×
10.09.2013
216.012.685d

Результат интеллектуальной деятельности: СПОСОБ БАЛАНСИРОВКИ ВАЛА ГИБКОГО РОТОРА

Вид РИД

Изобретение

№ охранного документа
0002492364
Дата охранного документа
10.09.2013
Аннотация: Изобретение относится к машиностроению и может быть использовано при сборке и балансировке гибких роторов компрессоров, турбоагрегатов и валопроводов газоперекачивающих агрегатов. Способ балансировки вала гибкого ротора заключается в том, что вал разбивают на участки. Выбирают плоскости поперечных сечений, проходящих через центры их масс, в качестве плоскостей коррекции. Корректируют дисбалансы участков вала удалением материала в плоскостях коррекции. Измеряют величины максимального радиального биения всех участков вала в плоскостях коррекции. На поверхностях участков вала в плоскостях коррекции устанавливают уравновешивающие грузики со стороны, диаметрально противоположной максимальным радиальным биениям этих участков. Поочередно, после снятия очередного грузика, балансируют вал с использованием соответствующей плоскости коррекции. Массы уравновешивающих грузиков определяют из определенной зависимости. Изобретение направлено на повышение точности балансировки. 3 ил.
Основные результаты: Способ балансировки вала гибкого ротора, при котором вал разбивают на участки, выбирают плоскости поперечных сечений, проходящих через центры их масс, в качестве плоскостей коррекции, корректируют дисбалансы участков вала удалением материала в плоскостях коррекции, отличающийся тем, что измеряют величины максимального радиального биения всех участков вала в плоскостях коррекции, на поверхностях участков вала в плоскостях коррекции устанавливают уравновешивающие грузики со стороны, диаметрально противоположной максимальным радиальным биениям этих участков, поочередно, после снятия очередного грузика, балансируют вал с использованием соответствующей плоскости коррекции, при этом массы уравновешивающих грузиков определяют из зависимости: где m - масса уравновешивающего грузика; D - диаметр окружности установки центра массы грузика; ΔD - величина максимального радиального биения участка вала; D - диаметр цилиндрической поверхности участка вала; l - длина участка вала; ρ - плотность материала.

Изобретение относится к машиностроению и может быть использовано при сборке и балансировке гибких роторов компрессоров, турбоагрегатов и валопроводов газоперекачивающих агрегатов.

В ГОСТ 31320-2006 «Методы и критерии балансировки гибких роторов» указано: «Для гибких роторов распределение дисбаланса вдоль оси является … более важной характеристикой, … поскольку от этого распределения зависит степень возбуждения … изгибных колебаний.

Ротор полностью уравновешен, если устранены локальные дисбалансы на каждом участке ротора … вдоль него, посредством коррекции дисбалансов этих участков».

Известен способ балансировки вала по патенту №2426014 Российской федерации, при котором вал разбивают на участки, выбирают плоскости поперечных сечений, проходящих через центры их масс, в качестве плоскостей коррекции, корректируют дисбалансы участков вала удалением материала в плоскостях коррекции. Балансируют вал по технологии, предусмотренной для жестких роторов.

Данный способ балансировки вала взят за прототип.

Недостатком известного способа является то, что многоплоскостная уравновешенность вала обеспечивается без учета погрешностей изготовления каждого участка.

При изготовлении удлиненных валов 2,4-4 м и более, массой 500-1000 кг и более, погрешности концентричности (эксцентриситеты) участков вала могут достигать 5-7 мкм и более.

Остаточные дисбалансы в каждой плоскости коррекции после балансировки не должны превышать 200-300 г·мм. Обусловленные собственными эксцентриситетами локальные дисбалансы участков вала длиною 500 мм, диаметром 200 мм могут достигать 600-860 г·мм и более при известных величинах эксцентриситетов. При известном способе балансировки эти величины не могут быть учтены, что приведет к случайному положению остаточных дисбалансов (погрешностям).

Технической задачей настоящего изобретения является повышение точности балансировки за счет минимизация локальных дисбалансов вала, обусловленных эксцентриситетами его участков, полученных вследствие погрешностей изготовления.

Технический результат достигается тем, что вал разбивают на участки, выбирают плоскости поперечных сечений, проходящих через центры их масс, в качестве плоскостей коррекции, корректируют дисбалансы участков вала удалением материала в плоскостях коррекции, измеряют величины максимального радиального биения всех участков вала в плоскостях коррекции, на поверхностях участков вала в плоскостях коррекции устанавливают уравновешивающие грузики со стороны, диаметрально противоположной максимальным радиальным биениям этих участков, поочередно после снятия очередного грузика балансируют вал с использованием соответствующей плоскости коррекции, при этом массы уравновешивающих грузиков определяют из зависимости:

где: my - масса уравновешивающего грузика, Dy - диаметр окружности установки центра массы грузика; ΔDi - величина максимального радиального биения участка вала, Di - диаметр цилиндрической поверхности участка, вала; li - длина участка вала, ρ - плотность материала.

