×
10.09.2013
216.012.68b3

Результат интеллектуальной деятельности: СИСТЕМА БИОДАТЧИКА НА ОСНОВЕ НАРУШЕННОГО ПОЛНОГО ВНУТРЕННЕГО ОТРАЖЕНИЯ (НПВО) И СПОСОБ ОБНАРУЖЕНИЯ СИГНАЛА ДАТЧИКА, ОСНОВАННОГО НА НПВО

Вид РИД

Изобретение

№ охранного документа
0002492450
Дата охранного документа
10.09.2013
Аннотация: Изобретение относится к системе биодатчика на основе нарушенного полного внутреннего отражения (НПВО). Система с НПВО содержит два источника света, средство включения и выключения первого и второго источников света в противофазе, объем образца с примыкающей чувствительной поверхностью, детектор для обнаружения света, отраженного от чувствительной поверхности. Чувствительная поверхность освещается первым источником света с соблюдением условия полного внутреннего отражения и генерированием затухающего ноля с некоторой длиной затухания в пределах объема образца. Система дополнительно содержит средство изменения длины затухания затухающего поля и средство корреляции обнаруживаемых сигналов с изменением длины затухания затухающего поля. Изобретение обеспечивает повышение чувствительности системы. 2 н. и 4 з.п. ф-лы, 6 ил.

Область техники, к которой относится изобретение

Изобретение относится к системе биодатчика на основе нарушенного полного внутреннего отражения (НПВО) и способу обнаружения сигнала биодатчика, основанного на НПВО.

Уровень техники

Заявитель подал несколько одновременно рассматриваемых заявок, относящихся к биодатчикам или системам биодатчиков.

Биодатчики обычно обеспечивают обнаружение заданной конкретной молекулы в пределах аналита или образца текучей среды, при этом количество упомянутых молекул в типичном случае является малым. Поэтому, если надлежит обнаружить, присутствуют ли эти молекулы в пределах аналита или образца текучей среды, то используют целевые частицы, например, зерна суперпарамагнитного изотопного индикатора, которые связываются с конкретным местом или пятном связывания. В альтернативном варианте, при анализе на ингибирование эти молекулы могут ингибировать связывание этих частиц или зерен с чувствительной поверхностью.

Одним известным методом обнаружения этих частиц изотопного индикатора, связанных с пятнами связывания, является использование эффекта НПВО. При этом свет подается в образец или объем образца под углом, при котором может происходить полное внутреннее отражение. Если вблизи поверхности образца частиц нет, то свет полностью отражается. Однако если частицы изотопного индикатора связаны с упомянутой поверхностью, то условие полного внутреннего отражения нарушено, часть света рассеивается в образец, и поэтому количество света, отраженного поверхностью, уменьшается. Путем измерения интенсивности отраженного света с помощью оптического детектора создается возможность оценить количество частиц или зерен, связанных с поверхностью.

Например, в уровне техники известен способ формирования изображений микрогеометрии поверхности пластин на основе полного внутреннего отражения (ПВО), описанный в документе US 5953115. В данном способе луч излучения со спектральной полосой пропускания направляют на оптически плоскую поверхность прозрачной основы под углом θ к границе раздела для создания отраженного излучения от неровностей с последующим преобразованием в видимое изображение.

Известен также счетчик частиц, описанный в JP 2001264235 (А), который решает задачу определения распределения частиц. Количество частиц в данном счетчике подсчитывается на основе изменения количества света, падающего на поверхность, на которую попадают частицы.

В документе JP 2003035661 (А) описан способ измерения инфракрасного спектра поглощения методом нарушенного полного внутреннего отражения, в котором обеспечивают высокоточное измерение веществ разной твердости путем создания давления с задней стороны поверхности материала, присоединенного к призме, и извлечения модулирующего сигнала, реагирующего на изменение силы соединения благодаря улучшенному инфракрасному поглощению поверхности.

Наиболее близким аналогом заявленного изобретения является модульный датчик для флуоресцентной спектроскопии с полным внутренним отражением, описанный в документе WO 00/29829 А2, используемый для контроля паров и аналитов в жидкой фазе. Датчик, зафиксированный на тонком полимерном покрытии, контролирует следовое количество аналита с помощью иммунологической реакции на основе флуоресценции.

