×
10.09.2013
216.012.66de

Результат интеллектуальной деятельности: СПОСОБ ОЧИСТКИ РАСТВОРА ДИЭТАНОЛАМИНА ОТ ПРИМЕСЕЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области очистки газов и может быть использовано в газовой или в нефтеперерабатывающей промышленности для очистки абсорбентов от примесей. В способе очистки раствора диэтаноламина от примесей нагревают загрязненный раствор диэтаноламина, содержащий продукты деструкции диэтаноламина и термостабильные соли, и фракционируют полученную парожидкостную смесь. Указанную парожидкостную смесь фракционируют в ректификационной колонне при давлении 100-110 кПа и температуре куба 170-180°C, отгоняя воду. Далее полученный кубовый остаток фракционируют в вакуумной ректификационной колонне при давлении 1,3-2 кПа и температуре куба 180-185°C с получением дистиллята - очищенного диэтаноламина и кубового остатка, содержащего продукты деструкции диэтаноламина и термостабильные соли. Изобретение позволяет повысить степень извлечения ДЭА из загрязненного раствора и уменьшить потери ДЭА при очистке. 1 з.п. ф-лы, 1 ил., 4 табл.

Изобретение относится к области очистки газов и может быть использовано в газовой или в нефтеперерабатывающей промышленности для очистки абсорбентов от примесей.

Одним из наиболее широко применяющихся абсорбентов для поглощения кислых газов (H2S и CO2) из различных газовых потоков является водный раствор диэтаноламина (ДЭА). В промышленных условиях при очистке газов, содержащих до 40% об. кислых газов, ДЭА подвергается существенной термохимической деструкции амина, скорость которой возрастает с увеличением насыщения амина кислыми газами (до 0,8 моль/моль и выше) и повышенной температуры насыщенного абсорбента (до 90-100°C). В этих условиях концентрация продуктов деструкции ДЭА (ПДД) может составлять до 50% от массы исходного ДЭА в растворе. Основными продуктами превращения ДЭА в результате необратимого взаимодействия с CO2 являются оксазолидоны, производные этилендиаминов и пиперазина. В наибольшем количестве присутствует диэтанолпиперазин (ДЭП), который является конечным продуктом термохимического превращения ДЭА. В значительно меньших количествах присутствуют производные имидазолидона и аминоэтиловых эфиров. Кроме ПДД в растворах абсорбентов могут накапливаться термостабильные соли (ТСС), которые представляют собой нелетучие продукты взаимодействия органических кислот (муравьиной, уксусной, щавелевой, тиосерной) со щелочами, в частности с ДЭА.

Наличие в растворе ПДД и ТСС повышает вязкость раствора, способствует его вспениванию, т.е. приводит к снижению производительности и увеличению энергетических затрат. Для нормальной эксплуатации установки очистки газа необходимо осуществлять очистку раствора от ПДД и ТСС.

Известен процесс одностадийной рекуперации ДЭА из загрязненного абсорбента очистки газа от кислых компонентов (US №2892775, C10G 21/28, опубл. 30.06.1959). В данном способе загрязненный амин предварительно смешивают с раствором щелочи для разложения ТСС и подают в дистилляционную колонну, в куб которой подводится тепло, а в верхнюю часть охлаждающая вода. Водяные пары поднимаются вверх, контактируя на насадке с раствором амина, а не сконденсировавшиеся пары воды отводят с верха колонны. Пары амина выводят с нижней части колонны и конденсируют их путем охлаждения, а из кубовой части отводят расплав нелетучих солей. Необходимая температура в кубовой части 205-245°C поддерживается циркуляцией теплоносителя в трубчатом подогревателе.

Недостатками способа являются существенные потери ДЭА, обусловленные термическим разложением из-за достаточно высокой температуры процесса, а также повышенные энергетические затраты за счет использования для отгонки амина из раствора водяного пара.

Наиболее близким к предлагаемому способу является способ очистки технологической жидкости при пониженном давлении (около 400 мм. рт.ст.), содержащей амин (гликоль) и термостабильные соли, включающий нагрев технологической жидкости, однократное испарение (дистилляцию) воды и амина на первой стадии и последующее фракционирование в колонне с конденсатом на второй стадии (US №5993608, B01D 53/14, опубл. 30.11.1999). В данном способе на второй стадии с верха конденсационной колонны выводят воду, частично используя ее в качестве флегмового орошения, а из кубовой части колонны - очищенную технологическую жидкость.

