×
20.09.2013
216.012.6c8b

Результат интеллектуальной деятельности: НАПРАВЛЯЮЩАЯ ИЛИ РАБОЧАЯ ЛОПАТКА ДЛЯ ОСЕВОГО КОМПРЕССОРА

Вид РИД

Изобретение

№ охранного документа
0002493438
Дата охранного документа
20.09.2013
Аннотация: Направляющая лопатка компрессора или рабочая лопатка осевого компрессора с осевым направлением, радиальным направлением (R), ступицей компрессора и корпусом компрессора. Направляющая лопатка или рабочая лопатка содержит аэродинамическую поверхность (1) с профильными сечениями (3, 5, 15А-15Е), имеющую размах, линию изгиба и переднюю кромку (7), на которой линия изгиба заключает с осевым направлением компрессора угол передней кромки лопатки. На задней кромке линия изгиба заключает с осевым направлением (A) компрессора угол задней кромки. Профильные сечения (3, 5, 15A-15E) аэродинамической поверхности лопатки расположены одно поверх другого на передней кромке (7) по прямой линии, проходящей в радиальном направлении (R) компрессора от ступицы компрессора к корпусу компрессора. Углы передней кромки профильных сечений аэродинамической поверхности изменяются вдоль размаха и больше для профильных сечений аэродинамической поверхности вблизи ступицы и вблизи стенки, чем для профильных сечений аэродинамической поверхности в середине размаха. Достигается снижение пространственных потерь и повышение запаса устойчивости при адекватном запасе прочности. 2 н. и 16 з.п. ф-лы, 7 ил.

Заявленное изобретение относится к направляющим или рабочим лопаткам для осевых компрессоров, а также к осевому компрессору.

Снижение пространственных потерь и повышение коэффициента полезного действия и запаса устойчивости осевых компрессоров по сей день остаются техническими проблемами в области разработки рабочих и направляющих лопаток компрессора. Пространственные потери ограничивают потенциал роста давления компрессора. Такие потери являются, например, следствием отрыва потока на спинке, углах торцевой стенки, протекания через радиальные зазоры, и в областях вторичного течения. Оптимизация коэффициента полезного действия и запаса устойчивости всегда предполагают компромисс, так как увеличение кпд, как правило, снижает запас устойчивости, а повышение запаса устойчивости обычно приводит к снижению кпд.

Имеются многочисленные документы, в которых описываются пути уменьшения пространственных потерь и повышения кпд и запаса устойчивости.

Осевые компрессоры с торцевыми изгибами были предложены в публикациях Robinson et al., ASME 89-GT-6, D. Wisler, ASME journal of engineering for gas turbine and power, volume 107, April 1985, и R. F. Behlke, ASME 85-IGT-9 с целью повышения рабочих характеристик осевых компрессоров. Изогнутые направляющие лопатки статора были предложены H. Weingold et al., ASME 95-GT-380 для снижения потерь в торцевой стенке статора компрессора. S. Gallimore et al., ASME GT-2002-30328, а также S. Gallimore et al., ASME GT-2002-30329 предложили использование стреловидного профиля поверхностей и поперечного в многоступенчатых осевых компрессорах с целью устранения вышеназванных проблем.

В европейской патентной публикации ЕР 0441097 В1 описывается лопатка компрессора с изогнутыми передней и задней кромками для уменьшения аэродинамических потерь.

Направляющая лопатка статора компрессора с узким пером между хвостовиком и передним концом раскрыта в публикации ЕР 098092 А2. Лопатка также может быть изогнута в ее задней кромке во взаимодействии с узким пером.

В публикациях ЕР 0704602 В1 и ЕР 1259711 В1 описаны лопатки, включающие переднюю кромку со стреловидным профилем и прямую заднюю кромку.

В ЕР 0833060 В1 описана рабочая лопатка для осевого компрессора, в которой передняя кромка выполнена изогнутой и с волнообразным профилем и изогнутая задняя кромка.

В ЕР 1505302 А1 описана компрессорная лопатка с изогнутой, по меньшей мере, передней кромкой.