Недостаток использования эффекта НПВО заключается в том, что системы с НПВО работают таким образом, что начальный сигнал, т.е. сигнал, выдаваемый, когда вблизи чувствительной поверхности нет частиц или зерен, имеет высокий уровень. Тогда связывание зерен с поверхностью будет уменьшать оптический сигнал изначально высокого уровня. Таким образом, интересующий сигнал «х», а именно количество зерен вблизи поверхности, измеряется величиной (1-х), т.е. как (малое) изменение сигнала изначально высокого или большого уровня. Если изменение сигнала «х» оказывается довольно малым по сравнению с полным измеренным оптическим сигналом, т.е. (1-х), это может вызывать так называемые «проблемы коэффициента усиления», поскольку начальный сигнал имеет большой уровень относительно интересующего сигнала. Поэтому трудно усилить сигнал «х», так как фоновый сигнал (1-х) также усиливается, что может привести, например, к нелинейному поведению или даже насыщению усилителя, аналого-цифрового преобразователя (АЦП) и т.д. Кроме того, это приводит к сигналу, который весьма чувствителен к изменениям коэффициента усиления.

Сущность изобретения

Поэтому было бы желательно ограничить или, по меньшей мере, понизить фон в системе биодатчика, основанного на НПВО, и получить возможность прямого измерения количества зерен, связанных с чувствительной поверхностью в таком биодатчике. Поэтому задача данного изобретения состоит в том, чтобы разработать усовершенствованную систему НПВО-биодатчика, которая позволяет преодолеть вышеупомянутые проблемы. Дополнительная задача данного изобретения состоит в том, чтобы разработать усовершенствованный способ осуществления измерения или анализа с помощью НПВО-биодатчика. Эти задачи решаются с помощью признаков, охарактеризованных в пунктах формулы изобретения.

Данное изобретение основано на идее модуляции длины затухания затухающего поля, генерируемого за счет эффекта НПВО, и соответственной демодуляции отраженного сигнала. Таким образом, получается «прямой» сигнал, который исчезает, как только вблизи чувствительной поверхности не оказывается частиц.

Соответственно, в данном изобретении предложена система с НПВО, содержащая первый источник света, излучающий свет первой длины волны, объем образца с примыкающей чувствительной поверхностью, детектор для обнаружения света, отражаемого от упомянутой чувствительной поверхности. Чувствительная поверхность освещается упомянутым первым источником света с соблюдением условия полного внутреннего отражения и генерированием затухающего поля с длиной затухания в пределах объема образца. Система также содержит средство изменения длины затухания затухающего поля и средство корреляции обнаруженных сигналов с изменением длины затухания затухающего поля.

Возможны несколько путей изменения длины затухания затухающего поля. Например, чтобы изменить длину затухания затухающего поля, можно изменять угол падения, под которым освещается чувствительная поверхность. Однако предпочтительным является средство изменения длины затухания затухающего поля, выполненное с возможностью изменения первой длины волны первого источника света.

В соответствии с предпочтительным вариантом осуществления изобретения, система с НПВО дополнительно содержит второй источник света, излучающий свет второй длины волны, отличающейся от первой длины волны, и дополнительно содержит оптическое средство, обеспечивающее освещение чувствительной поверхности первым и вторым источниками света. Например, с помощью дихроичных зеркал можно обеспечить перекрытие лучей двух источников света, например, лазера, излучающего в синей области спектра, и лазера, излучающего в красной области спектра. Это обеспечивает параллельную подачу красного и синего света в объем образца.

В предпочтительном варианте, система дополнительно содержит средство включения и выключения первого и второго источников света в противофазе. В случае лазера, излучающего в красной области спектра, и лазера, излучающего в синей области спектра, это средство предпочтительно выполнено с возможностью модуляции обоих лазеров с высокой частотой, такой, как несколько сотен мегагерц, и дальнейшей модуляции длины волны с умеренной частотой в диапазоне между примерно 10 и 100 кГц. Поскольку свет, освещающий чувствительную поверхность, отражается от упомянутой поверхности и обнаруживается детектором, эти « модуляции интенсивности и длины волны обнаруживаются. Упомянутый, обнаруженный сигнал затем демодулируется средством демодуляции. Если частота демодуляции, предназначенная для модуляции длины волны, выбрана на достаточно высоких частотах, то можно исключить присутствующий на низких частотах шум с параметром 1/f. В преимущественном варианте, эта система дополнительно содержит средство управления интенсивностями первого и второго источников света друг относительно друга.

