×
27.09.2013
216.012.6f34

СПОСОБ ПОЛУЧЕНИЯ НОВОГО ПОЛИМЕРНОГО СОЕДИНЕНИЯ, ОБЛАДАЮЩЕГО ПРОТИВОВИРУСНОЙ АКТИВНОСТЬЮ, СОПОЛИМЕРИЗАЦИЕЙ 2,5-ДИГИДРОКСИБЕНЗОЙНОЙ КИСЛОТЫ И ЖЕЛАТИНА С ПОМОЩЬЮ ФЕРМЕНТА ЛАККАЗЫ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к химической технологии и технологиям получения ветеринарных, медицинских и фармацевтических препаратов. Способ получения нового противовирусного вещества на основе 2,5-дигидроксибензойной кислоты и желатина включает в себя окисление 2,5-дигидроксибензойной кислоты ферментом лакказой до промежуточных феноксирадикалов и семихинонов, которые далее сополимеризуются с желатином, и отделение полученного сополимера от низкомолекулярных компонентов с помощью диализа; оптимальными концентрациями компонентов реакционной смеси являются для 2,5-дигидроксибензойной кислоты - 15-80 мМ, для желатина - 1-13 мг/мл реакционной смеси, для лакказы - 0,5-10 Ед активности/мл реакционной смеси. Полученный сополимер обладает противовирусной активностью в отношении герпесвирусов, в частности в отношении вируса болезни Ауески. 2 табл., 1 ил., 3 пр.
Основные результаты: Способ получения нового противовирусного вещества на основе 2,5-дигидроксибензойной кислоты и желатина, включающий окисление 2,5-дигидроксибензойной кислоты ферментом лакказой до промежуточных феноксирадикалов и семихинонов, которые далее сополимеризуются с желатином, и отделение полученного сополимера от низкомолекулярных компонентов с помощью диализа; оптимальными концентрациями компонентов реакционной смеси являются для 2,5-дигидроксибензойной кислоты - 15-80 мМ, для желатина - 1-13 мг/мл реакционной смеси, для лакказы - 0,5-10 Ед активности/мл реакционной смеси.
Реферат Свернуть Развернуть

Область техники, к которой относится изобретение

Изобретение относится к способам получения полимерных соединений на основе фенолов, обладающих противовирусными свойствами. Изобретение может найти применение в медицине, ветеринарии и фармацевтической промышленности с целью получения новых противовирусных препаратов для лечения и профилактики вирусных заболеваний человека и животных.

Уровень техники

Вирусные заболевания широко распространены среди людей и животных. Постоянно проводится синтез новых соединений, подавляющих развитие вирусов. Методы синтеза противовирусных соединений совершенствуются. Биокаталитический синтез, получение веществ с применением биокатализаторов-ферментов, имеет преимущества перед традиционным химическим синтезом в отношении специфичности действия, обеспечения высоких скоростей реакции и высоких выходов продукта, безопасности для окружающей среды. Лакказа является ферментом, катализирующим окисление фенольных соединений кислородом. В ходе окисления фенольных соединений лакказой образуются высокореакционные феноксирадикалы и семихиноны, которые вступают между собой в реакции с образованием продуктов разной структуры, в том числе и полимерных. Получаемые в результате действия лакказы полимеры часто нерастворимы в водных растворах, что затрудняет разработку препаратов для лечения человека и животных на основе таких агентов.

Для увеличения растворимости полимеров фенолов в водных растворах используют введение в их состав гидрофильных соединений, увеличивающих водорастворимость получаемых фенольных полимеров.

Описан метод получения сополимеров фенолов, растворимых в воде, с акриламидом или акриловой кислотой (Mai С., Schormann W., Hüttermann A. Chemo-enzymatically induced copolymerization of phenolics with acrylate compounds. // Appl Microbiol Biotechnol (2001) 55: 177-186). Способ, по сравнению с предлагаемым нами, имеет недостатки - гидрофильные мономеры (акриламид и акриловая кислота) являются токсичными соединениями, для получения радикалов акриламида и акриловой кислоты применяются дополнительные реагенты - пероксиды или гидроперекиси.

