×
10.10.2013
216.012.7428

Результат интеллектуальной деятельности: СПОСОБ ВХОДНОГО КОНТРОЛЯ ПОДШИПНИКОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области измерительной техники и может быть использовано для контроля состояния новых и бывших в эксплуатации подшипников. Способ заключается в следующем: подготавливают подшипник к сборке в соответствие с регламентированной технологическим процессом процедурой, устанавливают его на стендовое оборудование, имитируют условия и режимы работы в изделии и измеряют нормированное интегральное время микроконтактирования, по которому определяют вид смазки в подшипнике путем его сравнения со значением, соответствующим переходу к граничной смазке, 0 или 1. В случае величины параметра времени микроконтактирования, равным 0 или 1, измеряют среднее электрическое сопротивление, по которому судят о состоянии подшипника. При нахождении величины этого параметра в диапазоне от величины значения перехода к граничной смазке до 1 измеряют обратную этому параметру величину - нормированное интегральное время целостности поверхностных пленок. О состоянии подшипника судят по рассчитываемому относительному коэффициенту смазывающей способности, зависящему от номинальной площади пятна контакта наиболее нагруженного тела качения с кольцом и плотности микронеровностей поверхностей. Технический результат заключается в повышении достоверности контроля состояния подшипников. 1 ил.
Основные результаты: Способ входного контроля подшипников, заключающийся в том, что подготавливают контролируемый подшипник к сборке узла в соответствии с регламентированной технологическим процессом процедурой; устанавливают подшипник на стендовое оборудование, с помощью которого создают условия и режимы его работы в изготавливаемом или ремонтируемом изделии - вращают кольца с заданными частотами и осуществляют требуемый характер нагружения; измеряют диагностический параметр - нормированное интегральное время микроконтактирования в подшипнике , по значению которого судят о состоянии контролируемого подшипника, отличающийся тем, что определяют вид смазки в подшипнике путем сравнения измеренного значения с нулем, единицей и со значением параметра K, соответствующим переходу к граничной смазке в подшипнике, при этом в случае или дополнительно измеряют среднее значение электрического сопротивления подшипника, по которому судят о состоянии подшипника, а при измеряют нормированное интегральное время целостности поверхностных пленок , и о состоянии подшипника судят по значению относительного коэффициента смазывающей способности K, определяемому из выражения: где A - номинальная площадь пятна контакта наиболее нагруженного тела качения с кольцом, рассчитываемая по теории Герца; q - плотность микронеровностей контактирующих поверхностей.

Изобретение относится к области измерительной техники и может быть использовано при проведении входного контроля новых и бывших в эксплуатации подшипников при изготовлении и ремонте машин и механизмов.

Известен способ входного контроля подшипников, заключающийся в оценке параметров, установленных в нормативно-технической документации на продукцию и договорах на ее поставку (см. ГОСТ 24297-87. Входной контроль продукции. Основные положения. - М: Изд-во стандартов, 1988), при этом обычно ограничиваются проверкой упаковки, маркировки, наличия сопроводительной документации, осмотром наружных поверхностей. Известный способ не предполагает оценку фактического состояния контролируемых подшипников с учетом состояния их рабочих поверхностей и процессов, протекающих в зонах трения при работе подшипника, поэтому их эффективность не высока.

Известны способы входного контроля, включающие субъективный контроль легкости вращения колец и проверку на шум (см. Руководство по эксплуатации и ремонту авиационных подшипников качения / Сост. Н.Ф. Григорьев, A.M. Зайцев, В.Г. Шахназаров. М.: Воздушный транспорт, 1981. 70 стр.). В этом случае выявляются дефекты рабочих поверхностей (забоины, трещины, коррозия), возникающие при неправильном хранении или транспортировке. Недостатком этих способов является их субъективность и то, что оцениваются лишь отдельные параметры безотносительно к их влиянию на работоспособность и долговечность подшипника в конкретных режимах и условиях их работы в изготавливаемом или ремонтируемом изделии. В то же время, при изготовлении подшипников каждый размер и параметр выполняется с определенным полем допуска, поэтому каждый экземпляр подшипника имеет индивидуальное сочетание действительных значений размеров и параметров, причем сформировавшаяся комбинация этих значений может по-разному сказываться на долговечности подшипника в зависимости от условий и режимов его работы. В этой связи долговечность подшипников, даже изготовленных на одном оборудовании из материалов одной плавки и работающих в одинаковых режимах и условиях, различается в десятки раз. Известные способы не учитывают этого, поэтому их достоверность ограничена.