Данное изобретение также относится к способу обнаружения сигнала биодатчика, основанного на НПВО. Упомянутый способ включает в себя этап, на котором освещают чувствительную поверхность, примыкающую к объему образца, светом первой длины волны, и при этом выполняется условие полного внутреннего отражения, а в пределах объема образца генерируется затухающее поле с длиной затухания. Способ дополнительно включает в себя этапы, на которых обнаруживают свет, отраженный на чувствительной поверхности, и изменяют длину затухания затухающего поля во время освещения и обнаружения.

При этом длину затухания затухающего поля можно изменять либо путем изменения угла падения луча освещающего света, либо путем изменения первой длины волны.

По выбору, способ дополнительно включает в себя этап, на котором освещают чувствительную поверхность светом второй длины волны. В этом случае чувствительная поверхность предпочтительно освещается попеременно светом первой и второй длины волны. Способ может также дополнительно включать в себя этап, на котором демодулируют обнаруженный сигнал.

Эти и другие аспекты изобретения станут очевидными из описываемых ниже вариантов осуществления изобретения, со ссылками на которые и будет приведено разъяснение.

Краткое описание чертежей

На фиг.1 схематически показан сигнал детектора известной системы с НПВО.

На фиг.2 схематически показана зависимость длины затухания затухающего поля от длины волны.

На фиг.3 схематически показан предпочтительный вариант осуществления системы с НПВО в соответствии с данным изобретением.

На фиг.4 показана блок-схема, демонстрирующая, как осуществляется управление источниками света в соответствии с данным изобретением.

На фиг.5 показана схема модуляции двух источников света в соответствии с данным изобретением.

На фиг.6а показана еще одна блок-схема, демонстрирующая, как осуществляется управление источниками света в соответствии с данным изобретением.

На фиг.6b схематически показан сигнал детектора системы с НПВО в соответствии с данным изобретением.

Подробное описание вариантов осуществления

На фиг.1 показана диаграмма с типичным сигналом для известной системы с НПВО. Сплошная кривая отображает интенсивность света, отражаемого чувствительной поверхностью системы с НПВО. Единицы интенсивности и времени являются произвольными. В начале измерения, т.е. в момент t=0, измеряемая интенсивность начинается значением примерно 0,35, которое отображает фон упомянутого измерения. Это количество света, отражаемого на светочувствительной поверхности при отсутствии частиц или зерен вблизи чувствительной поверхности. По истечении некоторого времени, т.е. в момент t=0,45, частицы осаждаются на чувствительную поверхность или принудительно увлекаются к ней, например, за счет магнитного притяжения, и вследствие этого интенсивность отраженного света снижается. Сигнал ослабляется до достижения горизонтального участка кривой на уровне примерно 0,27, где кривая в этом случае насыщается или стабилизируется. Колебания в этом случае обусловлены протоколом возбуждения магнитных зерен, используемым при этом конкретном типе анализа.

Интересующий сигнал «х» представляет собой разность (обозначенную двухсторонней стрелкой) между уровнем этого горизонтального участка кривой и уровнем фона, составляющим 0,35. Таким образом, фактическая информация о представляющих интерес величинах относительного изменения сигнала дает значение примерно 21%. При реальных анализах изменение измеряемого сигнала может быть менее 0,1%. В общем случае, это может привести к неудовлетворительному отношению «сигнал шум» и может, в частности, вызывать так называемые «проблемы коэффициента усиления», Например, трудно усилить сигнал «х» довольно малого уровня, поскольку тогда усиливается также фоновый сигнал, что может привести к насыщению усилителей. Поэтому данное изобретение имеет целью снижение или исключение этого фона.

Данное изобретение предусматривает использование того факта, что длина затухания затухающего поля уменьшается по экспоненциальному закону в направлении, перпендикулярном чувствительной поверхности. Соответственно, над чувствительной поверхностью имеется лишь очень малый слой, который чувствителен к обнаружению частиц. Данное изобретение основано на идее фактического изменения или варьирования, в частности модуляции, длины затухания затухающего поля. Длину затухания затухающего поля можно вычислить следующим образом:

Здесь λ - длина волны света, θ - угол поступающего света относительно нормали к чувствительной поверхности, a n1 и n2 - показатели преломления подложки и образца текучей среды, соответственно. Согласно этой формуле, модуляция длины волны поступающего света вызывает также модуляцию длины затухания затухающего зондирующего оптического поля. Это приводит к модулированному сигналу, который можно обнаружить с помощью стандартных методов демодуляции..

