211-04, размещенного между теплообменными поверхностями, расположенными под углом 60 градусов к горизонтали, при этом направление ввода реакционного газа составляет 90 градусов к горизонтали. В межкатализаторное пространство реактора между теплообменными поверхностями подают хладоагент в количестве, достаточном для отвода тепла реакции. Образовавшаяся жидкая сера конденсируется на теплообменных поверхностях и стекает в низ реактора и выводится из него. Газ, очищенный от сероводорода, также выводится из реактора. Отношение толщины слоя к размеру гранул составляет 8:1, съем серы составляет 4,0 кг/ч на 1 литр катализатора. Выход серы на исходный сероводород составляет 99,5%.

Пример 2. В условиях, аналогичных примеру 1, окисление сероводорода проводят в неподвижном слое гранулированного катализатора ИКТ-27-42 ТУ 6-68-205-03, размещенного между теплообменными поверхностями, расположенными под углом 90 градусов к горизонтали, при этом направление ввода реакционного газа составляет 45 градусов к горизонтали. Отношение толщины слоя к размеру гранул составляет 5:1, съем серы составляет 4,1 кг/ч на 1 литр катализатора. Выход серы - 99,6%.

Пример 3. В условиях, аналогичных примеру 1, окисление сероводорода в газе, содержащем 85 об.% сероводорода, проводят в неподвижном слое гранулированного катализатора ИКТ-27-42 ТУ 6-68-205-03, размещенного между теплообменными поверхностями, расположенными под углом 45 градусов к горизонтали, при этом направление ввода реакционного газа составляет 0 градусов к горизонтали. Отношение толщины слоя к размеру гранул составляет 10:1, съем серы составляет 4,1 кг/ч на 1 литр катализатора. Выход серы - 99,6%.

Из примеров 1-3 видно, что предлагаемый способ позволяет проводить окисление сероводорода с получением серы при концентрации его в газе до 90 об.%, что расширяет пределы применимости способа, кроме того, достигается более высокий выход серы за счет предотвращения локальных перегревов в зоне реакции; при охлаждении реактора образуется пар с более высоким потенциалом (250°C, 4,0 МПа), повышается съем серы с единицы объема катализатора, что указывает на более высокую интенсивность процесса.

Предлагаемый способ может быть использован в нефтехимической промышленности, воспроизводим и при использовании реализуется его назначение. Таким образом, заявляемое изобретение соответствует критерию патентоспособности «промышленная применимость».

Источник поступления информации: Роспатент

Showing 91-100 of 319 items.
27.01.2016
№216.014.bccf

Способ подготовки попутного нефтяного газа

Изобретение относится к способам подготовки попутного нефтяного газа к транспорту и может быть использовано в нефтяной промышленности. Предложен способ, согласно которому предварительно отсепарированный попутный нефтяной газ подвергают мягкому паровому риформингу в присутствии воды и газа...
Тип: Изобретение
Номер охранного документа: 0002573868
Дата охранного документа: 27.01.2016
10.03.2016
№216.014.be38

Фракционирующий холодильник-конденсатор

Изобретение относится к конструкции сепарационных устройств и может быть использовано для выделения тяжелых компонентов из многокомпонентных паров и газов в нефтегазовой промышленности. Фракционирующий холодильник-конденсатор, состоящий из последовательно расположенных снизу вверх сепарационной...
Тип: Изобретение
Номер охранного документа: 0002576934
Дата охранного документа: 10.03.2016
27.02.2016
№216.014.bf19

Установка подготовки топливного газа

Изобретение относится к установке подготовки сжатого топливного газа, в частности для газотурбинных энергетических установок, и может быть использовано в нефтегазовой промышленности и энергетике. Установка подготовки топливного газа включает компрессор с линией подачи газа и линией вывода...
Тип: Изобретение
Номер охранного документа: 0002576097
Дата охранного документа: 27.02.2016
10.03.2016
№216.014.bfa4