Полимеры на основе полифенолов обладают противовирусной активностью. Природный полифенол - лигнин, выделенный из разрушенных грибами растительных остатков или из древесины, обладает противовирусной активностью (Ref: Suzuki H., Iiyama К., Yoshida О., Yamazaki S., Yamamoto N., Toda N. Structural characterization of the immunoactive and antiviral water solubilized lignin in an extract of the culture medium of Lentinus edodes mycelia (LEM). // Agric. Biol. Chem., 1990, V 54, p.479; Harada H, Sakagami H, Nagata K, Ohara T, Kawazoe Y, Ishihama A, Hata N, Misawa Y, Terada H, Konno K. Possible involvement of lignin structure in anti-influenza virus activity. // Antiviral Res., 1991, V 15, p.41-9). Недостатками природных лигнинов являются неопределенность их состава, который варьирует в зависимости от источника выделения лигнина, и низкая растворимость в воде при нейтральных и кислых значениях рН. Кроме того, из природных лигноцеллюлозных материалов невозможно выделить лигнин в чистом виде, такой материал обязательно будет загрязнен полисахаридами, белками и низкомолекулярными органическими соединениями неизвестного состава.

Искусственно синтезируемые полифенолы с применением фермента - пероксидазы так же обладают противовирусной активностью (Ref: Sakagami H., Nagata К., Ohhara Т., Ishihama A., Kawazoe Y. Anti-influenza virus activity of synthetically polymerized phenylpropenoids. // Biochem. Biophys. Res. Comm., 1990, V.172, p.1267). Однако полученные полифенольные соединения нерастворимы в воде при рН ниже 8,0, синтез с помощью фермента - пероксидазы требует присутствия дополнительного субстрата - перекиси водорода. Преимущество применения лакказы для таких целей в том, что этот фермент катализирует окисление редуцирующих субстратов кислородом воздуха и не требует внесения перекиси водорода как дополнительного субстрата.

Ближе всего к предлагаемому методу синтеза находится способ получения конъюгатов желатина и катехина с помощью лакказы, описанный в работе (Ref: Chung J.В., Kurisawa M., Uyama H., Kobayashi S. Enzymatic synthesis and antioxidant property of gelatin-catechin conjugates. // Biotechnology Letters, 2003, V.25, p.1993). Однако антивирусная активность полученных конъюгатов не определялась. В предлагаемом нами способе получения для сополимеризации с желатином используется 2,5-дигидроксибензойная кислота, которая значительно дешевле катехина, реакция происходит в оптимальных условиях, обеспечивающих максимальный выход сополимера.

Сущность изобретения

Технической задачей изобретения является: 1) подбор оптимальных условий получения с помощью лакказы водорастворимого при кислых, нейтральных и щелочных значения рН сополимера в результате взаимодействия 2,5-дигидроксибензойной кислоты с желатином; 2) выделение препарата сополимера и определение его количества; 3) определение противовирусной активности сополимера 2,5-дигидроксибензойной кислоты с желатином с использованием вируса болезни Ауески (Suid herpesvirus I) в качестве модели.