Патентный документ US 6299412 В1 описывает изогнутые лопатки компрессора.

Относительно вышеуказанного уровня техники первая задача заявленного изобретения состоит в том, чтобы предложить усовершенствованную рабочую или направляющую лопатку компрессора. Вторая задача заявленного изобретения заключается в том, чтобы предложить усовершенствованный осевой компрессор.

Первая задача решается за счет рабочей или направляющей компрессорной лопатки по признакам пункта 1 формулы изобретения. Вторая задача решается за счет осевого компрессора по признакам пункта 7 формулы изобретения. Зависимые пункты содержат другие аспекты развития изобретения.

Заявленная направляющая или рабочая компрессорная лопатка для осевого компрессора с осевым направлением, радиальным направлением, ступицей компрессора и корпусом компрессора содержит аэродинамическую поверхность, имеющую профильные сечения аэродинамической поверхности с размахом, линией изгиба и передней кромкой, в которой линия изгиба заключает с осевым направлением компрессора угол передней кромки лопатки, и задней кромкой, в которой линия изгиба заключает с осевым направлением компрессора угол задней кромки рабочей лопатки. Профильные сечения аэродинамической поверхности расположены одно поверх другого на передней кромке по прямой линии, проходящей в радиальном направлении компрессора от ступицы компрессора к корпусу компрессора. Кроме того, углы передней кромки профильных сечений аэродинамической поверхности изменяются вдоль размаху и углы передней кромки больше для профильных сечений аэродинамической поверхности вблизи ступицы (0% размаха) и вблизи корпуса (100% размаха), чем для профильных сечений аэродинамической поверхности в середине размаха. В частности, углы передней кромки рабочей лопатки могут быть на 10° больше для профильных сечений аэродинамической поверхности вблизи ступицы и на 18° больше для профильных сечений аэродинамической поверхности вблизи корпуса, чем для профильных сечений аэродинамической поверхности в середине размаха.

В предлагаемом изобретении был использован код 3D CFD (пространственной вычислительной динамики жидкостей и газов) для установки параметров углов передней кромки и задней кромки рабочей лопатки. Код также был использован, чтобы подогнать форму аэродинамической поверхности лопатки и взаимное расположение профильных сечений аэродинамической поверхности. Таким образом потери были минимизированы и улучшен спектр потока. Увеличенные углы передней кромки лопатки вблизи ступицы и вблизи корпуса компрессора помогают снизить большие положительные углы атаки, вызванные вязким пространственным потоком в этих зонах и, следовательно, помогают уменьшить толщину пограничного слоя на поверхности лопатки и отрыв потока в направлении задней кромки лопатки. Увеличенные углы рабочей лопатки и уменьшенные углы атаки также помогают снизить протекание через радиальные зазоры в области корпуса рабочих лопаток ротора и в области ступицы консольных направляющих лопаток статора. Уменьшенные углы передней кромки лопаток в зоне в середине размаха помогают поддерживать адекватный запас ударной прочности. Кроме того, наслоение профильных сечений на передней кромке вдоль радиальной прямой помогает создать более сложный (изогнутый) уклон к задней кромке с корытцем, обращенным к ступице и корпусу. Это помогает ослабить нагрузку на лопатку в зонах торцевой стенки и, следовательно, снизить протекание через радиальные зазоры там, где они имеется, и сократить отрывы потока в спинке и углах торцевой стенки, и это помогает снизить пространственные потери и повысить запас устойчивости компрессора.

Заявленная направляющая лопатка может также содержать заднюю кромку, в которой углы задней кромки профиля аэродинамической поверхности изменяются и углы задней кромки больше для профильных сечений аэродинамической поверхности вблизи ступицы и/или вблизи корпуса, чем для профильных сечений аэродинамической поверхности в середине размаха. Изменение углов задней кромки профильных сечений аэродинамической поверхности может быть меньшим, чем изменение углов передней кромки профильных сечений аэродинамической поверхности. В частности, углы задней кромки лопатки могут быть на 5° больше для профильных сечений аэродинамической поверхности вблизи ступицы и на 10° больше для профильных сечений аэродинамической поверхности вблизи корпуса, чем для профильных сечений аэродинамической поверхности в середине размаха.