Недостатками данного способа является низкая степень очистки раствора от примесей, особенно от примесей, которые имеют близкую к ДЭА температуру кипения (летучесть) и выводятся вместе с рекуперированным амином, а также повышенные потери из-за невысокой степени извлечения амина из загрязненного раствора.

Техническим результатом, на достижение которого направлено предлагаемое изобретение, является повышение степени извлечения ДЭА из загрязненного раствора и уменьшение его потерь при очистке.

Технический результат достигается за счет того, что в способе очистки раствора диэтаноламина от примесей, включающем нагрев загрязненного раствора диэтаноламина, содержащего продукты деструкции диэтаноламина и термостабильные соли и последующее фракционирование полученной парожидкостной смеси, указанную парожидкостную смесь фракционируют в ректификационной колонне при давлении 100-110 кПа и температуре куба 170-180°C отгоняя воду, далее полученный кубовый остаток фракционируют в вакуумной ректификационной колонне при давлении 1,3-2 кПа и температуре куба 180-185°C с получением дистиллята - очищенного диэтаноламина и кубового остатка, содержащего продукты деструкции диэтаноламина и термостабильные соли.

Для ограничения содержания воды в кубовой части ректификационной колонны и усиления испарения фракций из кубового остатка вакуумной ректификационной колонны, т.е. для улучшения отпарки воды на первой стадии фракционирования и амина на второй стадии фракционирования, в кубовую часть ректификационной колонны может быть подан азот, а в кубовую часть вакуумной ректификационной колонны может быть подан азот или перегретый водяной пар.

Сущность изобретения поясняется чертежом, на котором представлена схема очистки раствора ДЭА от примесей. Схема состоит из ректификационной колонны 1, холодильников 3 и 5, вакуумной ректификационной колонны 2, сепаратора 4, вакуумного сепаратора 6, барометрического сборника 7, паровых подогревателей 8-10, рекуперативного теплообменника 11.

Способ реализуется следующим образом.

Загрязненный раствор ДЭА предварительно подогревают потоком кубового остатка из вакуумной ректификационной колонны 2 до 60-70°C в теплообменнике 11 и подают в верхнюю часть ректификационной колонны 1. На первой стадии разделения при контакте паровой и жидкой фаз на контактных элементах колонны происходит разделение воды и остатка, содержащего ДЭА, ПДД и ТСС. Не сконденсировавшиеся в холодильнике 3 пары углеводородов, ПДД, кислых газов (H2S и СО2) и азота из сепаратора 4 направляют на утилизацию. Сконденсированную воду из сепаратора 4 направляют на приготовление абсорбента путем смешения с перегнанным ДЭА, полученным на второй стадии.

Жидкий остаток колонны 1 направляют на вторую стадию разделения в вакуумную ректификационную колонну 2, в которой осуществляют отделение ДЭА от ПДД и ТСС. С верхней части колонны 2 производят отбор паров ДЭА с их последующей конденсацией в холодильнике 5. Сконденсированный ДЭА из вакуумного сепаратора 6 поступает через гидрозатвор в барометрический сборник 7. Часть ДЭА из барометрического сборника 7 используют в качестве орошения, подаваемого наверх колонны 2. Кубовый остаток - ПДД и ТСС выводят под контролем уровня из кубовой части колонны 2 и через рекуперативный теплообменник 11 направляют на утилизацию.

Для ограничения содержания воды в кубовой части колонны 1 и усиления испарения фракций из кубового остатка колонны 2, в нижнюю часть колонн 1 и 2 подают предварительно подогретый в паровом подогревателе 8 отдувочный инертный газ (азот) с температурой 180°C.

Пример реализации предлагаемого способа.

Пример 1

Загрязненный раствор ДЭА, содержащий, % мас.: 24,84 ДЭА; 14,82 ПДЦ; 0,99 ТСС; 58,84 H2O; 0,01 H2S; 0,05 CO2 - в количестве 2000 кг/ч с температурой 45°C подают насосом в рекуперативный теплообменник 11 и нагревают потоком кубового остатка из колонны 2 до 75°C. На первой стадии разделения нагретый загрязненный раствор ДЭА подают в верхнюю часть колонны 1, в которой при давлении 100 кПа и температуре куба 175°C происходит разделение воды и амина, содержащего ПДД и ТСС. Пары с верха колонны 1 охлаждают в холодильнике 3 до 50-60°C и разделяют в сепараторе 4. Сконденсированную воду отводят из сепаратора 4 в количестве 1169,45 кг/ч на смешение с очищенным ДЭА для приготовления абсорбента для очистки газа.