Проблема сополимеризации 2,5-дигидроксибензойной кислоты с желатином решается с помощью фермента лакказы. Лакказа (n-дифенол:кислород оксидоредуктаза, КФ 1.10.3.2, фермент, катализирующий окисление фенолов, ароматических аминов, ионов некоторых металлов кислородом, который восстанавливается в ходе реакции до воды) катализирует окисление 2,5-дигидроксибензойной кислоты до высокореакционных феноксирадикалов и семихинонов, которые взаимодействуют с боковыми группами аминокислот желатина. В первую очередь реакция происходит с карбоксильными группами аспарагиновой и глутаминовой кислот, аминогруппой лизина, гидроксигруппой серина. В результате реакции происходит сополимеризация желатина и 2,5-дигидроксибензойной кислоты. Получение препарата сополимера достигается путем удаления низкомолекулярных соединений с помощью диализа. Количественное определение продукта реакции производится путем высушивания сополимера и определения массы сухого вещества. Антивирусная активность полученного полимера определяется посредством титрования в 96-луночных культуральных планшетах вируса болезни Ауески (штамм Ка) на клетках ВНК-21 или Vero в присутствии разных концентраций полимера в среде. Учет результатов проводится через 5 суток после инфицирования клеток по цитопатическому действию вируса на клетки и рассчитывается титр инфекционности вируса в контрольных лунках и в лунках с препаратами. Противовирусная активность (индекс ингибирования) препаратов в различных концентрациях рассчитывается путем сравнения титров вируса в контрольных лунках и в лунках с препаратами.

Сущность предлагаемого способа получения сополимеров заключается в следующем: 1) В раствор 2,5-дигидроксибензойной кислоты и желатина в 20 мМ ацетатном буфере рН=5,0 для инициации начала реакции вносится лакказа, реакционная смесь инкубируется в течение 24 часов при 30°С. 2,5-дигидроксибензойная кислота берется в концентрации 15-80 мМ, желатин берется в концентрации 1-13 мг/мл реакционной смеси, лакказа используется в количестве 0,5-10 Ед/мл; 2) через 24 часа реакционная смесь прогревается 5 минут на кипящей водяной бане для остановки реакции и подвергается диализу против воды до полного удаления низкомолекулярных веществ; 3) Количественное определение продукта реакции производится путем высушивания и определения массы высушенного продукта на аналитических весах. Расчет выхода продукта реакции проводится по отношению массы продукта к исходной массе реагентов.

Сведения, подтверждающие возможность осуществления изобретения

Пример 1. Получение сополимера 2,5-дигидроксибензойной кислоты и желатина, определение количества продукта.

Для синтеза используют лакказу. Активность лакказы определяют по окислению субстрата 2,2'-азино-бис-тиосульфоновой кислоты (АБТС). Реакцию проводят в 20 мМ ацетатном буфере рН=5,0, концентрация АБТС 0,5 мМ, при 27°С. Активность определяют по скорости образования окисленного продукта, поглощающего при 420 нм, ε420=36000 М-1см-1. За единицу активности принимают количество фермента, катализирующее образование 1 мкМ окисленного продукта в минуту. Натрий уксуснокислый 3-х водный в количестве 27,21 мг растворяют в 5 мл дистиллированной воды, добавляют 34,5 мкл 0,2 М уксусной кислоты и доводят объем смеси до 10 мл дистиллированной водой. В результате получают 10 мл 20 мМ ацетатного буфера рН=5,0. В полученном буфере растворяют 125 мг желатина до конечной концентрации 12,5 мг/мл, и растворяют 88 мг 2,5 Na-соли дигидроксибензойной кислоты до получения конечной концентрации 50 мМ. В смесь желатина и Na-соли 2,5-дигидроксибензойной кислоты в ацетатном буфере вносят 40 мкл лакказы (Лакказа гриба Cerrena unicolor, 10 Ед активности/мл реакционной смеси). После внесения лакказы, реакционную смесь помещают на качалку со скоростью вращения 200 об/мин. Реакцию проводят при температуре 30°С. Через 24 часа реакционную смесь снимают с качалки и прогревают в течение 5 минут на кипящей водяной бане для остановки реакции, то есть до инактивации лакказы. После водяной бани реакционную смесь подвергают диализу с помощью мембраны с пределом исключения 10 кДа. Диализ проводят против дистиллированной воды, соотношение объема препарата и объема дистиллированной воды для диализа 1/100. Диализ проводят в течение 3 часов, затем дистиллированную воду заменяют на новую, и снова проводят диализ в течение 3 часов. Смену воды повторяют три раза. После диализа 1 мл полученного препарата используют для определения количества полученного продукта. Это определение проводят взвешиванием. Круглодонную колбу для выпаривания объемом 25 мл высушивают в сухожаровом шкафу при 105°С до постоянной массы. Производят взвешивание высушенной колбы на аналитических весах (с точностью до четвертого знака после запятой) три раза, после чего вычисляют среднее трех взвешиваний. В колбы для выпаривания с известной массой помещают 1 мл полученного препарата. Далее, воду из препарата удаляют выпариванием под вакуумом с использованием роторного вакуумного испарителя при 40°С. Колбу, содержащую выпаренный препарат, высушивают до постоянной массы в сухожаровом шкафу при 105°С. После высушивания колбу с высушенным препаратом взвешивают три раза на аналитических весах, после чего вычисляют среднее трех взвешиваний. Содержание сухого вещества в одном миллилитре препарата определяют как разницу между массой колбы для выпаривания с препаратом и массой колбы для выпаривания без препарата. После диализа для подтверждения образования высокомолекулярного продукта препарат наносят на колонку для гельфильтрации размером 55×12 мм с носителем Sephadex G-75. Скорость элюции 1 мл/мин, подвижная фаза - 0,1% NaOH.