Профиль упомянутого угла задней кромки помогает ослабить местную нагрузку рабочей или направляющей лопатки и, следовательно, помогает уменьшить отрыв потока в угле торцевой стенки горбушки в зонах торцевой стенки рабочей или направляющей лопатки, то есть в зоне ступицы или зоне корпуса.

Для консольных направляющих лопаток статора углы задней кромки лопатки в зоне ступицы могут быть взяты аналогичными обычным направляющим лопаткам статора, так как протекание через радиальные зазоры помогает ослабить нагрузку в этих зонах. Кроме того, углы задней кромки рабочих лопаток ротора в зоне корпуса могут быть взяты аналогичными обычному профилю, так как также в этом случае протекание через радиальные зазоры помогает облегчить нагрузку в зонах корпуса.

Углы задней кромки лопатки в зоне середины размаха могут быть взяты аналогичными обычным профилям, если изменение угла задней кромки лопатки относительно обычного профиля мало в зонах торцевой стенки, или уменьшенными, если углы задней кромки лопатки увеличены в зонах торцевой стенки.

Особенно выгодно, если углы передней кромки лопатки и/или углы задней кромки лопатки профильных сечений аэродинамической поверхности являются наибольшими по направлению к корпусу. Более того, увеличение углов в передней кромке лопатки и/или углов в задней кромке лопатки профильных сечений аэродинамической поверхности относительно профильных сечений аэродинамической поверхности в середине размаха является преимущественно наибольшим по направлению к корпусу. Минимальная величина углов передней кромки лопатки и/или углов задней кромки лопатки профильных сечений аэродинамической поверхности может, в частности, находиться между 30% и 70% размаха аэродинамической поверхности. В специальном варианте осуществления заявленной направляющей или рабочей лопатки задняя кромка изогнута.

Раскрытые мероприятия обработки углов задней кромки лопатки в зоне середины размаха помогают поддерживать полную нагрузку рабочих или направляющих лопаток относительно обычных рабочих или направляющих лопаток.

Заявленный осевой компрессор содержит заявленные рабочие и/или направляющие лопатки. С заявленными рабочими и/или направляющими лопатками рабочие характеристики компрессора могут быть улучшены благодаря уменьшенным пространственным потерям, увеличенному коэффициенту полезного действия и увеличенному запасу устойчивости.

Другие особенности, свойства и преимущества предлагаемого изобретения поясняются нижеследующим описанием вариантов осуществления в сочетании с прилагаемыми чертежами, на которых показаны:

Фиг.1 - заявленная аэродинамическая поверхность в объемном изображении,

Фиг.2 - параметры аэродинамической поверхности с фиг.1, существенные для понимания изобретения,

Фиг.3 - три профильных сечения аэродинамической поверхности с фиг.1, взятые по осевому направлению компрессора,

Фиг.4 - распределение угла передней кромки лопатки и угла задней кромки лопатки заявленной аэродинамической поверхности вдоль соответствующего размаха в сравнении с распределением угла передней кромки лопатки обычной аэродинамической поверхности,

Фиг.5 - сравнение между заявленной аэродинамической поверхностью и аэродинамической поверхностью согласно уровню техники,

Фиг.6 - заявленная рабочая лопатка компрессора с использованием заявленной аэродинамической поверхности и

Фиг.7 - заявленная направляющая лопатка компрессора с использованием заявленной аэродинамической поверхности.

На фиг.1 показана в объемном изображении аэродинамическая поверхность с использованием особенностей изобретения. Изображенные на фиг.1 особенности могут быть использованы, в целом, как аэродинамические поверхности лопаток ротора компрессора, так и аэродинамические поверхности лопаток статора компрессора.