Не сконденсированную газовую фазу с верха колонны 1 в количестве 1,99 кг/ч, содержащую, % мас.: 8,54 H2S; 47,24 CO2 и 44,22 воды направляют на утилизацию (в печь дожига).

Кубовую жидкость колонны 1, содержащую, % мас.: 59,85 ДЭА; 35,94 ПДД; 2,41 ТСС и остатки воды, не отогнанной с первой стадии (1,8% мас.) в количестве 828,56 кг/ч, под контролем уровня направляют в вакуумную ректификационную колонну 2, в которой при остаточном давлении 1,5 кПа и температуре куба 180°C осуществляют отделение ДЭА от ПДД и ТСС. Температура верха колонны 150-160°C поддерживается подачей рефлюксного орошения в количестве 450-500 кг/ч.

Необходимая температура кубовой части колонн 1 и 2 обеспечивают циркуляцией кубовой жидкости через паровые подогреватели 8-10, в которые подается водяной пар среднего давления.

С верхней части вакуумной ректификационной колонны 2 после конденсации паров отводится жидкий ДЭА в количестве 457,6 кг/ч, содержащий около 5% примесей (ДЭП, ТСС, H2O).

Из кубовой части вакуумной ректификационной колонны 2 под контролем уровня отбирается 362,66 кг/ч остатка, содержащего 79,98% ПДД; 16,16% ДЭА и 3,86% ТСС.

Данные материального баланса, проведенной экспериментальной проверки предлагаемого способа с производительностью 2 т/ч по исходному загрязненному раствору ДЭА, показаны в таблицах 1 и 2. В таблице 1 показан материальный баланс при реализации первой стадии фракционирования загрязненного раствора ДЭА, в таблице 2 -материальный баланс при реализации второй стадии фракционирования ДЭА, в таблице 3 - общий баланс процесса в целом.

Пример 2

На очистку подают загрязненный раствор ДЭА, содержащий, мас.%: 24,84 ДЭА; 14,82 ПДД; 0,99 ТСС; 58,84 H2O; 0,01 H2S; 0,05 CO2.

Процесс очистки раствора диэтаноламина от примесей по прототипу осуществляют в две стадии: на первой стадии испаряют амин с водяным паром при давлении 10 кПа и температуре 180°C, а на второй стадии разделяют воду и амин при помощи дистилляции в колонне при давлении 10 кПа и температуре 180°C, причем вода отбиралась вверху колонны, а смесь ДЭА и ПДД - снизу колонны. Принятое в примере давление 10 кПа обусловлено условиями конденсации воды на второй стадии процесса при 45°C вверху дистилляционной колонны (давление на первой и второй стадии процесса одинаково).

Очистку ДЭА по предлагаемому способу осуществляют: на первой стадии процесса в ректификационной колонне 1 при давлении 110 кПа и температуре куба 175°C, а на второй стадии процесса - в вакуумной ректификационной колонне 2 при давлении 1,3-2,0 кПа и температуре куба 180-185°C. В куб первой колонны подают азот в количестве 1% от выводимого кубового продукта, а в куб второй колонны - перегретый водяной пар в количестве 5,5% от выводимого кубового остатка.

Результаты приведены в таблице 4. Из таблицы 4 видно, что по известному способу массовое содержание ДЭА в кубовом остатке от перегонки составляет 21,2% мас., при этом извлечение ДЭА из загрязненного абсорбента составляет 82,4% при его концентрации в продукте 92% (ПДД и ТСС остальное). По предлагаемому способу остаточное массовое содержание ДЭА в кубовом остатке составляет менее 16% (извлечение 87%), при использовании испарительных агентов менее 10% (извлечение 95%), а концентрация выделяемого ДЭА в продукте составляет 95-96%.