Способ подготовки топливного газа

Изобретение относится к способу подготовки топливного газа для газотурбинных энергетических установок и может быть использовано в нефтегазовой промышленности и энергетике. Способ включает сжатие, охлаждение и сепарацию газа. Газ перед сжатием подвергают абсорбции циркулирующим абсорбентом...
Тип: Изобретение
Номер охранного документа: 0002576714
Дата охранного документа: 10.03.2016
10.03.2016
№216.014.c055

Способ подготовки топливного газа

Изобретение относится к способу подготовки топливного газа и может быть использовано в нефтегазовой промышленности и энергетике. Способ включает сжатие газа, его охлаждение и сепарацию. Газ предварительно подвергают контактированию с легким абсорбентом, полученный тяжелый абсорбент разделяют на...
Тип: Изобретение
Номер охранного документа: 0002576769
Дата охранного документа: 10.03.2016
10.03.2016
№216.014.c065

Способ подготовки углеводородного газа

Изобретение относится к способу подготовки углеводородных газов путем низкотемпературной конденсации и может быть использовано в газовой промышленности. Предложен способ подготовки природного газа, включающий сепарацию, рекуперативное охлаждение газа и его охлаждение сторонним хладоагентом с...
Тип: Изобретение
Номер охранного документа: 0002576704
Дата охранного документа: 10.03.2016
27.02.2016
№216.014.c0d6

Способ регенерации метанола из минерализованного водного раствора

Изобретение относится к процессам выделения метанола из минерализованных водометанольных растворов и может быть использовано в нефтегазовой промышленности. Способ включает ректификацию нагретого минерализованного водометанольного раствора во фракционирующей колонне, в которую также подают...
Тип: Изобретение
Номер охранного документа: 0002576299
Дата охранного документа: 27.02.2016
27.02.2016
№216.014.c0e3

Устройство для низкотемпературной сепарации газа и способ его работы

Группа изобретений относится к устройствам и способам подготовки природного газа к транспортировке путем низкотемпературной сепарации и может быть использовано в нефтегазовой промышленности. Устройство для низкотемпературной сепарации газа содержит предварительный, промежуточный и...
Тип: Изобретение
Номер охранного документа: 0002576300
Дата охранного документа: 27.02.2016
27.02.2016
№216.014.c158

Способ подготовки топливного газа

Изобретение относится к способу подготовки сжатого топливного газа, для газотурбинных энергетических установок и может быть использовано в нефтегазовой промышленности и энергетике. Способ включает сжатие, охлаждение и сепарацию газа. Газ перед сжатием повергают абсорбции циркулирующим...
Тип: Изобретение
Номер охранного документа: 0002576313
Дата охранного документа: 27.02.2016
27.02.2016
№216.014.c17f

Способ низкотемпературной сепарации газа

Изобретение относится к способам подготовки скважинной продукции газоконденсатных месторождений, а именно к способу низкотемпературной сепарации газа, и может быть использовано в газовой промышленности. Способ низкотемпературной сепарации газа включает входную сепарацию сырого газа с получением...
Тип: Изобретение
Номер охранного документа: 0002576297
Дата охранного документа: 27.02.2016
Showing 91-100 of 349 items.
10.03.2016
№216.014.be38

Фракционирующий холодильник-конденсатор

Изобретение относится к конструкции сепарационных устройств и может быть использовано для выделения тяжелых компонентов из многокомпонентных паров и газов в нефтегазовой промышленности. Фракционирующий холодильник-конденсатор, состоящий из последовательно расположенных снизу вверх сепарационной...
Тип: Изобретение
Номер охранного документа: 0002576934
Дата охранного документа: 10.03.2016
27.02.2016
№216.014.bf19