Аэродинамическая поверхность 1 содержит профильное сечение 3 ступицы, которая направлена в сторону ротора, если аэродинамическая поверхность включена в компрессор, и профильное сечение 5 корпуса, которое направлено в сторону корпуса компрессора, если аэродинамическая поверхность 1 включена в компрессор. Далее она включает переднюю кромку 7 и заднюю кромку 9, которые проходят от профильного сечения 3 ступицы к профильному сечению 5 корпуса. В то время как передняя кромка расположена по прямой линии, проходящей в радиальном направлении R компрессора, задняя кромка 9 изогнута относительно радиального направления компрессора. Кроме того, задняя кромка 9 может быть также изогнута относительно осевого направления компрессора. Между передней кромкой 7 и задней кромкой 9 проходит корытце 11 и спинка 13, которые служат для передачи количества движения на аэродинамическую поверхность, в случае если аэродинамическая поверхность является частью подвижной лопатки ротора, или на воздушный поток, если аэродинамическая поверхность является частью лопатки статора.

На фиг.1 показаны также воображаемые профильные сечения аэродинамической поверхности 15А-15Е, которые применяются для определения профиля аэродинамической поверхности. В любом случае, эти профильные сечения аэродинамической поверхности составляют лишь часть процесса формирования профиля и применяются для определения профиля, не будучи отдельными элементами в реальной аэродинамической поверхности.

Некоторые параметры, которые важны для описания профиля заявленной аэродинамической поверхности, описаны со ссылкой на фиг.2, на которой показано сечение по профильному сечению аэродинамической поверхности 1 в середине размаха в осевом направлении компрессора, то есть перпендикулярно размаху аэродинамической поверхности. На фигуре показана хорда 17, которая представляет собой воображаемую прямую линию, соединяющую переднюю кромку 7 с задней кромкой 9. Другая воображаемая линия, соединяющая переднюю кромку 7 и заднюю кромку 9 это линия изгиба 19, которая проходит посредине между корытцем 11 и спинкой 13. Угол α передней кромки определяют как угол между осевым направлением А компрессора и касательной 21 линии изгиба 19 к передней кромке 7. Подобным образом, угол β задней кромки представляет собой угол между осевым направлением А и касательной 23 линии изгиба 19 к задней кромке 9.

В заявленной аэродинамической поверхности угол α передней кромки изменяется вдоль размаха аэродинамической поверхности, как это показано на фиг.3 и 4. На фиг.3 показан вид в разрезе в осевом направлении А трех профильных сечений аэродинамической поверхности с фиг.1, а именно части 3 ступицы аэродинамической поверхности, части 5 корпуса аэродинамической поверхности и части 15С аэродинамической поверхности, которая представляет собой профильное сечение аэродинамической поверхности в середине размаха.

Как можно видеть на фиг.1 и 3, профильные сечения 3, 5 и 15А-Е расположены одно поверх другого на передней кромке 7 по прямой линии, проходящей в радиальном направлении R. Как можно видеть также на фигурах, угол α передней кромки рабочей лопатки изменяется вдоль размаха, также как и угол β задней кромки.

Изменение угла α передней кромки в аэродинамической поверхности вдоль размаха показано на фиг.4 штриховой линией. Для сравнения, угол α передней кромки вдоль размаха также показан для обычной аэродинамической поверхности (сплошная линия). Можно видеть, что в сравнении с обычной аэродинамической поверхностью угол передней кромки заявленной аэродинамической поверхности изменяется больше, чем угол передней кромки обычной аэродинамической поверхности. Не только углы передней кромки заявленной аэродинамической поверхности больше, чем в обычной аэродинамической поверхности, вблизи ступицы и вблизи корпуса, но также угол передней кромки меньше, чем в обычной аэродинамической поверхности в частях в середине размаха. Если угол β задней кромки заявленной лопатки изменяется, он может изменяться, как показано на фиг.4, штрихпунктирной линией. Обычно изменение угла задней кромки бывает меньшим, чем изменение угла передней кромки относительно обычного профиля. Это, в частности, относится к рабочей лопатке ротора. Однако для заявленной лопатки статора величина изменения угла задней кромки лопатки относительно обычного профиля может быть аналогичной для углов передней кромки. Штрихпунктирная линия показывает изменение, в котором угол задней кромки является наименьшим в зоне в середине размаха аэродинамической поверхности. Тем не менее изменение угла задней кромки может также соответствовать более или менее изменению обычной аэродинамической поверхности, то есть угол задней кромки на части ступицы может быть меньше, чем углы задней кромки в частях в середине размаха, в частности, для рабочих лопаток ротора.