Известны способы контроля состояния подшипников, заключающиеся в измерении интегральных параметров, комплексно характеризующих состояние подшипника в условиях и режимах, соответствующих эксплуатационным. К числу таких параметров относятся вибрационные, тепловые, кинематические, электрические и др. Эти методы обеспечивают возможность объективной оценки фактического состояния подшипника в реальных условиях и режимах его эксплуатации в изготавливаемом или ремонтируемом изделии и, следовательно, ожидаемую долговечность при работе в данном изделии (см. Подмастерьев К.В. Электропараметрические методы комплексного диагностирования опор качения. - М: Машиностроение-1, 2001. - Стр.19-33).

Наиболее близким по технической сущности к заявляемому способу является способ входного контроля подшипников, заключающийся в том, что подготавливают контролируемый подшипник к сборке узла в соответствие с регламентированной технологическим процессом процедурой, например, промывают и смазывают требуемым количеством смазочного материала заданного состава; устанавливают подшипник на стендовое оборудование, с помощью которого создают условия и режимы его работы в изготавливаемом или ремонтируемом изделии - вращают кольца с заданными частотами и осуществляют требуемый характер нагружения; измеряют диагностический параметр - нормированное интегральное время микроконтактирования в подшипнике , по значению которого судят о состоянии контролируемого подшипника (см. Подмастерьев К.В. Электропараметрические методы комплексного диагностирования опор качения. - М.: Машиностроение-1, 2001. - Стр.93-98). Данный способ принят за прототип.

В основу известного способа заложена количественная оценка состояния зон трения деталей подшипника при его работе, в частности, состояния поверхностных и смазочных пленок в зонах трения. При работе подшипника на рабочих поверхностях деталей образуются поверхностные граничные пленки различной природы, между телами качения и кольцами образуется устойчивая пленка смазочного материала, толщина которой непрерывно флуктуирует. Возможны кратковременные местные разрушения пленок в контактах наиболее высоких микронеровностей - микроконтакты. Нормированное интегральное время микроконтактирования в подшипнике - это параметр, численно равный отношению суммарной длительности микроконтактирований в подшипнике за некоторое время измерения к значению этого времени. Изменяясь от 0 до 1, параметр является статистической оценкой вероятность микроконтактирования в подшипнике.

Ухудшение состояния подшипника, независимо от причины, приводит к увеличению флуктуации толщины пленки, частоты и длительности микроконтактирований и, следовательно, вероятности микроконтактирования и значения параметра . С другой стороны, ухудшение состояния граничных и смазочных пленок вызывает рост интенсивности практически всех видов изнашивания подшипника, поскольку при микроконтактировании происходит резкое возрастание местных нормальных и касательных напряжений, возникают микро вспышки температуры. Таким образом, измеренное при реализации известного способа значение параметра дает объективную комплексную информацию о фактическом состоянии подшипника на момент контроля, а также исходную информацию для прогнозирования этого состояния для конкретных режимов и условий эксплуатации.

Параметр измеряют электрическим методом. В основу метода измерения заложено то, что смазочные материалы и материалы граничных пленок, как правило, обладают высоким удельным электрическим сопротивлением, поэтому уменьшение толщины поверхностных и смазочных пленок, а также микроконтактирования приводят к существенному снижению электрического сопротивления зоны трения. Под микроконтактированием в подшипнике понимается событие, заключающееся в том, что имеет место микроконтактирование хотя бы одного из тел качения одновременно с обоими кольцами, что и фиксируется контролирующей аппаратурой по существенному снижению электрического сопротивления подшипника.

Таким образом, при реализации известного и принятого за прототип способа объективная информация о состоянии подшипника поступает непосредственно из зон трения его деталей в форме электрического сигнала, удобного для дальнейшего преобразования и обработки, при этом получаемая информация характеризует фактическое состояние зон трения при работе подшипника в условиях и режимах, соответствующих эксплуатационным, а значение диагностического параметра характеризует потенциальную долговечность подшипника при его установке в изготавливаемое или ремонтируемое изделие.

