×
27.08.2013
216.012.6530

Результат интеллектуальной деятельности: МАГНИТНЫЙ ДЕФЕКТОСКОП СТАЛЬНЫХ КАНАТОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области неразрушающего контроля качества стальных канатов. Сущность: канат 2 перемещается в канале 1, намагничивающий узел 3 создает магнитный поток, частично замыкающийся по участку каната 2. Локальные магнитные поля рассеяния от дефектов каната 2 преобразуются блоком 6 измерительных магниточувствительных элементов в электрические сигналы. Эти же магнитные поля рассеяния от дефектов, а также от структурных и геометрических неоднородностей каната обнаруживаются последовательно во времени магниточувствительными элементами 8 и 9 и преобразуются в идентичные друг другу по форме и величине электрические сигналы на выходах этих элементов. С генератора 14 импульсов на управляющие входы блоков 7, 11 и 12 одновременно подаются управляющие импульсы с заданной частотой. В момент прихода этих импульсов мгновенные значения сигналов с блока измерительных магниточувствительных элементов 6 фиксируются в памяти блока 7 обработки сигналов, а с магниточувствительных элементов 8 и 9 - в памяти блоков 11 и 12 регистрации магнитограмм. В результате в блоке 7 формируется дефектограмма каната, а в блоках 11 и 12 формируются магнитограммы M1 и М2. В блоке 13 обработки магнитограмм происходит совместная обработка магнитограмм M1 и М2, что позволяет разметить в единицах длины координату для полученной в процессе контроля дефектограммы. Технический результат: повышение точности определения координат дефектов. 3 ил.
Основные результаты: Магнитный дефектоскоп стальных канатов, содержащий канал для прохождения контролируемого каната, намагничивающий узел с магнитными полюсами, обращенными к каналу, блок измерительных магниточувствительных элементов, расположенный между магнитными полюсами, блок обработки сигналов, подключенный своим входом к выходу блока измерительных магниточувствительных элементов, блок обработки магнитограмм, подключенный своим входом к выходу блока обработки сигналов, отличающийся тем, что он снабжен двумя дополнительными идентичными магниточувствительными элементами, размещенными между магнитными полюсами намагничивающего узла на поверхности канала на одной линии, параллельной оси канала, на заданном расстоянии друг от друга, двумя идентичными управляемыми блоками регистрации магнитограмм, подключенными каждый своим информационным входом к одному из дополнительных магниточувствительных элементов, генератором импульсов с заданной стабильной частотой, при этом блок обработки сигналов и блоки регистрации магнитограмм выполнены управляемыми, блок обработки магнитограмм выполнен с двумя дополнительными входами, подключенными соответственно к выходам блоков регистрации магнитограмм, а управляющие входы блока обработки сигналов и блоков регистрации магнитограмм подключены к генератору импульсов.

Предлагаемое изобретение относится к области неразрушающего контроля качества изделий и предназначено для дефектоскопии стальных канатов.

Известен магнитный дефектоскоп стальных канатов, содержащий намагничивающий узел с полюсами, обращенными к зоне контроля, последовательно соединенные блок измерительных магниточувствительных элементов и блок обработки сигналов, а также датчик дистанции перемещения контролируемого каната [1]. В известном дефектоскопе датчик дистанции перемещения контролируемого каната содержит выполненное с возможностью вращения колесо, предназначенное для механического контакта с поверхностью контролируемого каната, а также преобразователь угла поворота колеса в пропорциональный ему выходной сигнал датчика.

Недостаток известного дефектоскопа состоит в погрешности определения координат выявленных дефектных участков, связанной с возможным проскальзыванием и даже остановкой колеса из-за наличия на поверхности каната смазки, грязи, воды.

Наиболее близок к предложенному, принятый за прототип, магнитный дефектоскоп стальных канатов, содержащий канал для прохождения контролируемого каната, намагничивающий узел с магнитными полюсами, обращенными к каналу, блок измерительных магниточувствительных элементов, блок обработки сигналов, подключенный своим входом к выходу блока магниточувствительных элементов, а также датчик дистанции перемещения контролируемого каната, расположенный между полюсами намагничивающего узла [2].

Однако и этот дефектоскоп обладает высокой погрешностью определения координат выявленных дефектных участков, так как и в нем используется датчик с колесом, предназначенным для механического контакта с контролируемым канатом.

Цель изобретения - повышение точности определения координат дефектов, выявленных при дефектоскопии стальных канатов.