На поверхностях участков вала в плоскостях коррекции устанавливают эти грузики со стороны, диаметрально противоположной максимальным радиальным биениям этих участков, поочередно после снятия очередного грузика балансируют вал с использованием соответствующей плоскости коррекции.

Способ поясняется чертежами, представленными на фигурах 1, 2 и 3.

На фиг.1 изображен вал. установленный на измерительных призмах.

На фиг.2 - определяемые места поверхностей участков для установки уравновешивающих грузиков.

На фиг.3 - вал, установленный на балансировочном станке.

Вал 1 (фиг.1) разбивают на участки, устанавливают его на измерительные призмы 2. Определяют центры масс ЦМ участков вала, например, с использованием любой САПР. Выбирают плоскости поперечных сечений А, Б, В, Г, Д, проходящих через центры масс участков, в качестве плоскостей коррекции. Проводят измерения максимальных радиальных биений поверхностей участков в плоскостях коррекции с использованием измерительных приборов 3, например индикаторов часового типа или растровой системы.

Определяют места поверхностей участков для установки уравновешивающих грузиков my, диаметрально противоположных максимальным радиальным биениям ΔDi (фиг.2).

Устанавливают вал на балансировочный станок 4 (фиг.3), устанавливают грузики 5. Проводят многоплоскостную балансировку вала после снятия очередного уравновешивающего грузика (показано применительно к плоскости B), корректируя дисбалансы удалением металла в плоскостях коррекции. При этом массы уравновешивающих грузиков рассчитывают из зависимости:

где: my - масса уравновешивающего грузика, Dy - диаметр окружности установки центра массы грузика; ΔDi - величина максимального радиального биения участка вала; Di - диаметр цилиндрической поверхности участка, вала; li - длина участка вала, ρ - плотность материала.

После балансировки с использованием всех плоскостей коррекции уравновешенность вала будет соответствовать требованиям ГОСТ 31320-2006 «Методы и критерии балансировки гибких роторов».

Таким образом, применение предлагаемого способа позволяет минимизировать локальные дисбалансы вала гибкого ротора, обусловленные эксцентриситетами его участков, полученными вследствие погрешностей изготовления, что обеспечивает повышение точности балансировки.

Способ балансировки вала гибкого ротора, при котором вал разбивают на участки, выбирают плоскости поперечных сечений, проходящих через центры их масс, в качестве плоскостей коррекции, корректируют дисбалансы участков вала удалением материала в плоскостях коррекции, отличающийся тем, что измеряют величины максимального радиального биения всех участков вала в плоскостях коррекции, на поверхностях участков вала в плоскостях коррекции устанавливают уравновешивающие грузики со стороны, диаметрально противоположной максимальным радиальным биениям этих участков, поочередно, после снятия очередного грузика, балансируют вал с использованием соответствующей плоскости коррекции, при этом массы уравновешивающих грузиков определяют из зависимости: где m - масса уравновешивающего грузика; D - диаметр окружности установки центра массы грузика; ΔD - величина максимального радиального биения участка вала; D - диаметр цилиндрической поверхности участка вала; l - длина участка вала; ρ - плотность материала.
СПОСОБ БАЛАНСИРОВКИ ВАЛА ГИБКОГО РОТОРА
СПОСОБ БАЛАНСИРОВКИ ВАЛА ГИБКОГО РОТОРА
СПОСОБ БАЛАНСИРОВКИ ВАЛА ГИБКОГО РОТОРА
СПОСОБ БАЛАНСИРОВКИ ВАЛА ГИБКОГО РОТОРА
Источник поступления информации: Роспатент

Showing 11-20 of 118 items.
27.08.2013
№216.012.64cc

Ракетный двигатель твердого топлива

Изобретение относится к ракетной технике и может быть использовано при создании ракетного двигателя твердого топлива с зарядом, имеющим глухой канал. Ракетный двигатель содержит корпус, заряд с глухим каналом, частично утопленное в корпус сопло и кольцевой воспламенитель. Сопло снабжено...
Тип: Изобретение
Номер охранного документа: 0002491441
Дата охранного документа: 27.08.2013
27.08.2013
№216.012.64cd