Диапазон предлагаемых температур и давлений для осуществления способа обусловлен следующим. На первой стадии процесса температура куба равная 170-180°C обуславливает оптимальные условия для максимального отделения воды из абсорбента при давлении 100-110 кПа. Термобарические условия осуществления второй стадии процесса обусловлены тем, что при температуре менее 180°C и давлении более 2 кПа выход ДЭА уменьшается (увеличиваются потери амина с кубовым остатком), а при температуре более 185°C происходит увеличение термической деградации ДЭА, возникает опасность закоксовывания оборудования и уменьшается выход продукта. Ограничение давления проведения процесса на второй стадии менее 1,3 кПа приводит к усложнению вакуумного оборудования и увеличению энергозатрат.

Из таблиц видно, что повышение степени извлечения ДЭА и уменьшение его потерь при очистке обеспечивается за счет двухстадийного процесса разделения, в котором первую стадию осуществляют в ректификационной колонне при давлении 100-110 кПа и температуре куба 170-180°C, отгоняя воду от загрязненного абсорбента, а вторую - под вакуумом при давлении 1,3-2 кПа и температуре куба 180-185°C, отделяя ДЭА от примесей.

Таблица 1
Материальный баланс первой стадии фракционирования (175°C, 100 кПа)
Компоненты Питание колонны 1 Газ из сепаратора 4 Дистиллят колонны 1 (вода) Кубовая фракция колонны 1
кг/ч % мас. кг/ч % мас. кг/ч % мас. кг/ч % мас.
H2S 0,20 0,01 0,17 8,54 0,03 0,00 0,00 0,0
CO2 1,00 0,05 0,94 47,24 0,06 0,00 0,00 0,0
Вода 1182,0 59,10 0,88 44,22 1166,2 99,72 14,95 1,80
ДЭА 499,0 24,95 0,0 0,00 3,19 0,28 495,8 59,85
ПДД 297,8 14,89 0,0 0,00 0,00 0,00 297,8 35,94
ТСС 20,0 1,00 0,0 0,00 0,00 0,00 20,0 2,41
Итого 2000,0 100,00 1,99 100,00 1169,45 100,00 828,56 100,00
Таблица 2
Материальный баланс второй стадии фракционирования (180°C, 1,5 кПа)
Компоненты Питание колонны 2 Газ из сепаратора 6 Дистиллят колонны 2 (ДЭА) Кубовая фракция колонны 2
кг/ч % мас. кг/ч % мас. кг/ч % мас. кг/ч % мас.
H2S 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
CO2 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
Вода 14,95 1,80 5,30 63,86 9,65 2,11 0,00 0,00
ДЭА 495,81 59,84 3,00 36,14 434,21 94,89 58,60 16,16
ПДД 297,80 35,94 0,00 0,00 7,74 1,69 290,06 79,98
ТСС 20,00 2,42 0,00 0,00 6,00 1,31 14,00 3,86
Итого 828,56 100,00 8,30 100,00 457,60 100,00 362,66 100,00

Таблица 3
Материальный баланс процесса фракционирования
Наименование кг/ч %
Приход
1. Загрязненный абсорбент 2000,0 100,0
ИТОГО 2000,0 100,0
Расход
1. Вода 1169,45 58,47
2. Фракция ДЭА 457,60 22,88
3. Кубовый остаток (ПДД+ТСС) 362,66 18,13
4. Газовые сбросы 10,29 0,52
ИТОГО 2000,0 100,0

Таблица 4
Сравнительные результаты по способам очистки раствора ДЭА
Способ извлечения ДЭА Подача на 1 стадии Подача на 2 стадии Температура в кубе 2 стадии Давление в кубе 2 стадии ДЭА в кубовом остатке от перегонки Извлечение ДЭА
агент кг/ч агент кг/ч °C кПа % мас. %
1 Известный - - - - 180 10,0 21,2 82,4
2 Предлагаемый - - - - 180 1,5 16,0 87,0
3 Предлагаемый Азот 9,0 В. пар 20 180 1,3 7,0 95,2
4 Предлагаемый Азот 9,0 В. пар 20 185 2,0 8,7 94,0


СПОСОБ ОЧИСТКИ РАСТВОРА ДИЭТАНОЛАМИНА ОТ ПРИМЕСЕЙ
Источник поступления информации: Роспатент

Showing 31-40 of 164 items.
20.12.2015
№216.013.9ba8

Устройство для проведения исследований газожидкостного потока

Изобретение относится к технике для исследования движения жидкостных потоков и газожидкостных потоков, например процессов добычи газа в нефтегазовой отрасли, связанной с изучением процессов движения газожидкостных потоков в вертикальных трубопроводах и отдельных устройствах. Технический...
Тип: Изобретение
Номер охранного документа: 0002571473
Дата охранного документа: 20.12.2015
20.01.2016
№216.013.a23a