Пояснение к графику, изображенному на фигуре 1 стр.1/3 Приложений. График гельфильтрации препарата сополимера 2,5-дигидроксибензойной кислоты с желатином на колонке с носителем Sephadex G-75. Размер колонки - 1,2×55 см, скорость элюции - 1 мл/мин, объем фракций - 1,5 мл, подвижная фаза - 0,2% NaOH.

На графике показан результат гельфильтрации полученного сополимера на носителе Sephadex G-75. Показано, что образуется полимерное соединение.

Пример 2. Определение растворимости сополимера 2,5-дигидроксибензойной кислоты и желатина в водных буферных растворах с различным значением рН.

Готовят три буферных раствора: 50 мМ цитрат-фосфатный буфер рН=2,8 (растворить в 1 л дистиллированной воды лимонной кислоты моногидрат в количестве 5,9 г и натрий фосфорнокислый двузамещенный двухводный в количестве 1,88 г); 50 мМ Na-фосфатный буфер рН=7,0 (растворить в 1 л дистиллированной воды натрий фосфорнокислый двузамещенный двухводный в количестве 5,4 г и натрий однозамещенный двухводный в количестве 3,04 г); 50 мМ боратный буфер рН=9,0 (растворить в 900 мл дистиллированной воды 19,05 г натрия тетрабората, прибавить 46 мл 0,1 М HCl и довести объем смеси до 1 л дистиллированной водой). Два миллилитра водного раствора сополимера 2,5-дигидроксибензойной кислоты и желатина с концентрацией вещества 2 мг/мл помещают в целлюлозный диализный мешок с пределом исключения 10 кДа. Замещают воду в препарате на 50 мМ цитрат-фосфатный буфер рН=2,8, проводят диализ против буфера в течение трех часов. Так же замещают воду в других аналогичных порциях препарата сополимера на 50 мМ Na-фосфатный буфер рН=7,0 и 50 мМ боратный буфер рН=9,0 с помощью диализа. После диализа проводят определение растворимости препарата при данном значении рН путем определения мутности при 600 нм с помощью спектрофотометра. По увеличению мутности делают вывод о выпадении осадка. Мутность раствора определяют по формуле:

М=М600600исх

где М - мутность раствора;

М600 и М600исх - мутность раствора препарата после изменения рН и исходная мутность соответственно.

В таблице 1 приводятся значения мутности растворов препарата при различных значениях рН по отношению к мутности исходного препарата, образования осадка не произошло, соответственно полученный препарат растворим в водных растворах при различных величинах рН.

Пример 3. Определение антивирусной активности сополимера 2,5-дигидроксибензойной кислоты и желатина.