Поставленная цель в магнитном дефектоскопе стальных канатов, содержащем канал для прохождения контролируемого каната, намагничивающий узел с магнитными полюсами, обращенными к каналу, блок измерительных магниточувствительных элементов, расположенный между магнитными полюсами, блок обработки сигналов, подключенный своим входом к выходу блока измерительных магниточувствительных элементов, блок обработки магнитограмм, подключенный своим входом к выходу блока обработки сигналов, достигается тем, что, он снабжен двумя дополнительными идентичными магниточувствительными элементами, размещенными между магнитными полюсами намагничивающего узла на поверхности канала на одной линии, параллельной оси канала, на заданном расстоянии друг от друга, двумя идентичными управляемыми блоками регистрации магнитограмм, подключенными каждый своим информационным входом к одному из дополнительных магниточувствительных элементов, генератором импульсов с заданной стабильной частотой, блок обработки сигналов и блоки регистрации магнитограмм выполнены управляемыми, блок обработки магнитограмм и представления информации выполнен с двумя дополнительными входами, подключенными соответственно к выходам блоков регистрации магнитограмм, а управляющие входы блока обработки сигналов и блоков регистрации магнитограмм подключены к генератору импульсов.

Проведенные заявителем патентно-литературные исследования не выявили технических решений с существенными признаками, идентичными или эквивалентными отличительным признакам заявляемого объекта.

На фиг.1 представлена структурная схема заявляемого дефектоскопа; на фиг.2 и фиг.3 приведены примеры магнитограмм, полученных с помощью идентичных, смещенных вдоль оси канала дефектоскопа двух магниточувствительных элементов.

Магнитный дефектоскоп стальных канатов содержит канал 1 для прохождения контролируемого каната 2, намагничивающий узел 3 с магнитными полюсами 4 и 5, обращенными к каналу 1, блок 6 измерительных магниточувствительных элементов, управляемый блок 7 обработки сигналов, подключенный своим информационным входом к выходу блока 6 магниточувствительных элементов. Кроме того, заявляемый дефектоскоп содержит два дополнительных магниточувствительных элемента 8 и 9, размещенных между магнитными полюсами 4 и 5 на поверхности канала 1 на одной линии 10, параллельной оси канала 1, на заданном расстоянии В друг от друга, два идентичных управляемых блока 11 и 12 регистрации магнитограмм, подключенных каждый своим информационным входом к одному из дополнительных магниточувствительных элементов 8 и 9, блок 13 обработки магнитограмм, к основному входу которого подключен выход блока 7 обработки сигналов, а к двум дополнительным входам - выходы блоков 11 и 12 регистрации магнитограмм, а также генератор 14 импульсов, подключенный к управляющим входам блока 7 обработки сигналов и блоков 11 и 12 регистрации магнитограмм.

Магниточувствительные элементы 8 и 9 рекомендуется выполнять в виде датчиков Холла. Рекомендуемое расстояние В между ними - (1…2)D, где D - внутренний диаметр канала 1. Магниточувствительные элементы 8 и 9 могут быть расположены как по одну, так и по разные стороны относительно блока 6 измерительных магниточувствительных элементов. Рекомендуемая частота следования импульсов генератора - 1…5 кГц при скорости перемещения каната 0,1…5 м/с.

Заявляемый дефектоскоп работает следующим образом. Контролируемый канат 2 перемещается в канале 1 с помощью соответствующего устройства (не показано) вдоль его оси.

Намагничивающий узел 3 создает магнитный поток, частично замыкающийся по участку каната 2, находящемуся в канале 1. Дефекты каната 2 в зоне контроля между полюсами 4 и 5 вызывают над поверхностью движущегося каната локальные магнитные поля рассеяния, преобразуемые блоком 6 измерительных магниточувствительных элементов в электрические сигналы. Эти же магнитные поля рассеяния от дефектов, а также от структурных и геометрических неоднородностей каната (которые всегда имеются), обнаруживаются последовательно во времени магниточувствительными элементами 8 и 9 и преобразуются в идентичные друг другу по форме и величине электрические сигналы на выходах этих двух элементов.

С генератора 14 импульсов на управляющие входы блоков 7, 11 и 12 одновременно подаются управляющие импульсы с заданной частотой.

В момент прихода этих импульсов мгновенные значения сигналов с блока измерительных магниточувствительных элементов 6 фиксируются в памяти блока 7 обработки сигналов, а с магниточувствительных элементов 8 и 9 - в памяти блоков 11 и 12 регистрации магнитограмм.