Сравнение углов α, α' передней кромки и углов β, β' задней кромки заявленной аэродинамической поверхности и обычной аэродинамической поверхности для частей корпуса аэродинамической поверхности показано на фиг.5. Также на фигуре показано направление притока I и оттока O воздуха, который подвергается сжатию. Как можно видеть на фиг.5, угол α передней кромки и угол β задней кромки заявленной аэродинамической поверхности больше, чем соответственно угол α' передней кромки и угол β' задней кромки обычной аэродинамической поверхности. Аналогичный график может быть получен при сравнении между частями ступицы заявленной аэродинамической поверхности и обычной аэродинамической поверхности. Увеличенные углы передней кромки рабочей лопатки в частях ступицы и корпуса помогают снизить большие положительные углы атаки, вызванные вязким пространственным потоком в этих областях. Эти меры позволяют уменьшить толщину пограничного слоя на поверхности лопатки и отрыв потока в направлении задней кромки лопатки. Кроме того, увеличенные углы рабочей лопатки и уменьшенные углы атаки также помогают снизить протекание через радиальные зазоры в области корпуса рабочих лопаток ротора и в области ступицы консольных направляющих лопаток статора. Уменьшенные углы передней кромки рабочей лопатки, если сравнивать с обычными рабочими лопатками ротора, в зоне в середине размаха помогают поддерживать адекватный запас ударной прочности.

На фиг.6 показан пример для заявленной рабочей лопатки ротора с вышеописанной аэродинамической поверхностью. Рабочая лопатка 25 ротора содержит аэродинамическую поверхность 1' согласно изобретению, хвостовик 27 и платформу 29, расположенную между аэродинамической поверхностью 1' и хвостовиком 27. Как можно видеть, профильные сечения аэродинамической поверхности рабочей лопатки расположены одно поверх другого на прямой передней кромке. Кроме того, задняя кромка 9' имеет лишь небольшое изменение в радиальном направлении. Фактически угол задней кромки взят аналогичным углам задней кромки профиля обычной рабочей лопатки ротора, если отсутствует отрыв потока. С другой стороны, если имеет место отрыв потока в направлении задней кромки в зоне ступицы ротора и корпуса ротора, то углы задней кромки в этих зонах могут быть увеличены. В зоне в середине размаха углы задней кромки лопатки могут быть взяты аналогичными обычным профилям, если имеет место небольшое изменение в частях ступицы и корпуса. С другой стороны, если углы задней кромки лопатки увеличены в зонах торцевой стенки, то есть в зоне ступицы и в зоне корпуса, то углы задней кромки могут быть уменьшены относительно углов задней кромки обычных профилей в зонах в середине размаха. Однако, даже если угол задней кромки лопатки 25 изменяется, то он изменяется не настолько как углы передней кромки лопатки относительно обычного профиля.

Заявленная направляющая лопатка статора показана на фиг.7. Она содержит аэродинамическую поверхность 1”, в соответствии с изобретением, с прямой передней кромкой 7”, проходящей в радиальном направлении, и изогнутой задней кромкой 9”, хвостовиком 33 и платформой 35, расположенной между аэродинамической поверхностью 1” и хвостовиком 33. Направляющая лопатка статора, показанная на фиг.7, представляет собой консольную направляющую лопатку статора. Как можно легко видеть на фиг.7, передняя кромка 7” аэродинамической поверхности 1” проходит по прямой линии в радиальном направлении, между тем как задняя кромка 9” изогнута. Следует отметить, что изобретение относится также к бандажированной направляющей лопатке статора, которая здесь не показана.