На фиг.2 схематически изображено влияние длины волны на длину затухания затухающего поля. На фиг.2а показано, что чувствительная поверхность 1 освещена красным светом и генерирует затухающее поле 2 с большой длиной затухания. Осажденные или связанные частицы 3 полностью погружены внутрь затухающего поля 2 в этом случае. Если вместо красного света используется синий свет (т.е. свет меньшей длины волны), как показано на фиг.2b, то длина затухания затухающего поля 2 оказывается значительно меньшей, и частицы 3 лишь частично подвержены воздействию затухающего поля. Соответственно, переключение между красным и синим светом приводит к отражению разных сигналов от чувствительной поверхности.

На фиг.3 показана принципиальная схема системы биодатчика, основанного на НПВО в соответствии с предпочтительным вариантом осуществления данного изобретения. Лазер 4, излучающий в синей области спектра, и лазер 5, излучающий в красной области спектра, генерируют лучи 11 и 12 синего и красного света, соответственно. Красный свет 12 отражается на зеркале 6 и подается в дихроичное зеркало 7. Дихроичное зеркало 7 используется для создания перекрытия лучей 11 и 12. Второе дихроичное зеркало 8 используется для подачи части луча света из центрального луча. Упомянутый свет направляется через цветные светофильтры 9а и 9b в детекторы 10а и 10b для синего и красного света, соответственно. Центральный луч используется для освещения чувствительной поверхности объема образца.

В соответствии с данным изобретением, оба лазерных источника 4 и 5 включаются и выключаются в противофазе с высокой частотой fλ. Интенсивностью обоих лазерных лучей 11 и 12 следует управлять так, чтобы детектор, который обнаруживает свет, отраженный на чувствительной поверхности, показывал идентичный отклик для обоих лазеров, если на чувствительной поверхности нет зерен или частиц. Этого можно достичь, например, с помощью схемы управления с обратной связью по принципу «ведущий ведомый», как показано на фиг.4. В источник тока лазера, излучающего в красной области спектра, подается напряжение Vуст уставки, которое возбуждает лазер 5, излучающий в красной области спектра (см. фиг.3). Красный свет обнаруживается детектором 10b красного света, который выдает напряжение Vкрасн детектора. Упомянутое напряжение Vкрасн детектора используется для управления источником тока лазера, излучающего в синей области спектра. Вместе с тем, чтобы гарантировать вышеупомянутый идентичный отклик детекторов для лучей обоих лазеров, следует модифицировать напряжение Vкрасн детектора, например - умножить его на параметр коррекции, а именно, на зависящую от длины волны чувствительность детектора, Sдетектор(λ). Этот параметр задают надлежащим образом с учетом чувствительности детектора для обеих длин волн. Упомянутый управляющий сигнал подается в источник тока лазера, излучающего в синей области спектра, и возбуждает лазер 4, излучающий в синей области спектра. Интенсивность синего света обнаруживается в детекторе 10а синего света, который выдает напряжение Vсин детектора, подаваемое обратно в источник тока лазера, излучающего в синей области спектра. Как можно заметить на фиг.4, система, излучающая в области синего света, представляет собой ведомый контур для системы, излучающей в области красного света. Сигнал Vкрасн можно использовать в качестве входного для первого, ведущего контура управления, чтобы попытаться поддерживать постоянное значение оптического выходного сигнала лазера, излучающего в красной области спектра. В то же время, фактическое измеренное напряжение детектора для получения напряжения Vсин лазера, излучающего в синей области спектра, вводится во второй, ведомый контур управления, делая интенсивность лазера, излучающего в синей области спектра, равной интенсивности лазера, излучающего в красной области спектра. Для этого нужно знать чувствительность детектора, Sдетектор, как функцию длины волны. В общем случае, хорошо известно, как можно измерить эту чувствительность.

На фиг.5 показана схема модуляции с помощью лазеров, излучающих в красной и синей областях спектра, которые можно легко изготовить на основе технологии оптических запоминающих устройств. Путем модуляции обоих лазеров высокой частотой fлазера (не показана) в диапазоне нескольких сотен мегагерц, выходная мощность лазера стабилизируется и делается чувствительной к оптической обратной связи. Кроме того, длина волны падающего луча модулируется переключением между лазерами, излучающими в красной и синей областях спектра (не показано). В качестве зависящей от длины волны частоты fλ модуляции выбирают частоту в диапазоне примерно 10-100 кГц. Тогда сигнал, обуславливаемый наличием зерен или частиц, находящихся вблизи чувствительной поверхности, можно обнаружить либо путем непосредственной демодуляции на частоте fλ модуляции, либо путем демодуляции на боковых частотах fлазера fλ.