Однако, диагностический параметр нормированное интегральное время микроконтактирования, будучи статистической оценкой вероятности микроконтактирования в подшипнике, объективно характеризует состояние подшипника только в условиях смешанной смазки, когда поверхности трения разделены несущим нагрузку в контакте гидродинамическим слоем смазочного материала, обладающего объемными свойствами, и имеют место кратковременные местные разрушения этого слоя в контактах наиболее высоких микронеровностей - микроконтакты. Для этого случая в источнике с описанием прототипа установлены зависимости ожидаемой долговечности подшипника от значения параметра .

Смешанная смазка является распространенным видом смазки в подшипнике, однако, не единственным. Возможны ситуации, когда при воспроизводимых в процессе контроля эксплуатационных режимах и условиях в подшипниках данного типоразмера формируется жидкостная смазка, характеризуемая полным разделением рабочих поверхностей устойчивым гидродинамическим слоем смазочного материала. В этом случае независимо от фактического состояния подшипника всегда , и различить подшипники при контроле не представляется возможным. Аналогичная ситуация имеет место, когда при эксплуатационных режимах и условиях смазочные и поверхностные пленки постоянно разрушены, и независимо от состояния подшипника всегда . В указанных режимах известный способ контроля не работоспособен.

Особый случай - это граничная смазка, когда основную нагрузку в зоне трения воспринимает не слой смазочного материала с объемными свойствами, а граничные слои. В основу теории принятого за прототип способа контроля заложено предположение, что разрушение гидродинамической пленки в контакте микронеровностей приводит к электрическому контакту поверхностей, регистрируемому контролирующей аппаратурой, как микроконтактирование, и учитываемому при измерении параметра . Именно для этого случая установлена связь параметра с долговечностью подшипника. При граничной же смазке граничные слои могут при работе подшипника как разрушаться и фиксироваться измерительной аппаратурой как микроконтактирование, так и не разрушаться и, соответственно, не учитываться при измерении диагностического параметра . Поэтому непосредственная оценка состояния подшипника в данном режиме по параметру нормированное интегральное время микроконтактирования не обеспечивает достоверности контроля.

Таким образом, достоверность известного и принятого за прототип способа входного контроля подшипников ограничена.

Техническая задача, решаемая изобретением, заключается в повышении достоверности входного контроля подшипников за счет контроля подшипника по диагностическим параметрам, обеспечивающим получение достоверной количественной информации о его фактическом состоянии при сформировавшемся в нем в процессе контроля виде смазки

Технический результат достигается за счет того, что в известном способе входного контроля подшипников, заключающемся в том, что подготавливают контролируемый подшипник к сборке узла в соответствие с регламентированной технологическим процессом процедурой; устанавливают подшипник на стендовое оборудование, с помощью которого создают условия и режимы его работы в изготавливаемом или ремонтируемом изделии - вращают кольца с заданными частотами и осуществляют требуемый характер нагружения; измеряют диагностический параметр - нормированное интегральное время микроконтактирования в подшипнике , по значению которого судят о состоянии контролируемого подшипника, согласно изобретению определяют вид смазки в подшипнике путем сравнения измеренного значения с нулем, единицей и со значением параметра Kгр.см, соответствующим переходу к граничной смазке в подшипнике, при этом в случае или дополнительно измеряют среднее значение электрического сопротивления подшипника, по которому судят о состоянии подшипника, а при измеряют нормированное интегральное время целостности поверхностных пленок , а о состоянии подшипника судят по значению относительного коэффициента смазывающей способности Kсм.с, определяемому из выражения:

где Ar - номинальная площадь пятна контакта наиболее нагруженного тела качения с кольцом, рассчитываемая по теории Герца;

q - плотность микронеровностей контактирующих поверхностей.

Значение Kгр.см принимают равным 0,95.

На фиг.1 представлена схема устройства для осуществления предложенного способа. Устройство включает стендовое оборудование и электронное средство контроля. Стендовое оборудование включает привод 1 выполненный с возможностью установки и крепления контролируемого подшипника 2, устройство нагружения 3, токосъемники 4 и 5, выполненные с возможностью подключения к кольцам контролируемого подшипника 2.