Способ определения этиленгликоля в водных растворах

Изобретение относится к способам исследования материалов с использованием инфракрасной спектрометрии и может быть использовано в промышленных, экологических и научно-исследовательских лабораториях при исследовании состава и качества любых (сточной, попутной, поверхностной, питьевой) проб воды....
Тип: Изобретение
Номер охранного документа: 0002573172
Дата охранного документа: 20.01.2016
20.06.2016
№217.015.034e

Способ закрепления подводного трубопровода в проектном положении

Изобретение относится к строительству подводных переходов трубопроводов. В предлагаемом способе закрепления подводного трубопровода в проектном положении в качестве системы для закрепления трубопровода используют металлическую сетку. Предварительно на одном из концов полотна сетки формируют...
Тип: Изобретение
Номер охранного документа: 0002587730
Дата охранного документа: 20.06.2016
10.04.2016
№216.015.2e8c

Устройство для испытаний сепарационного оборудования

Изобретение относится к технике для изучения процессов добычи и подготовки газа в нефтегазовой отрасли. Технический результат изобретения заключается в повышении точности результатов проводимых газогидродинамических экспериментов и уменьшении времени их анализа, повышении наглядности проведения...
Тип: Изобретение
Номер охранного документа: 0002580546
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.30d7

Способ определения давления начала конденсации в пористой среде

Изобретение относится к газовой промышленности и предназначено для исследования газоконденсатных смесей в пористой среде, а именно для определения давления начала конденсации в пористой среде. Техническим результатом является повышение точности, а также снижение трудоёмкости измерения давления...
Тип: Изобретение
Номер охранного документа: 0002580858
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.31f3

Способ определения тяжелых металлов в техническом углероде

Использование: для определения содержания тяжелых металлов в техническом углероде. Сущность изобретения заключается в том, что выполняют градуировку прибора рентгенофлуоресцентной спектрометрии для каждого элемента, регистрируют интенсивность аналитической линии элемента на соответствующей ему...
Тип: Изобретение
Номер охранного документа: 0002580334
Дата охранного документа: 10.04.2016
27.04.2016
№216.015.3a26

Способ захоронения co (варианты)

Группа изобретений предназначена для использования в области подземного хранения CO и других вредных газов, а также защиты окружающей среды. Технический результат - повышение надежности хранилища и снижение затрат на его создание. В первом варианте реализации способа для закачки CO выбирают...
Тип: Изобретение
Номер охранного документа: 0002583029
Дата охранного документа: 27.04.2016
10.05.2016
№216.015.3b58

Установка для исследования и способ исследования влияния пористых сред на фазовое поведение жидких и газообразных флюидов

Группа изобретений относится к термодинамике и может использоваться для проведения калориметрических измерений. Установка для исследования влияния пористых сред на фазовое поведение жидких и газообразных флюидов содержит две калориметрические ячейки, каждая из которых окружена двумя...
Тип: Изобретение
Номер охранного документа: 0002583061
Дата охранного документа: 10.05.2016
10.06.2016
№216.015.446a

Абсорбент для очистки газов от сероводорода и диоксида углерода

Изобретение относится к области очистки газов от сероводорода и/или диоксида углерода и может быть использовано в газовой, нефтяной и нефтеперерабатывающей отраслях промышленности. Абсорбент для очистки газа от HS и СО содержит метилдиэтаноламин, аминоэтилпиперазин, метиловый или этиловый эфир...
Тип: Изобретение
Номер охранного документа: 0002586159
Дата охранного документа: 10.06.2016
10.06.2016
№216.015.453e

Экспресс-способ определения текущего содержания углеводородов c в пластовом газе газоконденсатной скважины

Изобретение относится к области исследований газоконденсатных эксплуатационных скважин и может быть использовано при определении содержания углеводородов (далее - УВ) С в пластовом газе непосредственно при проведении исследовательских работ газоконденсатных эксплуатационных скважин. Предложен...
Тип: Изобретение
Номер охранного документа: 0002586940
Дата охранного документа: 10.06.2016
Showing 31-40 of 89 items.
20.12.2015
№216.013.9ba8