Если в качестве частоты fλ выбрана достаточно высокая частота, то исключается присутствующий на низких частотах шум с параметром 1/f. Кроме того, если мощности обоих лазеров должным образом откалиброваны с помощью вышеописанного контура управления, то в этом сигнале детектора нет частных составляющих на частотах fλ или fлазера±fλ. Соответственно, измерение сигнала не происходит, если зерен или частиц нет. В данном случае предполагается, что обе частоты, fлазера и fλ, оказываются значительно выше ширины: fнч полосы фильтра контура управления. Ширину полосы фильтра контура управления выбирают так, что во время процедуры измерений можно исключить изменения сигнала низкой частоты, например дрейф из-за изменений температуры.

Как только частицы оказываются связанными с чувствительной поверхностью, генерируется сигнал с частотой fλ. Интенсивность сигнала линейно зависит от количества частиц. В общем же случае, сигнал не будет линейно зависимым от длины волны. Вместе с тем, используемые длины волн являются фиксированными и известными, что приводит к необходимости учета калибровочного коэффициента приборов, который во время измерений является постоянным.

В варианте осуществления, описанном выше, выборка сигнала проводится посредством демодуляции.

В соответствии с дополнительным предпочтительным вариантом осуществления данного изобретения, реальное измерение, не зависящее от составляющей постоянного тока, можно получить следующим образом. Оба лазера запитывают импульсами в противофазе с частотой fλ, как уже описано выше. Для стабилизации выходных мощностей обоих лазеров, управлять контуром управления можно также с помощью главного детектора, который обнаруживает свет, отраженный на чувствительной поверхности. С этой целью главный фотодетектор следует синхронно стробировать с помощью схемы лазерной модуляции. Например, четные импульсы могли бы обеспечить измерение отражения красного света, а нечетные импульсы могли бы обеспечить измерение отражения синего света. В альтернативном варианте, можно использовать два дискретных детектора в комбинации с двумя цветными светофильтрами.

Сигнал, содержащий информацию о частицах или зернах, присутствующих на чувствительной поверхности, теперь определяется как сигнал разности между отражением красного света и отражением синего света. Чтобы избавиться от всех сдвигов до начала фактического измерения, второй контур управления, управляющий выходной мощностью лазера, излучающего в синей области спектра, использует этот сигнал разности в качестве своего управляющего сигнала. Соответственно, управление интенсивностью лазера, излучающего в синей области спектра, осуществляют так, что все сдвиги автоматически уменьшаются до нуля. Как только текучая среда-образец вводится в объем образца и начинается фактическое измерение, второй контур управления разрывается, а его самый последний стробированный управляющий сигнал сохраняется и используется в качестве статического управления для источника тока лазера, излучающего в синей области спектра. Как только частицы начинают проходить сквозь затухающую волну, сигнал разности между отражениями красного и синего света отклонится от нуля, поскольку лазер, излучающий в красной области спектра, продемонстрирует более интенсивное рассеяние по сравнению с лазером, излучающим в синей области спектра. В этом случае можно замерить базис реального нулевого сигнала.

На фиг.6 показан соответствующий контур управления для этого варианта осуществления. На фиг.6а изображен типичный выходной сигнал детектора для этого варианта осуществления. В начале измерения имеет место этап калибровки, описанный выше, и длится он до тех пор, пока. не будет минимизирован сигнал. Сразу же после установления базиса этого нулевого сигнала оказывается возможным принудительное увлечение частиц к чувствительной поверхности, приводящее к увеличению реального или прямого сигнала.

В соответствии с дополнительным вариантом осуществления, модуляция длины затухания затухающего поля достигается путем модуляции угла падения луча освещающего света относительно нормали чувствительной поверхности. Вообще говоря, больший угол ввода относительно нормали чувствительной поверхности приведет к меньшей длине затухания затухающего поля. Соответственно, изменение угла падения и демодуляция сигнала, отраженного на чувствительной поверхности, также приведут к получению «прямого» сигнала, который зависит лишь от количества частиц вблизи чувствительной поверхности.

Конечно, необходимо удостовериться в том, что используемый угол падения всегда удовлетворяет условию полного внутреннего отражения.