В работе используют культуры клеток ВНК-21 (фибробласты почки сирийского хомяка), Vero (фибробласты почки зеленой мартышки). Клетки получают из коллекции клеточных культур Института биофизики клетки Российской академии наук. Для культивирования клеток, из криобанка с жидким азотом извлекают замороженные ампулы с клетками и помещают на 5-7 минут в теплую воду (37°С) для быстрого размораживания. Размороженные клетки переносят в центрифужные стаканы и отмывют средой ДМЕМ (среда MEM в модификации Дальбекко без сыворотки) с помощью центрифугирования при 200 g в течение 5 мин. Клеточный осадок ресуспендируют в ростовой среде (ДМЕМ, содержащая 10% сыворотки эмбрионов коров), до концентрации 1-3×105/мл.

Для культивирования клеток, суспензию клеток вносят в культуральные флаконы и помещают на 2-3 суток в термостат при 37°С в атмосферу СО2. При достижении клетками монослоя, ростовую среду сливают, монослой промывают 1 раз стерильным раствором Хенкса, и клетки трипсинизируют в растворе трипсин-версен (1:1) до полного сползания монослоя. Клетки суспендируют посредством пипетирования в ростовой среде и пересевают на 2-4 новых культуральных флакона.

В работе используют вирус болезни Ауески (ВБА, штамм Ка). Флаконы с вирусом извлекают из музея вирусных штаммов (-70°С) и разводят в 5 мл среды ДМЕМ без сыворотки. Во флакон со свежим сформировавшимся монослоем клеток ВНК-21 или Vero, промытым стерильным раствором Хенкса, вносят вирусный препарат в среде без сыворотки и оставляют на 2-3 суток в термостате при 37°С до развития полного цитопатического эффекта (ЦПЭ). Вирус пассируют еще раз на новых матрасах с клетками. Полученную вирус-содержащую жидкость (ВСЖ) контролируют на инфекционность, и, при титре инфекционности больше 0,1×108 ТЦД50/мл, используют для оценки противовирусной активности полученных полимеров. Маточную расплодку вирусов хранят при 4°С в течение месяца или при -40°С в течение 6 месяцев.

Для оценки противовирусной активности полученных полимеров определяют титр инфекционности вируса на культуре чувствительных клеток ВНК-21 или Vero. Клетки выращивают в 96-луночных планшетах. Для этого, с матраса с полностью сформировавшимся монослоем клеток получают клеточную суспензию в ростовой среде ДМЕМ с сывороткой, как описано выше. Суспензию клеток тщательно пипетируют и определяют концентрацию клеток в камере Горяева. Разводят клетки до концентрации 150-200 тыс на 1 мл в ростовой среде (ДМЕМ-10% сыворотки эмбрионов коров) и разливают по 0,1 мл в лунки 96-луночного планшета. Планшеты культивируют при 37°С в атмосфере 5% CO2 в течение 1 суток до полного формирования монослоя. Из полученной ВСЖ с титром инфекционности больше 0,1×108 ТЦД50/мл готовят 10-кратные разведения (10-1-10-9) вируса в среде ДМЕМ или среде ДМЕМ, содержащей разные концентрации исследуемых образцов (ДМЕМ-полимер). Используют нетоксичные для клеток концентрации полимера, определенные в предварительных экспериментах. Титрование вируса в соответствующих средах проводят по следующей схеме. В 9 чистых пробирок вносят по 0,9 мл среды ДМЕМ (или ДМЕМ + полимер) без добавления сыворотки. В 1-ю пробирку вносят 0,1 мл контролируемой ВСЖ, тщательно перемешивают и переносят 0,1 мл во 2-ю пробирку. Процедуру повторяют до конца титрования в соответствующих средах (ДМЕМ или ДМЕМ + полимер). Из лунок 96-луночного планшета со сформировавшемся клеточным монослоем удаляют среду и вносят по 0,1 мл соответствующего разведения вируса, начиная с разведения 10-9 до 10-4. На каждое разведение вируса используют не менее 4-х лунок с культурой клеток. В качестве контроля токсичности оставляют по 4 неинфицированные вирусом лунки в среде ДМЕМ и средах ДМЕМ + полимер. Инфицированные и контрольные культуры инкубируют в течение 5-ти суток при 37°С в атмосфере 5% СО2, каждый день просматривая культуру под инвертированным микроскопом. Учет результатов проводят по цитопатическому действию вируса. Титр инфекционности вируса рассчитывают по методу Рида и Менча и выражают в ТЦД50/мл (количество тканевых цитопатических доз вируса на 1 мл) (Анджапаридзе и др. Культура ткани в вирусологических исследованиях. 1962. Медицинская литература, с.195-202). Противовирусную активность (индекс ингибирования) сополимера в различных концентрациях рассчитывают путем сравнения титров вируса в контрольных лунках (среда ДМЕМ) и в лунках с препаратами (ДМЕМ + полимер).