Устройство для проведения исследований газожидкостного потока

Изобретение относится к технике для исследования движения жидкостных потоков и газожидкостных потоков, например процессов добычи газа в нефтегазовой отрасли, связанной с изучением процессов движения газожидкостных потоков в вертикальных трубопроводах и отдельных устройствах. Технический...
Тип: Изобретение
Номер охранного документа: 0002571473
Дата охранного документа: 20.12.2015
20.01.2016
№216.013.a23a

Способ определения этиленгликоля в водных растворах

Изобретение относится к способам исследования материалов с использованием инфракрасной спектрометрии и может быть использовано в промышленных, экологических и научно-исследовательских лабораториях при исследовании состава и качества любых (сточной, попутной, поверхностной, питьевой) проб воды....
Тип: Изобретение
Номер охранного документа: 0002573172
Дата охранного документа: 20.01.2016
20.06.2016
№217.015.034e

Способ закрепления подводного трубопровода в проектном положении

Изобретение относится к строительству подводных переходов трубопроводов. В предлагаемом способе закрепления подводного трубопровода в проектном положении в качестве системы для закрепления трубопровода используют металлическую сетку. Предварительно на одном из концов полотна сетки формируют...
Тип: Изобретение
Номер охранного документа: 0002587730
Дата охранного документа: 20.06.2016
10.04.2016
№216.015.2e8c

Устройство для испытаний сепарационного оборудования

Изобретение относится к технике для изучения процессов добычи и подготовки газа в нефтегазовой отрасли. Технический результат изобретения заключается в повышении точности результатов проводимых газогидродинамических экспериментов и уменьшении времени их анализа, повышении наглядности проведения...
Тип: Изобретение
Номер охранного документа: 0002580546
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.30d7

Способ определения давления начала конденсации в пористой среде

Изобретение относится к газовой промышленности и предназначено для исследования газоконденсатных смесей в пористой среде, а именно для определения давления начала конденсации в пористой среде. Техническим результатом является повышение точности, а также снижение трудоёмкости измерения давления...
Тип: Изобретение
Номер охранного документа: 0002580858
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.31f3

Способ определения тяжелых металлов в техническом углероде

Использование: для определения содержания тяжелых металлов в техническом углероде. Сущность изобретения заключается в том, что выполняют градуировку прибора рентгенофлуоресцентной спектрометрии для каждого элемента, регистрируют интенсивность аналитической линии элемента на соответствующей ему...
Тип: Изобретение
Номер охранного документа: 0002580334
Дата охранного документа: 10.04.2016
27.04.2016
№216.015.3a26

Способ захоронения co (варианты)

Группа изобретений предназначена для использования в области подземного хранения CO и других вредных газов, а также защиты окружающей среды. Технический результат - повышение надежности хранилища и снижение затрат на его создание. В первом варианте реализации способа для закачки CO выбирают...
Тип: Изобретение
Номер охранного документа: 0002583029
Дата охранного документа: 27.04.2016
10.05.2016
№216.015.3b58

Установка для исследования и способ исследования влияния пористых сред на фазовое поведение жидких и газообразных флюидов

Группа изобретений относится к термодинамике и может использоваться для проведения калориметрических измерений. Установка для исследования влияния пористых сред на фазовое поведение жидких и газообразных флюидов содержит две калориметрические ячейки, каждая из которых окружена двумя...
Тип: Изобретение
Номер охранного документа: 0002583061
Дата охранного документа: 10.05.2016
10.06.2016
№216.015.446a

Абсорбент для очистки газов от сероводорода и диоксида углерода

Изобретение относится к области очистки газов от сероводорода и/или диоксида углерода и может быть использовано в газовой, нефтяной и нефтеперерабатывающей отраслях промышленности. Абсорбент для очистки газа от HS и СО содержит метилдиэтаноламин, аминоэтилпиперазин, метиловый или этиловый эфир...
Тип: Изобретение
Номер охранного документа: 0002586159
Дата охранного документа: 10.06.2016
10.06.2016
№216.015.453e

Экспресс-способ определения текущего содержания углеводородов c в пластовом газе газоконденсатной скважины

Изобретение относится к области исследований газоконденсатных эксплуатационных скважин и может быть использовано при определении содержания углеводородов (далее - УВ) С в пластовом газе непосредственно при проведении исследовательских работ газоконденсатных эксплуатационных скважин. Предложен...
Тип: Изобретение
Номер охранного документа: 0002586940
Дата охранного документа: 10.06.2016
+ добавить свой РИД