Электронное средство контроля содержит преобразователь сопротивления в напряжение 6, интегратор 7, формирователь импульсов 8, инвертер 9, генератор опорной частоты 10, временные селекторы 11 и 12, счетчики 13 и 14, формирователь стробимпульса15, сравнивающее устройство 16, вычислительное устройство 17 и регистрирующее устройство 18. При этом преобразователь сопротивления в напряжение 6 входами подключен к токосъемникам 4 и 5, а выходом - к интегратору 7 и формирователю импульсов 8, к выходу которого подключены первый вход временного селектора 11 и через инвертер 9 первый вход временного селектора 12, ко вторым входам которых подключен генератор образцовых сигналов 10, а к выходам, соответственно, измерительные входы счетчиков импульсов 13 и 14. Формирователь строб импульсов 15 входом подключен к генератору образцовых сигналов 10, а выходом - к управляющим входам счетчиков импульсов 13 и 14. Регистрирующее устройство 18 подключено к выходу вычислительного устройства 17, ко входам которого подключены выходы интегратора 7, счетчиков импульсов 13 и 14, сравнивающего устройства 16, входом связанного с выходом счетчика импульсов 13.

Способ осуществляют следующим образом.

Вначале подготавливают контролируемый подшипник к сборке узла в соответствие с регламентированной технологическим процессом процедурой. Для каждого изготавливаемого или ремонтируемого изделия процедура подготовки подшипника к сборке узла различна. Обычно промывают подшипник, просушивают и смазывают требуемым количеством смазочного материала заданного состава. Если подшипник поставляется с заложенным в него пластичным смазочным материалом, то эту процедуру не проводят. В отдельных случаях проводят технологическую обкатку подшипника. Для реализации предложенного способа принципиальным является только то, что подготовку контролируемого подшипника к сборке узла осуществляют в соответствии с процедурой, регламентированной технологическим процессом сборки узла изготавливаемого или ремонтируемого изделия.

Затем устанавливают подшипник 2 на стендовое оборудование, с помощью которого создают условия и режимы его работы в изготавливаемом или ремонтируемом изделии - с помощью привода 1 вращают кольца с заданными частотами, а устройством нагружения 3 осуществляют требуемый характер нагружения контролируемого подшипника 2.

Измеряют диагностический параметр - нормированное интегральное время микроконтактирования в подшипнике с помощью предложенного устройства следующим образом. Для этого кольца контролируемого подшипника 2 с помощью токосъемников 4 и 5 подключают к преобразователю сопротивления в напряжение 6, на выходе которого формируется сигнал в виде напряжения U(t), пропорционального электрическому сопротивлению R(t) подшипника 2. При микроконтактировании в подшипнике его электрическое сопротивление резко уменьшается, следствием чего является соответствующее изменение напряжения на выходе преобразователя сопротивления в напряжение 6 и формирование прямоугольного импульса с длительностью, равной длительностью микроконтактирования τi на выходе формирователя импульсов 8. Этот импульс открывает временной селектор 11 для прохождения через него от генератора опорной частоты 10 высокочастотных импульсов с периодом Тз на счетчик импульсов 13, который определяет суммарное-число импульсов Nи, пришедших на него за время измерения параметра Ти, задаваемое формирователем стробимпульсов 15. Значение параметра - нормированное интегральное время микроконтактирования определяется, как:

Таким образом, сигнал вы выходе счетчика импульсов 13 соответствует измеряемому значению параметра .

Затем определяют вид смазки в подшипнике путем сравнения измеренного значения с нулем, единицей и со значением параметра Kгр.см, соответствующим переходу к граничной смазке в подшипнике. На основании проведенных исследований установлено, что в качестве значения Kгр.см можно принять значение 0,95. Указанные реперные значения параметра заложены в память устройства сравнения 16, которое в зависимости от результатов сравнения формирует на выходе управляющий сигнал, направляемый на вычислительное устройство 17. Возможны четыре варианта результатов сравнения: ; ; ; . Первый вариант соответствует жидкостной смазке в подшипнике, второй вариант - смешанной смазке, третий - граничной смазке, четвертый - соответствует разрушению граничных пленок.

На основании результатов сравнения вычислительное устройство выбирает, формирует и направляет на регистрирующее устройство 18 диагностический параметр для оценки состояния контролируемого подшипника при сформировавшемся в нем виде смазки.