Установка подготовки топливного газа

Изобретение относится к установке подготовки сжатого топливного газа, в частности для газотурбинных энергетических установок, и может быть использовано в нефтегазовой промышленности и энергетике. Установка подготовки топливного газа включает компрессор с линией подачи газа и линией вывода...
Тип: Изобретение
Номер охранного документа: 0002576097
Дата охранного документа: 27.02.2016
10.03.2016
№216.014.bfa4

Способ подготовки топливного газа

Изобретение относится к способу подготовки топливного газа для газотурбинных энергетических установок и может быть использовано в нефтегазовой промышленности и энергетике. Способ включает сжатие, охлаждение и сепарацию газа. Газ перед сжатием подвергают абсорбции циркулирующим абсорбентом...
Тип: Изобретение
Номер охранного документа: 0002576714
Дата охранного документа: 10.03.2016
10.03.2016
№216.014.c055

Способ подготовки топливного газа

Изобретение относится к способу подготовки топливного газа и может быть использовано в нефтегазовой промышленности и энергетике. Способ включает сжатие газа, его охлаждение и сепарацию. Газ предварительно подвергают контактированию с легким абсорбентом, полученный тяжелый абсорбент разделяют на...
Тип: Изобретение
Номер охранного документа: 0002576769
Дата охранного документа: 10.03.2016
10.03.2016
№216.014.c065

Способ подготовки углеводородного газа

Изобретение относится к способу подготовки углеводородных газов путем низкотемпературной конденсации и может быть использовано в газовой промышленности. Предложен способ подготовки природного газа, включающий сепарацию, рекуперативное охлаждение газа и его охлаждение сторонним хладоагентом с...
Тип: Изобретение
Номер охранного документа: 0002576704
Дата охранного документа: 10.03.2016
27.02.2016
№216.014.c0d6

Способ регенерации метанола из минерализованного водного раствора

Изобретение относится к процессам выделения метанола из минерализованных водометанольных растворов и может быть использовано в нефтегазовой промышленности. Способ включает ректификацию нагретого минерализованного водометанольного раствора во фракционирующей колонне, в которую также подают...
Тип: Изобретение
Номер охранного документа: 0002576299
Дата охранного документа: 27.02.2016
27.02.2016
№216.014.c0e3

Устройство для низкотемпературной сепарации газа и способ его работы

Группа изобретений относится к устройствам и способам подготовки природного газа к транспортировке путем низкотемпературной сепарации и может быть использовано в нефтегазовой промышленности. Устройство для низкотемпературной сепарации газа содержит предварительный, промежуточный и...
Тип: Изобретение
Номер охранного документа: 0002576300
Дата охранного документа: 27.02.2016
27.02.2016
№216.014.c158

Способ подготовки топливного газа

Изобретение относится к способу подготовки сжатого топливного газа, для газотурбинных энергетических установок и может быть использовано в нефтегазовой промышленности и энергетике. Способ включает сжатие, охлаждение и сепарацию газа. Газ перед сжатием повергают абсорбции циркулирующим...
Тип: Изобретение
Номер охранного документа: 0002576313
Дата охранного документа: 27.02.2016
27.02.2016
№216.014.c17f

Способ низкотемпературной сепарации газа

Изобретение относится к способам подготовки скважинной продукции газоконденсатных месторождений, а именно к способу низкотемпературной сепарации газа, и может быть использовано в газовой промышленности. Способ низкотемпературной сепарации газа включает входную сепарацию сырого газа с получением...
Тип: Изобретение
Номер охранного документа: 0002576297
Дата охранного документа: 27.02.2016
10.03.2016
№216.014.c19f

Способ подготовки топливного газа

Изобретение относится к способу подготовки сжатого топливного газа для газотурбинных энергетических установок и может быть использовано в нефтегазовой промышленности и энергетике. Способ включает сжатие, охлаждение и сепарацию газа. Газ предварительно повергают абсорбции в условиях...
Тип: Изобретение
Номер охранного документа: 0002576723
Дата охранного документа: 10.03.2016
+ добавить свой РИД