×
27.08.2013
216.012.6489

Результат интеллектуальной деятельности: ЭЛЕКТРОХИМИЧЕСКИЙ СПОСОБ ПОЛУЧЕНИЯ СПЛОШНЫХ СЛОЕВ КРЕМНИЯ

Вид РИД

Изобретение

Аннотация: Способ может быть использован в фотонике, полупроводниковой технике, а также для производства солнечных батарей. Сплошные слои кремния получают электролизом гексафторсиликата калия (KSiF) в расплаве следующего состава, мас.%: КСl (15÷50) - KF (5÷50) - (10÷35) KSiF. Электролиз ведут при температуре 650-800°С, катодной плотности тока 10 мА/см - 150 мА/см в атмосфере воздуха. Способ позволяет получить кремний в виде сплошных слоев толщиной от 1 мкм до 1 мм как на плоских, так и на изогнутых поверхностях, уменьшить потери кремния. 10 пр.
Основные результаты: Способ электрохимического получения кремния в виде сплошных слоев, включающий электролиз гексафторсиликата калия (КSiF) в расплаве галогенидных солей, содержащем соединения кремния, отличающийся тем, что процесс электролиза KSiF ведут в расплаве КСl (15÷50) - KF (5÷50) - (10÷35) KSiF, мас.%, в интервале температур от 650 до 800°С, при варьировании катодной плотности тока от 10 мА/см до 150 мА/см в атмосфере воздуха.

Изобретение относится к области металлургии неметаллов, а именно к производству электролитического кремния в виде сплошных слоев толщиной от 1 мкм до 1 мм, которые могут найти применение в фотонике, полупроводниковой технике, для производства «солнечных батарей» и т.д.

Известны неэлектрохимические способы получения пластин кремния. Их, например, нарезают из монокристалла кремния высокой степени чистоты, процесс получения которого является энергозатратным и дорогостоящим. Существующие методы резки монокристаллов дают от 55 до 65 мас.%. отходов, притом, что максимальная толщина нарезанных пластин не превышает 160 мкм, в то время как рабочий слой батареи, где идет преобразование солнечного света в электрическую энергию, не превышает 50 мкм [Сайт Московского венчурного форума // URL: www.sipo.ru Дата обращения: 15.04.2008) [1]. Другой метод получения монокристаллических слоев кремния носит название сублимационной молекулярно лучевой эпитаксии (Денисов С.А. и др. Вестник Нижегородского университета им. Н.И. Лобачевского, 2009, №2, с.49-54)[2] - требует сложного аппаратурного оформления. В основе метода лежит осаждение испаренного в молекулярном источнике вещества на кристаллическую подложку. Основные требования к установке эпитаксии следующие: сверхвысокий вакуум (около 10-8 Па) и высокая чистота испаряемых материалов. Кроме того, необходимо иметь молекулярный источник, способный испарять тугоплавкие вещества (такие как кремний) с возможностью регулировки плотности потока вещества. Особенностью эпитаксии является невысокая скорость роста пленки (обычно менее 1000 нм в час).

Электрохимическим способом можно получить сплошные слои кремния на относительно больших поверхностях катодов, причем не только плоской, но и криволинейной формы. Могут быть получены как толстые (до 1 мм), так и очень тонкие (толщиной до микрометра) сплошные покрытия кремния. Однородность получаемого покрытия в этом случае будет зависеть только от распределения тока по поверхности электрода и поддается управлению сравнительно простыми технологическими приемами. Толщина покрытия, зависящая от катодной плотности тока и длительности процесса, также легко поддается управлению. Способ позволяет получать эпитаксиальные пленки кремния, соответствующие структуре подложки.

В литературе упоминаются электрохимические способы получения электролитических пленок кремния. Так, известен способ (Uri Kohen, J. Electronic Mater. V.6, №6, 1977, p.607-643) [3], согласно которому обширные пленки плотного, когерентного, хорошо адгезированного Si покрытия получены из расплава (мол. %): 5 K2SiF6-10KHF2-47.5 LiF- 37.5KF при T=750°C. Осаждение вели на подложках из Si, Ag,W, Nb. Использовали растворимый кремниевый анод. Рекомендуемый диапазон рабочих катодных плотностей тока - от 1 до 10 мА/см. Скорость осаждения Si растет при использовании импульсного тока. Чистота электролитических пленок 99.99% Критерий чистоты - удельное сопротивление 0.05-0.1 Ом-см. По замечаниям авторов этого метода, в исследованных солевых системах для получения когерентного покрытия необходима тщательная очистка ванны от следов кислорода и воды, поэтому в экспериментах использовали гелиевую атмосферу. Использование инертного газа над поверхностью расплава требует создания герметичного электролизера, эксплуатация которого в условиях высокотемпературного электролиза сложна и трудоемка.

Gapalokrishna М Rao (J. Electrochem. Soc 1980,v.l27,№9, 1940-1944) [3] в инертной атмосфере получил плотные, когерентные, хорошо адгезированные пленки Si толщиной до 3 мм, выращенные в расплавах (FLINAK (Тпл=459°C) и LiF-KF (Тпл=492°C) с добавками 4-6 мол.% K2SiF6 при T=750°C.Осадки имели столбчатую структуру с размером зерна до 100 um. Чистота продукта на очень тонких пленках достигала 99,999% (10 ppm). Авторы отказались от графитового анода, который у них разрушался, и использовали платиновый анод. Платина дорога и при температурах выше 700°С в отсутствии кислорода во фторидном расплаве не является индифферентным анодным материалом.