Показано, что сополимер 2,5-дигидроксибензойной кислоты и желатина ингибировал развитие вирусов при отсутствии токсичности для клеточной культуры (табл.2).

Таблица 1.
Определение растворимости сополимера 2,5-дигидроксибензойной кислоты и желатина в зависимости от величины рН.
Буферная система 50 мМ цитрат-фосфатный буфер рН=2,8 50 мМ Na-фосфатный буфер рН=7,0 50 мМ боратный буфер рН=9,0
Мут-ность, 600 нм 0,002 -0,004 0,003

Таблица 2
Противовирусная активность сополимера 2,5-дигидроксибензойной кислоты и желатина в отношении вируса болезни Ауески, штамм Ка.
Концентрация препарата Токсичность для клеток Титр инфекционности вируса (ТЦД50/мл) Индекс ингибирования
Контроль (среда ДМЕМ) Отсутствует 1,4×108 -
ДМЕМ + полимер 0,1 мг/мл Отсутствует 2,1×107 6,7
ДМЕМ + полимер 1,0 мг/мл Отсутствует 0,7×106 200,0

Способ получения нового противовирусного вещества на основе 2,5-дигидроксибензойной кислоты и желатина, включающий окисление 2,5-дигидроксибензойной кислоты ферментом лакказой до промежуточных феноксирадикалов и семихинонов, которые далее сополимеризуются с желатином, и отделение полученного сополимера от низкомолекулярных компонентов с помощью диализа; оптимальными концентрациями компонентов реакционной смеси являются для 2,5-дигидроксибензойной кислоты - 15-80 мМ, для желатина - 1-13 мг/мл реакционной смеси, для лакказы - 0,5-10 Ед активности/мл реакционной смеси.
СПОСОБ ПОЛУЧЕНИЯ НОВОГО ПОЛИМЕРНОГО СОЕДИНЕНИЯ, ОБЛАДАЮЩЕГО ПРОТИВОВИРУСНОЙ АКТИВНОСТЬЮ, СОПОЛИМЕРИЗАЦИЕЙ 2,5-ДИГИДРОКСИБЕНЗОЙНОЙ КИСЛОТЫ И ЖЕЛАТИНА С ПОМОЩЬЮ ФЕРМЕНТА ЛАККАЗЫ
Источник поступления информации: Роспатент

Showing 1-4 of 4 items.
10.03.2013
№216.012.2ea5

Способ определения эффективности биодеградации углеводородов нефти в нативных и загрязненных почвах

Изобретение относится к биотехнологии защиты окружающей среды в нефтедобывающей промышленности и сельском хозяйстве и может быть использовано для определения углеводород-деградирующего потенциала почвенной микробиоты. Способ заключаеся в презентативном отборе образцов нативной или загрязненной...
Тип: Изобретение
Номер охранного документа: 0002477472
Дата охранного документа: 10.03.2013
27.10.2013
№216.012.7ae0