Если или , то дополнительно измеряют среднее значение электрического сопротивления подшипника, по которому судят о состоянии подшипника. Определение среднего значения электрического сопротивления подшипника осуществляется путем интегрирования сигнала с выхода преобразователя сопротивления в напряжение 6 с помощью интегратора 7, на выходе которого формируется сигнал, пропорциональный среднему электрическому сопротивлению подшипника Rcp:

При жидкостной смазке среднее электрическое сопротивление подшипника несет информацию о средней толщине гидродинамической смазочной пленки, разделяющей поверхности трения. Чем больше толщина пленки, тем больше значение Rcp. При этом с ростом толщины пленки возрастает общепринятый в трибологии Х-параметр, однозначно связанный с долговечностью подшипника. При разрушении смазочных и граничных пленок электрическое сопротивление зоны трения определяется сопротивлением стягивания, которое, в свою очередь, зависит от размеров фактических площадок контакта, непосредственно влияющих на контактные напряжения и на интенсивность изнашивания (см. Свириденок А.И., Мышкин Н.К., Калмыкова Т.Ф., Холодилов О.В. Акустические и электрические методы в триботехнике. - Минск: Наука и техника, 1987; Подмастерьев К.В. Электропараметрические методы комплексного диагностирования опор качения. - М.: Машиностроение-1, 2001. - Стр.38-49; Неразрушающий контроль: Справочник: В 8 томах / Под общ. Ред. В.В. Клюева. Т.5: В 2 кн. Кн.2. Электрический контроль. М.: Машиностроение, 2006. - Стр.527-536). Таким образом, при указанных видах смазки параметр Rcp дает объективную информацию о фактическом состоянии подшипника при эксплуатационных режимах и условиях и обеспечивает достоверный входной контроль подшипников.

Если (граничная смазка), то измеряют нормированное интегральное время целостности поверхностных пленок , а о состоянии подшипника судят по значению относительного коэффициента смазывающей способности Kсм.с, определяемому из выражения:

где Ar - номинальная площадь пятна контакта наиболее нагруженного тела качения с кольцом, рассчитываемая по теории Герца;

q - плотность микронеровностей контактирующих поверхностей.

Нормированное интегральное время целостности поверхностных пленок измеряют следующим образом. Прямоугольные импульсы напряжения с длительностью, равной длительности микроконтактирований τi, с выхода формирователя импульсов 8 инвертируются инвертором 9, на выходе которого, таким образом, формируются импульсы с длительностью, равной длительности пауз между микроконтактированиями τпi. Эти импульсы открывают временной селектор 12 для прохождения через него от генератора опорной частоты 10 высокочастотных импульсов с периодом Тз на счетчик импульсов 14, который определяет суммарное число импульсов Nп, пришедших на него за время измерения параметра Ти, задаваемое формирователем стробимпульсов 15. Таким образом, сигнал на выходе счетчика импульсов 14 соответствует значению :

Значение Kсм.с определяется расчетным путем вычислительным устройством 17, на вход которого поступает сигнал со значением от счетчика импульсов 14. При этом плотность микронеровностей контактирующих поверхностей q является характеристикой шероховатости рабочих поверхностей деталей подшипника: , где Sm - средний шаг неровностей профиля контактирующих поверхностей. Значение номинальной площади контакта наиболее нагруженного тела качения с кольцом Ar рассчитывается по известным зависимостям теории Герца исходя из геометрических размеров деталей подшипника, упругих свойств материалов и нагрузки на подшипник. Для определения Ar, соответственно, для шариковых и роликовых подшипников можно воспользоваться, например, выражениями [Галахов М.А., Бурмистров А.Н. Расчет подшипниковых узлов. - М: Машиностроение, 1988]:

,

,

где a и b - размеры полуосей площадки контакта наиболее нагруженного тела качения с кольцом;

l - длина ролика;

F - нагрузка в контакте;

ET(K), ηT(K) - соответственно, модуль упругости и коэффициент Пуассона материалов тела качения (кольца);

Σρ - сумма главных кривизн соприкасающихся поверхностей в начальной точке касания (конструктивный параметр подшипника, определяемый радиусами кривизны рабочих поверхностей тел качения и колец);

na, nb - конструктивные параметры подшипника, определяемые по справочным таблицам или аппроксимационным формулам.

Параметры Ar и q для конкретного типоразмера контролируемых подшипников и условий их нагружения, таким образом, являются константами, определяемыми или внесенными заблаговременно в память вычислительного устройства 17.