Углы задней кромки консольной направляющей лопатки статора на фиг.7 могут быть взяты аналогичными углам задней кромки обычного профиля направляющей лопатки статора, если отсутствует местный отрыв потока, или увеличенными, если имеют место отрывы потока в направлении задней кромки в зоне ступицы или в зоне корпуса. В случае бандажированных направляющих лопаток статора углы задней кромки лопатки могут быть взяты аналогичными углам задней кромки обычного профиля лопатки в направлении ступицы и корпуса, если отсутствует местный отрыв потока, или увеличенными, если имеют место отрывы потока в направлении задней кромки в зоне ступицы или в зоне корпуса. Также как в случае рабочих лопаток ротора, углы задней кромки лопатки могут быть аналогичными обычным профилям в зоне в середине размаха, если имеют место небольшое изменение углов задней кромки лопатки в зоне ступицы или в зоне корпуса, или уменьшенными, если углы задней кромки лопатки увеличены в зоне ступицы и/или в зоне корпуса.

Следует обратить внимание, что в контексте настоящего изобретения аэродинамические поверхности компрессора могут иметь любую форму профиля, например с контролируемой диффузией, двойной чечевицеобразный профиль (DCA), С4 и т.д.

Заявленный профиль аэродинамической поверхности для рабочих и направляющих лопаток статора компрессора, как описано выше, помогает снизить пространственные потери и повысить коэффициент полезного действия и запас устойчивости осевых компрессоров, при этом по существу без увеличения нагрузки на рабочие или направляющие лопатки.


НАПРАВЛЯЮЩАЯ ИЛИ РАБОЧАЯ ЛОПАТКА ДЛЯ ОСЕВОГО КОМПРЕССОРА
НАПРАВЛЯЮЩАЯ ИЛИ РАБОЧАЯ ЛОПАТКА ДЛЯ ОСЕВОГО КОМПРЕССОРА
НАПРАВЛЯЮЩАЯ ИЛИ РАБОЧАЯ ЛОПАТКА ДЛЯ ОСЕВОГО КОМПРЕССОРА
НАПРАВЛЯЮЩАЯ ИЛИ РАБОЧАЯ ЛОПАТКА ДЛЯ ОСЕВОГО КОМПРЕССОРА
НАПРАВЛЯЮЩАЯ ИЛИ РАБОЧАЯ ЛОПАТКА ДЛЯ ОСЕВОГО КОМПРЕССОРА
НАПРАВЛЯЮЩАЯ ИЛИ РАБОЧАЯ ЛОПАТКА ДЛЯ ОСЕВОГО КОМПРЕССОРА
НАПРАВЛЯЮЩАЯ ИЛИ РАБОЧАЯ ЛОПАТКА ДЛЯ ОСЕВОГО КОМПРЕССОРА
Источник поступления информации: Роспатент

Showing 411-420 of 1,427 items.
20.08.2015
№216.013.6ee3

Ротор турбомашины и способ его сборки

Ротор турбомашины содержит вращающийся элемент с установленной на нем лопаткой. Лопатка содержит хвостовик с выступающей структурой, формирующей стопорную поверхность, поддерживающую установленный хвостовик относительно вращающегося элемента под действием силы, направленной радиально внутрь....
Тип: Изобретение
Номер охранного документа: 0002559957
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.6f91

Выхлопной диффузор газовой турбины

Выхлопной диффузор (10) для газовой турбины имеет расширяющийся в направлении выхода (20) диффузора проточный канал (22), в центре которого предусмотрен распространяющийся в осевом направлении направляющий аппарат (14). Направляющий аппарат 14 по меньшей мере на одном осевом участке своей...
Тип: Изобретение
Номер охранного документа: 0002560131
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.6fe1

Способ и устройство управления для определения длины по меньшей мере одного участка пути

Изобретение относится к области автоматики и телемеханики на железнодорожном транспорте и может использоваться для определения длины участка пути. Техническое решение заключается в определении длины по меньшей мере одного участка пути, регистрации сообщений о прохождении, вызванных прохождением...
Тип: Изобретение
Номер охранного документа: 0002560211
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.72d9