Изменение угла падения может быть достигнуто, например, путем перемещения источника света и детектора точно в противофазе для гарантии того, что отраженный свет всегда будет сфокусирован на детекторе.

Хотя изобретение изображено на чертежах и подробно описано в вышеизложенном описании, такие изображение и описание следует считать иллюстративными или примерными, а не ограничительными; изобретение не ограничивается раскрытыми вариантами осуществления. Специалисты в данной области техники поймут, что в раскрытые варианты осуществления можно внести другие изменения, и смогут воплотить их при практической реализации заявляемого изобретения на основании изучения чертежей, описания и прилагаемой формулы изобретения. В формуле изобретения слово «содержащий(ая)» не исключает другие элементы или этапы, а признак единственного числа не исключает множество. Один-единственный процессор или блок может выполнять функции нескольких конструктивных элементов, упоминаемых в формуле изобретения. Сам по себе тот факт, что во взаимно разных зависимых пунктах формулы изобретения упоминаются определенные меры, не означает, что нельзя с выгодой использовать комбинацию этих мер. Любые символы обозначений в формуле изобретения не следует считать ограничивающими объем притязаний.


СИСТЕМА БИОДАТЧИКА НА ОСНОВЕ НАРУШЕННОГО ПОЛНОГО ВНУТРЕННЕГО ОТРАЖЕНИЯ (НПВО) И СПОСОБ ОБНАРУЖЕНИЯ СИГНАЛА ДАТЧИКА, ОСНОВАННОГО НА НПВО
СИСТЕМА БИОДАТЧИКА НА ОСНОВЕ НАРУШЕННОГО ПОЛНОГО ВНУТРЕННЕГО ОТРАЖЕНИЯ (НПВО) И СПОСОБ ОБНАРУЖЕНИЯ СИГНАЛА ДАТЧИКА, ОСНОВАННОГО НА НПВО
СИСТЕМА БИОДАТЧИКА НА ОСНОВЕ НАРУШЕННОГО ПОЛНОГО ВНУТРЕННЕГО ОТРАЖЕНИЯ (НПВО) И СПОСОБ ОБНАРУЖЕНИЯ СИГНАЛА ДАТЧИКА, ОСНОВАННОГО НА НПВО
СИСТЕМА БИОДАТЧИКА НА ОСНОВЕ НАРУШЕННОГО ПОЛНОГО ВНУТРЕННЕГО ОТРАЖЕНИЯ (НПВО) И СПОСОБ ОБНАРУЖЕНИЯ СИГНАЛА ДАТЧИКА, ОСНОВАННОГО НА НПВО
СИСТЕМА БИОДАТЧИКА НА ОСНОВЕ НАРУШЕННОГО ПОЛНОГО ВНУТРЕННЕГО ОТРАЖЕНИЯ (НПВО) И СПОСОБ ОБНАРУЖЕНИЯ СИГНАЛА ДАТЧИКА, ОСНОВАННОГО НА НПВО
СИСТЕМА БИОДАТЧИКА НА ОСНОВЕ НАРУШЕННОГО ПОЛНОГО ВНУТРЕННЕГО ОТРАЖЕНИЯ (НПВО) И СПОСОБ ОБНАРУЖЕНИЯ СИГНАЛА ДАТЧИКА, ОСНОВАННОГО НА НПВО
СИСТЕМА БИОДАТЧИКА НА ОСНОВЕ НАРУШЕННОГО ПОЛНОГО ВНУТРЕННЕГО ОТРАЖЕНИЯ (НПВО) И СПОСОБ ОБНАРУЖЕНИЯ СИГНАЛА ДАТЧИКА, ОСНОВАННОГО НА НПВО
СИСТЕМА БИОДАТЧИКА НА ОСНОВЕ НАРУШЕННОГО ПОЛНОГО ВНУТРЕННЕГО ОТРАЖЕНИЯ (НПВО) И СПОСОБ ОБНАРУЖЕНИЯ СИГНАЛА ДАТЧИКА, ОСНОВАННОГО НА НПВО
Источник поступления информации: Роспатент

Showing 1-2 of 2 items.
27.09.2013
№216.012.7034

Система и способ детектирования

Изобретение относится к системам и способам детектирования, в частности, в области диагностики. Система детектирования содержит держатель для подложки (16), причем подложка имеет поверхность детектирования и выполнена с возможностью содержать объем образца так, что образец находится, по меньшей...
Тип: Изобретение
Номер охранного документа: 0002494375
Дата охранного документа: 27.09.2013
10.06.2014
№216.012.d1e6