В результате проведенного контроля каната в блоке 7 обработки сигналов формируется дефектограмма каната, а в блоках 11 и 12 регистрации магнитограмм формируются магнитограммы M1 и М2. Дефектограмма и магнитограммы формируются как зависимости соответствующих сигналов от текущей временной координаты, определяемой количеством импульсов генератора 14.

Магнитограммы M1 и М2 передаются в блок 13 обработки магнитограмм. Реальный пример таких магнитограмм M1 и М2 с участка каната на задаваемом в блоке 13 временном интервале приведен на фиг.2 и фиг.3. На обоих графиках есть зона, общая для обеих магнитограмм. В этой общей зоне содержатся идентичные по форме и величине сигналы, например, экстремумы (помечены цифрами), вызванные прохождением одних и тех же структурных неоднородностей или дефектов каната сначала под магниточувствительным элементом 8, а затем - под магниточувствительным элементом 9. В блоке 13 обработки магнитограмм происходит совместная обработка этих двух магнитограмм, основанная, например, на корреляционном анализе. На обеих магнитограммах выявляются и фиксируются идентичные по форме и величине сигналы (на фиг.2 и фиг.3 отмечены одинаковыми цифрами). Выявляются и фиксируются n таких сигналов. Чем больше число n, тем точнее будет определена длина проконтролированного участка каната и координата каждого выявленного дефекта.

Фиксируется время tn появления каждого такого сигнала на магнитограмме M1 и сдвиг по времени Δtn появления соответствующего сигнала на магнитограмме М2. Определяются значения мгновенных скоростей Vn, с которыми канат двигался относительно дефектоскопа в каждый момент tn: Vn=В/Δtn.

Определяется зависимость скорости движения каната от времени записи магнитограмм: V=f(t).

Координата L в метрах любой точки на магнитограмме, а, следовательно, и на дефектограмме, поступившей с блока обработки сигналов 7 на основной вход блока обработки магнитограмм 13, определяется как

, где Т - время записи магнитограммы до этой точки.

Дефектограмма каната, оцифрованная в единицах длины, регистрируется в памяти блока 13 обработки магнитограмм и визуализируется на дисплее (мониторе).

Заявляемый дефектоскоп, по сравнению с известными, обеспечивает большую надежность в работе, более точное определение длины проконтролированного участка каната и координат выявленных дефектов. Повышение надежности и точности достигается за счет бесконтактного определения дистанции перемещения контролируемого каната.

ИСТОЧНИКИ ИНФОРМАЦИИ

1. Патент США №4659991, НКИ 324/241, МПК G01N 27/82;

2. Дефектоскоп для неподвижных стальных канатов. Патент РФ №2313084 МПК G01N 27/82 (прототип);

Магнитный дефектоскоп стальных канатов, содержащий канал для прохождения контролируемого каната, намагничивающий узел с магнитными полюсами, обращенными к каналу, блок измерительных магниточувствительных элементов, расположенный между магнитными полюсами, блок обработки сигналов, подключенный своим входом к выходу блока измерительных магниточувствительных элементов, блок обработки магнитограмм, подключенный своим входом к выходу блока обработки сигналов, отличающийся тем, что он снабжен двумя дополнительными идентичными магниточувствительными элементами, размещенными между магнитными полюсами намагничивающего узла на поверхности канала на одной линии, параллельной оси канала, на заданном расстоянии друг от друга, двумя идентичными управляемыми блоками регистрации магнитограмм, подключенными каждый своим информационным входом к одному из дополнительных магниточувствительных элементов, генератором импульсов с заданной стабильной частотой, при этом блок обработки сигналов и блоки регистрации магнитограмм выполнены управляемыми, блок обработки магнитограмм выполнен с двумя дополнительными входами, подключенными соответственно к выходам блоков регистрации магнитограмм, а управляющие входы блока обработки сигналов и блоков регистрации магнитограмм подключены к генератору импульсов.
МАГНИТНЫЙ ДЕФЕКТОСКОП СТАЛЬНЫХ КАНАТОВ
МАГНИТНЫЙ ДЕФЕКТОСКОП СТАЛЬНЫХ КАНАТОВ
МАГНИТНЫЙ ДЕФЕКТОСКОП СТАЛЬНЫХ КАНАТОВ
Источник поступления информации: Роспатент