Система, включающая в себя уплотнение вала

Изобретение касается уплотнения вала, которое включает в себя более одного уплотнительного модуля, по меньшей мере один подвод жидкости и один отвод жидкости, снабженной главным уплотнением, на которое приходится наибольшая часть разности давлений. Второе главное уплотнение выполнено в виде...
Тип: Изобретение
Номер охранного документа: 0002560971
Дата охранного документа: 20.08.2015
27.08.2015
№216.013.7383

Динамоэлектрическая машина с воздушно-водяным охлаждением

Изобретение относится к электротехнике, к охлаждению динамоэлектрических машин. Технический результат состоит в улучшении охлаждения. Ветрогенератор содержит выполненный в виде листового пакета статор (1) с системой обмотки, образующей на торцах статора (1) лобовые части (16) обмотки....
Тип: Изобретение
Номер охранного документа: 0002561146
Дата охранного документа: 27.08.2015
27.08.2015
№216.013.74cd

Способ эксплуатации подводной лодки, а также подводная лодка

Группа изобретений относится к оборудованию для подводных лодок. При способе эксплуатации подводной лодки используют приводной двигатель, подпитываемый через импульсные вентильные преобразователи частоты. В зависимости от вариантов подключения его фазных обмоток получают два режима его работы...
Тип: Изобретение
Номер охранного документа: 0002561476
Дата охранного документа: 27.08.2015
27.08.2015
№216.013.74d9

Защитный поддон для высокоскоростных поездов

Изобретение относится к железнодорожному транспорту, в частности к высокоскоростным поездам. Защитный поддон для высокоскоростных поездов расположен под полом (1) вагона по всей пространственной длине подполья и выполнен в виде каркаса (2), который обшит защитным полом (3) и боковыми несущими...
Тип: Изобретение
Номер охранного документа: 0002561488
Дата охранного документа: 27.08.2015
27.08.2015
№216.013.7587

Исполнительный элемент для тормозной системы рельсового транспортного средства

Исполнительный элемент (7) для рельсового транспортного средства содержит блок (6) определения заданного значения, причем блок (6) определения заданного значения на выходе (А1) предоставляет заданное значение (SSoll) или скорректированное под воздействием редуцирующего сигнала (RS) устройства...
Тип: Изобретение
Номер охранного документа: 0002561662
Дата охранного документа: 27.08.2015
10.09.2015
№216.013.7658

Способ и устройство для управляющей коммуникации между сцепленными частями железнодорожного состава

Изобретение относится к области автоматики и телемеханики и может использоваться для управления коммуникациями между сцепленными частями железнодорожного состава. Техническое решение включает в себя сцепленные части железнодорожного состава, имеющие механические и электрические (ЕК) сопряжения,...
Тип: Изобретение
Номер охранного документа: 0002561885
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.76a0

Элемент теплозащитного экрана

Элемент теплозащитного экрана камеры сгорания газотурбинного двигателя (14) с боковой стенкой (16), имеющей углубление (4) с ориентированным в направлении несущей конструкции (17) пропускным отверстием (30). В это углубление (4) может устанавливаться крепежный винт (18), который при этом...
Тип: Изобретение
Номер охранного документа: 0002561957
Дата охранного документа: 10.09.2015
Showing 411-420 of 943 items.
20.06.2015
№216.013.575c

Способ синтеза фуллерида металлического нанокластера и материал, включающий фуллерид металлического нанокластера

Изобретение относится к способу синтеза фуллерида металлического нанокластера и к материалу, включающему фуллерид металлического нанокластера. Способ синтеза фуллерида металлического нанокластера включает механическое сплавление металлических нанокластеров с размером частиц между 5 нм и 60 нм с...
Тип: Изобретение
Номер охранного документа: 0002553894
Дата охранного документа: 20.06.2015
27.06.2015
№216.013.592a