Способ определения погрешностей изготовления корпуса ракетного двигателя по геометрическим параметрам

Изобретение относится к области машиностроения и может быть использовано для определения погрешностей изготовления корпуса ракетного двигателя по геометрическим параметрам. При определении погрешностей изготовления корпус располагают на роликовых опорах и определяют отклонения расположения...
Тип: Изобретение
Номер охранного документа: 0002491442
Дата охранного документа: 27.08.2013
10.09.2013
№216.012.6845

Способ изготовления внутреннего теплозащитного покрытия корпуса ракетного двигателя

Изобретение относится к области ракетной техники и может быть использовано при изготовлении внутреннего теплозащитного покрытия корпусов ракетных двигателей. При изготовлении внутреннего теплозащитного покрытия корпуса ракетного двигателя укладывают послойно на жесткую оправку слои...
Тип: Изобретение
Номер охранного документа: 0002492340
Дата охранного документа: 10.09.2013
10.10.2013
№216.012.73b1

Ракетный двигатель

Изобретение относится к ракетной технике и может использоваться в качестве ракетного двигателя с вращающимся соплом. Ракетный двигатель содержит корпус и вращающееся сопло, смонтированное на корпусе на соосно разнесенных радиальных подшипниках, между которыми установлен осевой подшипник. Осевой...
Тип: Изобретение
Номер охранного документа: 0002495274
Дата охранного документа: 10.10.2013
20.10.2013
№216.012.7698

Корпус твердотопливного ракетного двигателя из композиционного материала

Корпус твердотопливного ракетного двигателя из композиционного материала содержит силовую цельномотанную оболочку типа «кокон» и оболочку второго кокона. Между наружной поверхностью днища силовой оболочки в зоне экватора и оболочкой второго кокона установлен кольцевой эластичный клин. В...
Тип: Изобретение
Номер охранного документа: 0002496020
Дата охранного документа: 20.10.2013
20.10.2013
№216.012.769b

Способ сборки ракетного двигателя твердого топлива и оснастка для его осуществления

При сборке ракетного двигателя твердого топлива положение соплового блока с кольцевым воспламенителем ориентируют относительно корпуса, причем ориентирование осуществляют без уплотняющих элементов. Затем в газоходы корпуса и на сопловой блок устанавливают технологическую оснастку,...
Тип: Изобретение
Номер охранного документа: 0002496023
Дата охранного документа: 20.10.2013
27.10.2013
№216.012.7a20

Ванна для гальванических производств и способ ее изготовления

Изобретение относится к области гальванотехники, в частности к изготовлению ванн для работы с электролитами, имеющими нейтральную, щелочную и кислую среду при температуре до 80-90°С, а также к промывочным ваннам, емкостям для хранения и переработки агрессивных жидкостей и отходов. Ванна...
Тип: Изобретение
Номер охранного документа: 0002496926
Дата охранного документа: 27.10.2013
10.11.2013
№216.012.7eac

Снаряженный корпус ракетного двигателя твердого топлива

Изобретение относится к машиностроению, а именно к снаряженным корпусам ракетных двигателей твердого топлива, и может быть использовано при их проектировании и отработке. Снаряженный корпус ракетного двигателя твердого топлива содержит заряд, раскрепленный от днища корпуса манжетой, и экран....
Тип: Изобретение
Номер охранного документа: 0002498101
Дата охранного документа: 10.11.2013
20.11.2013
№216.012.81be

Способ изготовления статора одновинтового насоса

Изобретение относится к области машиностроения и может быть использовано при изготовлении одновинтовых насосов. Способ изготовления статора одновинтового насоса включает запрессовку эластомера в обойму с установленным в ней винтовым знаком, вулканизацию эластомера и выдавливание знака. На торцы...
Тип: Изобретение
Номер охранного документа: 0002498890
Дата охранного документа: 20.11.2013
10.12.2013
№216.012.880f

Способ изготовления статора одновинтового насоса

Изобретение относится к области машиностроения и может быть использовано при изготовлении одновинтовых насосов. Способ изготовления статора одновинтового насоса включает запрессовку эластомера в полость между обоймой, на внутреннюю поверхность которой нанесен склеивающий состав, и установленным...
Тип: Изобретение
Номер охранного документа: 0002500513
Дата охранного документа: 10.12.2013
Showing 11-20 of 59 items.
27.08.2013
№216.012.64cc