Быстрый способ обработки гладкомышечных клеток кишечника гемолизином ii bacillus cereus

Изобретение относится к медицине и предназначено для повышения проницаемости мембран гладкомышечных клеток тонкого кишечника. Проводят обработку клеток в одной пробе пороформирующим гемолизином HlyII из Bacillus cereus в концентрации 3-5 мкг/мл. Способ позволяет уменьшить расход клеточного...
Тип: Изобретение
Номер охранного документа: 0002497118
Дата охранного документа: 27.10.2013
10.01.2015
№216.013.1b40

Способ активации сухой формы биопрепарата для очистки нефтезагрязненных грунтов

Изобретение относится к экологии и биотехнологии. Для активации сухой формы биопрепарата для очистки нефтезагрязненных грунтов готовят водную суспензию с индуктором ферментных систем. В качестве водного раствора для приготовления рабочей суспензии активированного биопрепарата с концентрацией...
Тип: Изобретение
Номер охранного документа: 0002538404
Дата охранного документа: 10.01.2015
27.01.2015
№216.013.208c

Рекомбинантная двухдоменная лакказа бактерии streptomyces griseoflavus ac-993, обладающая высокой термостабильностью и щелочным оптимумом pн окисления фенольных соединений; фрагмент днк, кодирующий двухдоменную лакказу бактерии streptomyces griseoflavus ac-993; способ получения двухдоменной лакказы бактерии streptomyces griseoflavus ac-993

Изобретение относится к области биотехнологии, в частности к способам получения ферментных препаратов. Изобретение касается термостабильной двухдоменной лакказы бактерии Streptomyces griseoflavus Ac-993 со щелочным оптимумом активности, последовательности ДНК, кодирующей данный фермент, и...
Тип: Изобретение
Номер охранного документа: 0002539780
Дата охранного документа: 27.01.2015
Showing 1-10 of 10 items.
10.03.2013
№216.012.2ea5

Способ определения эффективности биодеградации углеводородов нефти в нативных и загрязненных почвах

Изобретение относится к биотехнологии защиты окружающей среды в нефтедобывающей промышленности и сельском хозяйстве и может быть использовано для определения углеводород-деградирующего потенциала почвенной микробиоты. Способ заключаеся в презентативном отборе образцов нативной или загрязненной...
Тип: Изобретение
Номер охранного документа: 0002477472
Дата охранного документа: 10.03.2013
27.10.2013
№216.012.7ae0

Быстрый способ обработки гладкомышечных клеток кишечника гемолизином ii bacillus cereus

Изобретение относится к медицине и предназначено для повышения проницаемости мембран гладкомышечных клеток тонкого кишечника. Проводят обработку клеток в одной пробе пороформирующим гемолизином HlyII из Bacillus cereus в концентрации 3-5 мкг/мл. Способ позволяет уменьшить расход клеточного...
Тип: Изобретение
Номер охранного документа: 0002497118
Дата охранного документа: 27.10.2013
10.01.2015
№216.013.1b40

Способ активации сухой формы биопрепарата для очистки нефтезагрязненных грунтов

Изобретение относится к экологии и биотехнологии. Для активации сухой формы биопрепарата для очистки нефтезагрязненных грунтов готовят водную суспензию с индуктором ферментных систем. В качестве водного раствора для приготовления рабочей суспензии активированного биопрепарата с концентрацией...
Тип: Изобретение
Номер охранного документа: 0002538404
Дата охранного документа: 10.01.2015
27.01.2015
№216.013.208c

Рекомбинантная двухдоменная лакказа бактерии streptomyces griseoflavus ac-993, обладающая высокой термостабильностью и щелочным оптимумом pн окисления фенольных соединений; фрагмент днк, кодирующий двухдоменную лакказу бактерии streptomyces griseoflavus ac-993; способ получения двухдоменной лакказы бактерии streptomyces griseoflavus ac-993