Газотурбинный двигатель и способ эксплуатации газотурбинного двигателя

Газотурбинный двигатель содержит ротор, радиально наружную и внутреннюю статорные части, между которыми проходит воздушный канал компрессора, кольцевой зазор между ротором и радиально внутренней статорной частью, а также выпускной трубопровод. Ротор включает роторную часть подшипника,...
Тип: Изобретение
Номер охранного документа: 0002554367
Дата охранного документа: 27.06.2015
27.06.2015
№216.013.59cf

Способ и устройство для безопасной передачи данных

Изобретение относится к способу памяти данных для хранения компьютерного программного продукта и устройству для безопасной передачи данных. Технический результат заключается в повышении безопасности передачи данных. Устройство содержит блок (2) предоставления для предоставления соединений (DV)...
Тип: Изобретение
Номер охранного документа: 0002554532
Дата охранного документа: 27.06.2015
27.06.2015
№216.013.5a7e

Транспортное средство с установкой водоснабжения и охлаждения

Изобретение относится к транспортному средству, в частности к рельсовому транспортному средству. Транспортное средство включает установку водоснабжения для потребителей (4, 5) воды и установку (1) охлаждения, которая имеет сливной трубопровод для отвода конденсационной воды, возникающей при...
Тип: Изобретение
Номер охранного документа: 0002554707
Дата охранного документа: 27.06.2015
27.06.2015
№216.013.5a9c

Турбинный аэродинамический профиль

Турбинный аэродинамический профиль содержит тело аэродинамического профиля, систему теплового защитного покрытия, присутствующую в покрытой зоне поверхности, и непокрытую зону поверхности, в которой система теплового защитного покрытия отсутствует. Непокрытая зона поверхности проходит на...
Тип: Изобретение
Номер охранного документа: 0002554737
Дата охранного документа: 27.06.2015
27.06.2015
№216.013.5b19

Система управления

Изобретение относится, в том числе, к центральному устройству (110) для системы (100) управления для управления системой (10) передачи энергии, имеющей генераторы (30-32) энергии и потребители (40-45) энергии, причем центральное устройство выполнено с возможностью, на основе текущего и/или...
Тип: Изобретение
Номер охранного документа: 0002554862
Дата охранного документа: 27.06.2015
27.06.2015
№216.013.5b4d

Рельсовое транспортное средство, снабженное устройством защиты от травмирования дверями

Изобретение относится к железнодорожному транспорту. Рельсовое транспортное средство снабжено в области двери устройством (1) защиты от травмирования дверями с бесконтактным принципом действия. Устройство (1) защиты от травмирования дверями снабжено одним внутренним и одним наружным...
Тип: Изобретение
Номер охранного документа: 0002554914
Дата охранного документа: 27.06.2015
10.07.2015
№216.013.5c9d

Дисковое тормозное устройство для рельсовых транспортных средств

Изобретение относится к области транспортного машиностроения, а именно к дисковым тормозным устройствам рельсовых транспортных средств. Дисковое тормозное устройство содержит тормозной диск для установки на шасси и тормозную систему для обеспечения тормозного усилия. Тормозная система включает...
Тип: Изобретение
Номер охранного документа: 0002555250
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5df0

Выдвижная подножка для рельсового транспортного средства

Изобретение относится к области транспортного машиностроения. Выдвижная подножка для установки под дверным проемом в боковой стенке рельсового транспортного средства имеет корпус и выдвигаемую горизонтально из корпуса платформу подножки. На переднем участке платформы подножки образована система...
Тип: Изобретение
Номер охранного документа: 0002555589
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5f5e

Гибкая транспортировочная упаковка

Турбинные лопатки необходимо пересылать из отдаленных мест мира или в эти места. При этом необходимо защищать покрытие турбинных лопаток. С помощью транспортировочной упаковки турбинные лопатки фиксируются на обоих концах, так что турбинные лопатки защищены. 27 з.п. ф-лы, 12 ил.
Тип: Изобретение
Номер охранного документа: 0002555955
Дата охранного документа: 10.07.2015
+ добавить свой РИД