Сенсорное устройство для определения целевого вещества

Изобретение предназначено для определения целевого вещества в исследуемой области. Сенсорное устройство (100) содержит сенсорную поверхность (112) с исследуемой областью (113) и контрольной областью (120), а также контрольный элемент (121), размещенный в контрольной области (120). При этом...
Тип: Изобретение
Номер охранного документа: 0002519505
Дата охранного документа: 10.06.2014
Showing 891-900 of 1,329 items.
20.10.2015
№216.013.8457

Система и способ для отслеживания точки взгляда наблюдателя

Группа изобретений относится к области медицины. Система для отслеживания точки взгляда наблюдателя, наблюдающего объект, содержит устройство для регистрации изображения глаза наблюдателя, средство для предоставления светящегося маркера на наблюдаемом объекте или связанного с ним и средство для...
Тип: Изобретение
Номер охранного документа: 0002565482
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.846f

Автономное связывание информационных записей о пациенте, хранимых в различных объектах

Изобретение относится к связыванию соответствующих информационных записей о пациентах. Техническим результатом является повышение достоверности связывания соответствующих информационных записей о пациентах. Множество объектов имеет соответствующие базы данных пациентов, содержащие...
Тип: Изобретение
Номер охранного документа: 0002565506
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.8470

Система и способ для улучшения качества изображения

Изобретение относится к системе и способу улучшения данных изображения и находит применение в компьютерной томографии. Технический результат заключается в снижении шума получаемых данных изображения. Технический результат достигается за счет способа, который включает в себя генерацию улучшенных...
Тип: Изобретение
Номер охранного документа: 0002565507
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.8473

Система для быстрой и точной количественной оценки черепно-мозговой травмы

Изобретение относится к способу автоматической сегментации структур мозга. Техническим результатом является повышение точности и надежности идентификации структурной атрофии после черепно-мозговой травмы. Способ содержит этапы, на которых выбирают в качестве интересующей анатомической структуры...
Тип: Изобретение
Номер охранного документа: 0002565510
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.847e

Обработка набора данных изображения

Изобретение относится к формированию обработанного набора данных изображения. Техническим результатом является повышение точности обработки набора данных изображения пациента. Система содержит: множество наборов данных параметров, причем набор данных параметров соответствует клинически...
Тип: Изобретение
Номер охранного документа: 0002565521
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.84b7

Конфигурационный блок и способ конфигурирования датчика обнаружения присутствия

Изобретение относится к управлению источниками освещения. Техническим результатом является обеспечение улучшенной, более эффективной конфигурации датчика. Упомянутый технический результат достигается тем, что конфигурационный блок (1) функционально соединен с передатчиком (4) и множеством...
Тип: Изобретение
Номер охранного документа: 0002565578
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.84b8

Керамическое осветительное устройство

Изобретение относится к области светотехники. Техническим результатом является повышение эффективности теплоотвода и упрощение конструкции. Осветительное устройство (100) содержит источник (110) света, скомпонованный для генерации света, несущий элемент (120), скомпонованный для поддержки...
Тип: Изобретение
Номер охранного документа: 0002565579
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.84bb

Устройство управления освещением

Изобретение относится к области светотехники. Устройство управления освещением предназначено для управления одним или несколькими параметрами освещения каждого источника света. Устройство управления освещением содержит по меньшей мере первый элемент взаимодействия с пользователем, блок...
Тип: Изобретение
Номер охранного документа: 0002565582
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.84bd

Инструментальное средство освещения для создания световых сцен

Изобретение относится к области светотехники. Инструментальное средство освещения для задания параметров освещения множества источников (1) света. Обеспечен процессор (2), который имеет возможность соединения с множеством источников (1) света и выполнен с возможностью управления параметрами...
Тип: Изобретение
Номер охранного документа: 0002565584
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.84c8

Детектор контакта с кожей

Изобретение относится к устройствам личной гигиены. Технический результат - обеспечение эффективного контакта с кожей во время фотоэпиляции. Детектор кожи содержит генератор сигнала для генерирования электрического запускающего сигнала; контрольную схему, содержащую емкость (C) и сопротивление...
Тип: Изобретение
Номер охранного документа: 0002565595
Дата охранного документа: 20.10.2015
+ добавить свой РИД