Физический смысл предлагаемого для граничной смазки диагностического параметра - относительный коэффициент смазывающей способности Kсм.с - это вероятность предотвращения микроконтактирования защитным граничным слоем смазочного материалас учетом его распределения на трущихся поверхностях и вероятности его существования в произвольный момент времени. Этот параметр изменяется от 0 до 1 и дает объективную информацию о процессах изнашивания, происходящих в зонах трения при граничной смазке, и, таким образом, достоверно характеризует состояние подшипника при его входном контроле.

Если при сравнении в устройстве 16 получен результат (смешанная смазка), то о состоянии подшипника, как и в прототипе, судят по измеренному значению нормированного интегрального времени констатирования . Достоверность входного контроля подшипников при смешанной смазке по данному параметру проиллюстрирована и доказана в источнике, в котором описан прототип.

Таким образом, технический результат достигается заявляемым способом за счет того, что путем сравнения измеренного значения К с нулем, единицей и со значением параметра Kгр.см, соответствующим переходу к граничной смазке в подшипнике, идентифицируют вид смазки, сформировавшийся в контролируемом подшипнике при его контроле в режимах и условиях, имитирующих эксплуатационные в изготавливаемом или ремонтируемом изделии. В зависимости от установленного вида смазки о техническом состоянии подшипника судят по тому диагностическому параметру, который при этом виде смазки несет объективную комплексную информацию о фактическом состоянии подшипника. Следовательно, независимо от вида смазки, формирующегося в контролируемом подшипнике при его контроле, обеспечивается получение объективной и достоверной информации о техническом состоянии подшипника и, следовательно, по сравнению с прототипом достоверность входного контроля возрастает, что подтверждает решение поставленной технической задачи изобретения.

Способ входного контроля подшипников, заключающийся в том, что подготавливают контролируемый подшипник к сборке узла в соответствии с регламентированной технологическим процессом процедурой; устанавливают подшипник на стендовое оборудование, с помощью которого создают условия и режимы его работы в изготавливаемом или ремонтируемом изделии - вращают кольца с заданными частотами и осуществляют требуемый характер нагружения; измеряют диагностический параметр - нормированное интегральное время микроконтактирования в подшипнике , по значению которого судят о состоянии контролируемого подшипника, отличающийся тем, что определяют вид смазки в подшипнике путем сравнения измеренного значения с нулем, единицей и со значением параметра K, соответствующим переходу к граничной смазке в подшипнике, при этом в случае или дополнительно измеряют среднее значение электрического сопротивления подшипника, по которому судят о состоянии подшипника, а при измеряют нормированное интегральное время целостности поверхностных пленок , и о состоянии подшипника судят по значению относительного коэффициента смазывающей способности K, определяемому из выражения: где A - номинальная площадь пятна контакта наиболее нагруженного тела качения с кольцом, рассчитываемая по теории Герца; q - плотность микронеровностей контактирующих поверхностей.
СПОСОБ ВХОДНОГО КОНТРОЛЯ ПОДШИПНИКОВ
СПОСОБ ВХОДНОГО КОНТРОЛЯ ПОДШИПНИКОВ
СПОСОБ ВХОДНОГО КОНТРОЛЯ ПОДШИПНИКОВ
Источник поступления информации: Роспатент

Showing 1-1 of 1 item.
19.01.2018
№218.016.0a9e

Устройство для оперативного опробования магнетитовых руд

Изобретение относится к области неразрушающего контроля и может быть использовано для измерения магнитной восприимчивости магнетитовых руд при оперативном опробовании стенок горных выработок, а также для оценки качества рудной массы в навалах, вагонетках и на самосвалах. В составе устройства...
Тип: Изобретение
Номер охранного документа: 0002632265
Дата охранного документа: 03.10.2017
Showing 1-10 of 17 items.
27.01.2013
№216.012.20ba

Способ определения диаметра продольной арматуры в упругих железобетонных конструкциях балочного типа

Изобретение относится к области строительства и предназначено для диагностики и контроля качества железобетонных конструкций балочного типа вибрационным методом. Сущность: конструкцию устанавливают на стенде, закрепляют концы по схеме шарнирного опирания, нагружают и измеряют физические...
Тип: Изобретение
Номер охранного документа: 0002473879
Дата охранного документа: 27.01.2013
27.01.2013
№216.012.20bb