Изобретение относится к области биотехнологии, в частности к способам получения ферментных препаратов. Изобретение касается термостабильной двухдоменной лакказы бактерии Streptomyces griseoflavus Ac-993 со щелочным оптимумом активности, последовательности ДНК, кодирующей данный фермент, и...
Тип: Изобретение
Номер охранного документа: 0002539780
Дата охранного документа: 27.01.2015
02.08.2018
№218.016.77f5

Плазмида, обеспечивающая экспрессию щелочной сериновой протеиназы, содержащая ген, экспрессирующий щелочную сериновую протеиназу семейства s1 из streptomyces avermitilis vkm ac-1301, штамм e. coli m15 (prep4, pqe30-a2.1) - продуцент данной протеиназы

Группа изобретений относится к области биотехнологии. Предложена плазмидная ДНК pQE30-A2.1, обеспечивающая экспрессию щелочной сериновой протеиназы, содержащая нуклеотидную последовательность, кодирующую рекомбинантную щелочную сериновую протеиназу семейства S1 из Streptomyces avermitilis VKM...
Тип: Изобретение
Номер охранного документа: 0002662888
Дата охранного документа: 31.07.2018
01.03.2019
№219.016.cf28

Штамм бактерий achromobacter sp.-деструктор органофосфонатов и способ его применения для биоремедиации почв

Изобретение относится к биотехнологии и представляет собой новый бактериальный штамм Achromobacter sp.BKM В-2534 Д, который может быть использован для очистки почв и жидких сред, например грунтовых и поверхностных вод, загрязненных органофосфонатами. Штамм бактерий Achromobacter sp.Kg 16 был...
Тип: Изобретение
Номер охранного документа: 0002401298
Дата охранного документа: 10.10.2010
18.05.2019
№219.017.5960

Способ определения суммарной антиокислительной активности растительного масла

Изобретение относится к медицинской и пищевой технологии. Способ включает стадию получения хромогенного радикала путем окисления 2,2'-азинобис-(3-этилбензотиазолин-6-сульфоновой кислоты) лакказой, восстановление радикала антиоксидантами растительного масла или стандартным антиоксидантом в...
Тип: Изобретение
Номер охранного документа: 0002421719
Дата охранного документа: 20.06.2011
29.06.2019
№219.017.9c90

Рекомбинантная лакказа лигнинолитического гриба trametes sp. и способ ее получения

Изобретение относится к биотехнологии и представляет собой клетку мицелиального гриба, принадлежащего к роду Penicillium, трансформированную плазмидой. Плазмида содержит фрагмент ДНК, кодирующий лакказу С1 лигнинолитического гриба Trametes hirsuta или фрагмент ДНК, который гибридизуется с SEQ...
Тип: Изобретение
Номер охранного документа: 0002394912
Дата охранного документа: 20.07.2010
10.07.2019
№219.017.aef3

Фотометрический способ определения концентрации общего билирубина в сыворотке крови с помощью бактериальной оксидазы из bacillus pumilus

Изобретение относится к биотехнологии. Исследуемую сыворотку крови инкубируют в натрий фосфатном буфере, содержащем детергент и фермент, окисляющий билирубин. Измеряют оптическую плотность смеси при 450 нм. При этом в качестве фермента используют термостабильную бактериальную оксидазу из...
Тип: Изобретение
Номер охранного документа: 0002418072
Дата охранного документа: 10.05.2011
08.11.2019
№219.017.df63

Ферментный препарат для гидролиза растительного сырья и способ его получения с помощью рекомбинантных продуцентов на основе pichia pastoris

Изобретение относится к биотехнологии. Предложен способ получения ферментного препарата путем культивирования в биореакторах каждого из рекомбинантных продуцентов P. pastoris К для ксиланазы из бактерии Nocardiopsis halotolerans ВКМ Ас-2519, P. pastoris Б для бета-глюканазы из бактерии...
Тип: Изобретение
Номер охранного документа: 0002705262
Дата охранного документа: 06.11.2019
+ добавить свой РИД