Ракетный двигатель твердого топлива

Изобретение относится к ракетной технике и может быть использовано при создании ракетного двигателя твердого топлива с зарядом, имеющим глухой канал. Ракетный двигатель содержит корпус, заряд с глухим каналом, частично утопленное в корпус сопло и кольцевой воспламенитель. Сопло снабжено...
Тип: Изобретение
Номер охранного документа: 0002491441
Дата охранного документа: 27.08.2013
27.08.2013
№216.012.64cd

Способ определения погрешностей изготовления корпуса ракетного двигателя по геометрическим параметрам

Изобретение относится к области машиностроения и может быть использовано для определения погрешностей изготовления корпуса ракетного двигателя по геометрическим параметрам. При определении погрешностей изготовления корпус располагают на роликовых опорах и определяют отклонения расположения...
Тип: Изобретение
Номер охранного документа: 0002491442
Дата охранного документа: 27.08.2013
10.09.2013
№216.012.6845

Способ изготовления внутреннего теплозащитного покрытия корпуса ракетного двигателя

Изобретение относится к области ракетной техники и может быть использовано при изготовлении внутреннего теплозащитного покрытия корпусов ракетных двигателей. При изготовлении внутреннего теплозащитного покрытия корпуса ракетного двигателя укладывают послойно на жесткую оправку слои...
Тип: Изобретение
Номер охранного документа: 0002492340
Дата охранного документа: 10.09.2013
10.10.2013
№216.012.73b1

Ракетный двигатель

Изобретение относится к ракетной технике и может использоваться в качестве ракетного двигателя с вращающимся соплом. Ракетный двигатель содержит корпус и вращающееся сопло, смонтированное на корпусе на соосно разнесенных радиальных подшипниках, между которыми установлен осевой подшипник. Осевой...
Тип: Изобретение
Номер охранного документа: 0002495274
Дата охранного документа: 10.10.2013
20.10.2013
№216.012.7698

Корпус твердотопливного ракетного двигателя из композиционного материала

Корпус твердотопливного ракетного двигателя из композиционного материала содержит силовую цельномотанную оболочку типа «кокон» и оболочку второго кокона. Между наружной поверхностью днища силовой оболочки в зоне экватора и оболочкой второго кокона установлен кольцевой эластичный клин. В...
Тип: Изобретение
Номер охранного документа: 0002496020
Дата охранного документа: 20.10.2013
20.10.2013
№216.012.769b

Способ сборки ракетного двигателя твердого топлива и оснастка для его осуществления

При сборке ракетного двигателя твердого топлива положение соплового блока с кольцевым воспламенителем ориентируют относительно корпуса, причем ориентирование осуществляют без уплотняющих элементов. Затем в газоходы корпуса и на сопловой блок устанавливают технологическую оснастку,...
Тип: Изобретение
Номер охранного документа: 0002496023
Дата охранного документа: 20.10.2013
27.10.2013
№216.012.7a20

Ванна для гальванических производств и способ ее изготовления

Изобретение относится к области гальванотехники, в частности к изготовлению ванн для работы с электролитами, имеющими нейтральную, щелочную и кислую среду при температуре до 80-90°С, а также к промывочным ваннам, емкостям для хранения и переработки агрессивных жидкостей и отходов. Ванна...
Тип: Изобретение
Номер охранного документа: 0002496926
Дата охранного документа: 27.10.2013
10.11.2013
№216.012.7eac

Снаряженный корпус ракетного двигателя твердого топлива

Изобретение относится к машиностроению, а именно к снаряженным корпусам ракетных двигателей твердого топлива, и может быть использовано при их проектировании и отработке. Снаряженный корпус ракетного двигателя твердого топлива содержит заряд, раскрепленный от днища корпуса манжетой, и экран....
Тип: Изобретение
Номер охранного документа: 0002498101
Дата охранного документа: 10.11.2013
20.11.2013
№216.012.81be

Способ изготовления статора одновинтового насоса

Изобретение относится к области машиностроения и может быть использовано при изготовлении одновинтовых насосов. Способ изготовления статора одновинтового насоса включает запрессовку эластомера в обойму с установленным в ней винтовым знаком, вулканизацию эластомера и выдавливание знака. На торцы...
Тип: Изобретение
Номер охранного документа: 0002498890
Дата охранного документа: 20.11.2013
10.12.2013
№216.012.880f

Способ изготовления статора одновинтового насоса

Изобретение относится к области машиностроения и может быть использовано при изготовлении одновинтовых насосов. Способ изготовления статора одновинтового насоса включает запрессовку эластомера в полость между обоймой, на внутреннюю поверхность которой нанесен склеивающий состав, и установленным...
Тип: Изобретение
Номер охранного документа: 0002500513
Дата охранного документа: 10.12.2013
+ добавить свой РИД