Способ определения модуля упругости бетона в упругих железобетонных конструкциях балочного типа

Изобретение относится к области строительства и предназначено для диагностики и контроля качества железобетонных конструкций балочного типа вибрационным методом. Сущность: устанавливают конструкцию на стенде, закрепляют концы по схеме шарнирного опирания, нагружают и измеряют физические...
Тип: Изобретение
Номер охранного документа: 0002473880
Дата охранного документа: 27.01.2013
27.03.2013
№216.012.30c7

Способ чистовой обработки с калиброванием и упрочнением металлических внутренних цилиндрических поверхностей деталей

Способ включает упругое нагружение поверхностного слоя заготовки деформирующе-режущим элементом инструмента с одновременным срезанием поверхностного слоя. Для расширения техноблогических возможностей перед срезанием поверхностный слой подвергают пластической деформации, посредством чередования...
Тип: Изобретение
Номер охранного документа: 0002478025
Дата охранного документа: 27.03.2013
10.04.2013
№216.012.3272

Инструмент для чистовой обработки с калиброванием металлических внутренних цилиндрических поверхностей деталей

Инструмент содержит деформирующе-режущие элементы, имеющие на наружной поверхности выполненные под углом к оси инструмента заборный и обратный конусы с расположенной между ними цилиндрической ленточкой. Для расширения технологических возможностей на деформирующе-режущих элементах, количество...
Тип: Изобретение
Номер охранного документа: 0002478457
Дата охранного документа: 10.04.2013
10.04.2013
№216.012.344e

Установка для имитации и контроля запотевания стекол защитных очков

Изобретение направлено на определение основных защитных и эксплуатационных показателей защитных очков, применяемых при наличии запотевания смотровых стекол в условиях их реальной эксплуатации. Установка состоит из макета головы человека, системы подачи в нее увлажненного воздуха и...
Тип: Изобретение
Номер охранного документа: 0002478933
Дата охранного документа: 10.04.2013
20.04.2013
№216.012.377a

Пневмогидравлический аккумулятор

Изобретение относится к пневмогидравлическим аккумуляторам мембранным и может быть использовано в машиностроении, а, именно, в гидроприводах с переменным потреблением жидкости, нефтяной, химической и других отраслях промышленности для гашения пульсаций давления жидкости и обеспечения...
Тип: Изобретение
Номер охранного документа: 0002479755
Дата охранного документа: 20.04.2013
20.06.2013
№216.012.4b77

Способ гидротермической обработки зерна гречихи

Изобретение относится к мукомольно-крупяной промышленности и может быть применено, преимущественно, на гречезаводах. Способ гидротермической обработки зерна гречихи включает операции гидросепарирования и увлажнения, отжим влаги из отходов, сушку отходов, подсушивание и предварительный подогрев...
Тип: Изобретение
Номер охранного документа: 0002484901
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4d81

Устройство удаления влаги в вакууме

Изобретение относится к аппаратам пищевой промышленности, а именно к оборудованию для концентрирования жидких и получения сухих пищевых продуктов путем их выпаривания и сушки в вакууме, и может быть применено в условиях малых предприятий и фермерских хозяйств, лишенных пароснабжения. Устройство...
Тип: Изобретение
Номер охранного документа: 0002485423
Дата охранного документа: 20.06.2013
10.08.2013
№216.012.5dba

Комбинированный радиально-осевой газодинамический лепестковый подшипник скольжения

Изобретение относится к турбомашиностроению и может быть использовано в качестве опор высокоскоростных роторов машин и агрегатов, нагруженных радиальными и осевыми нагрузками, при необходимости обеспечить большую несущую способность при сохранении устойчивого положения ротора, в системах...
Тип: Изобретение
Номер охранного документа: 0002489615
Дата охранного документа: 10.08.2013
27.08.2013
№216.012.62ad

Способ производства кекса

Изобретение относится к пищевой промышленности и общественному питанию. Способ производства кекса включает сбивание рапсового рафинированного масла с сахаром-песком и постепенное введение меланжа в смеси с 3% гидролизата овса от массы меланжа, полученного из нешелушеного зерна овса, которое...
Тип: Изобретение
Номер охранного документа: 0002490898
Дата охранного документа: 27.08.2013
+ добавить свой РИД