Showing 31-31 of 31 items.
21.04.2023
№223.018.4ffe

Способ измерения электропотенциальным методом глубины поверхностной трещины

Изобретение относится к области неразрушающего контроля и может быть использовано для измерения глубины поверхностных трещин в металлах. Способ измерения электропотенциальным методом глубины поверхностной трещины осуществляется следующим образом. Токовые электроды 2 и 3 устанавливают в точках T...
Тип: Изобретение
Номер охранного документа: 0002746668
Дата охранного документа: 19.04.2021
Showing 31-39 of 39 items.
20.01.2018
№218.016.1ade

Способ неразрушающего контроля качества сверхпроводящей проволоки

Использование: для контроля качества сверхпроводящей проволоки с медной оболочкой и сверхпроводящей сердцевиной из сплава ниобий-олово. Сущность изобретения заключается в том, что способ измерения отношения Cu/non Cu в сверхпроводящей проволоке с заданными наружным диаметром D, удельной...
Тип: Изобретение
Номер охранного документа: 0002635844
Дата охранного документа: 20.11.2017
25.08.2018
№218.016.7ec9

Способ вихретокового контроля

Изобретение относится к области неразрушающего контроля и может быть использовано при вихретоковом контроле электропроводящих объектов. Сущность: устанавливают накладной вихретоковый преобразователь, подключенный к выполненному с возможностью амплитудно-фазовой обработки сигнала электронному...
Тип: Изобретение
Номер охранного документа: 0002664867
Дата охранного документа: 23.08.2018
06.12.2018
№218.016.a404

Способ капиллярной дефектоскопии

Изобретение относится к неразрушающему контролю и может быть использовано для дефектоскопии электропроводящих объектов капиллярным методом. Предложен способ капиллярной дефектоскопии, который заключается в выполнении операций по подготовке поверхности, сушке, нанесении пенетранта, пропитке...
Тип: Изобретение
Номер охранного документа: 0002674124
Дата охранного документа: 04.12.2018
20.05.2019
№219.017.5c74

Плоский металлический образец для механических испытаний

Изобретение относится к области испытательной техники и может быть использовано для получения информации об изменении электромагнитных свойств металлических образцов при их механических испытаниях, например, на растяжение или степени усталости при циклических нагрузках. Плоский металлический...
Тип: Изобретение
Номер охранного документа: 0002687892
Дата охранного документа: 16.05.2019
09.06.2019
№219.017.7658

Способ измерения удельного электрического сопротивления металлического образца в процессе его растяжения

Изобретение относится к области испытательной техники и может быть использовано для измерения удельного электрического сопротивления металлических образцов в процессе растяжения при механических испытаниях. При растяжении образца расстояние между его произвольными точками 1 и 2 увеличивается,...
Тип: Изобретение
Номер охранного документа: 0002690972
Дата охранного документа: 07.06.2019
25.12.2019
№219.017.f224

Способ балансировки вихретокового преобразователя

Изобретение относится к области неразрушающего контроля и может быть использовано при изготовлении вихретоковых преобразователей для неразрушающего контроля. Сущность: минимизируют напряжение разбаланса путем подбора числа витков измерительных катушек и определяют катушку с меньшим напряжением....
Тип: Изобретение
Номер охранного документа: 0002710011
Дата охранного документа: 23.12.2019
08.08.2020
№220.018.3de8

Способ вихретокового контроля углепластиковых объектов

Изобретение относится к неразрушающему контролю и может быть использовано для дефектоскопии многослойных углепластиковых объектов. Сущность изобретения заключается в том, что способ вихретокового контроля многослойных углепластиковых объектов дополнительно содержит этапы, на которых перед...
Тип: Изобретение
Номер охранного документа: 0002729457
Дата охранного документа: 06.08.2020
21.04.2023
№223.018.4ffe

Способ измерения электропотенциальным методом глубины поверхностной трещины

Изобретение относится к области неразрушающего контроля и может быть использовано для измерения глубины поверхностных трещин в металлах. Способ измерения электропотенциальным методом глубины поверхностной трещины осуществляется следующим образом. Токовые электроды 2 и 3 устанавливают в точках T...
Тип: Изобретение
Номер охранного документа: 0002746668
Дата охранного документа: 19.04.2021
26.05.2023
№223.018.7017

Вихретоковый преобразователь для дефектоскопии

Изобретение относится к неразрушающему контролю и может быть использовано для дефектоскопии электропроводящих объектов. Вихретоковый преобразователь (ВТП) содержит прямоугольные измерительные катушки индуктивности 1, 2, 3 и прямоугольную возбуждающую катушку 4, расположенную в плоскости...
Тип: Изобретение
Номер охранного документа: 0002796194
Дата охранного документа: 17.05.2023
+ добавить свой РИД