De Lepinay (J.Appl.Electrochem, v.17, №2, (1987) 294-302) [4] изучал процесс осаждения Si в системе FLINAK (Тпл=459°C) и LiF-KF(Tпл=492°C) с добавками 4-6 мол% K2SiF6 в широком температурном диапазоне T=550-850°C. Ему удалось осадить слои кремния до 1 мм толщиной на серебре и углероде с использованием импульсного тока. Длительный катодный импульс поддерживал концентрацию Si(II) у поверхности электрода постоянной. Короткий анодный импульс способствовал растворению ряда примесей из осадка. В качестве анода использовали графит. При переходе от ячейки лабораторного масштаба к промышленному производству, использование импульсной техники при ведении электрохимического восстановления кремния значительно усложнит процесс электролиза с технологической точки зрения.

Наиболее близким к заявляемому решению является способ регенерации элементарного кремния из остаточных обрезков (международная заявка WO 2008156372, опубл. 24.12.2008 г.) [5]. Известный способ характеризуется тем, что ведут рафинирование анодов, изготовленных из остатков резки пластин кремния высокой чистоты. Формирование анодов возможно различными методами: плавка и литье под инертной атмосферой, шликерное литье, сухое прессование и т.д. В любом случае это дополнительный технологический передел, в котором возможны потери дорогостоящего чистого кремния и загрязнение его нежелательными примесями. Аноды помещают в расплавы галогенидов щелочных или щелочно-земельных металлов с добавками K2SiF6 при температуре на 50°C выше температуры плавления соответствующей солевой смеси. Процесс ведут при температуре от 500 до 1200°C, т.е. рабочий диапазон температур составляет 700°C. Отмечено, что отказ от концентрации оксида в солевой смеси очень важен, так как в противном случае возможно образование изолирующих слоев на одной или обеих поверхностях электродов. Авторы утверждают, что при соответствующей корректировке параметров процесса электролиза можно получать Si в виде или когерентного осадка, или порошка. Факторы, влияющие на морфологию осадка кремния, - это катодная плотность тока, состав электролита и температура. Обе морфологии осадка кремния, по мнению авторов, находятся в пределах объема изобретения.

Известный способ [5] относится к электролитическому рафинированию Si, то есть в нем используют расходуемый кремнийсодержащий анод, изготовление которого из отходов кремния высокой чистоты является сложной, энергоемкой и дорогостоящей операцией. Процесс ведут в атмосфере инертного газа, что ведет к усложнению аппаратурного оформления электролизера.

Задача настоящего изобретения заключается в разработке менее энергоемкого электрохимического способа получения сплошных слоев кремния и упрощении аппаратурного оформления электролизера, предназначенного для этого процесса.

Для решения поставленной задачи электрохимический способ получения сплошных слоев кремния осуществляют путем электролиза гексафторсиликата калия в расплавах галогенидных солей, содержащих соединения кремния, при этом процесс электролиза ведут в расплаве - КСl (15÷50) - KF (5÷50) - (10÷35) K2SiF6 мас.% в интервале температур от 650 до 800°C, при варьировании катодной плотности тока от 10 мА/см2 до 150 мА/см2 в атмосфере воздуха. Заявленные нижние и верхние пределы параметров заявляемого способа определены экспериментальным путем с получением сплошных пленок высокочистого кремния.

В заявляемом способе, который можно охарактеризовать, как электролиз K2SiF6 для получения сплошных осадков кремния, в том числе на электродах со сложной конфигурацией, в качестве электролита используется кремнийсодержащий хлоридно-фторидный расплав солей калия. Использование этого расплава имеет ряд преимуществ перед расплавом галогенидов щелочноземельных металлов, используемым в способе - прототипе. С одной стороны, за счет образования прочных фторидно-хлоридных комплексов кремния с крупными катионами калия, он позволяет снизить упругость паров над расплавом и не допустить потерь кремния через газовую фазу в процессе электролиза. С другой стороны хлоридные соли калия значительно легче очистить от нежелательных примесей, которые оказывают существенное влияние на структуру катодных осадков Si.

Более узкий по сравнению с прототипом температурный интервал в 150°C достаточен для электролитического выделения сплошных осадков элементарного Si. По сравнению с прототипом потери тепла с поверхности электролизера, работающего в подобном температурном режиме, относительно невелики, что снижает энергоемкость процесса. Узкий температурный интервал позволяет использовать в электролизерах относительно дешевые, но стойкие в данном температурном диапазоне конструкционные материалы, не загрязняющие конечный продукт продуктами коррозии, например, графит. Электролиз фторсиликата калия в атмосфере воздуха устраняет необходимость установки шлюзового устройства и устройств подачи и отвода газов, что значительно упрощает конструкцию электролизера и его эксплуатацию. То, что в заявленном изобретении электролизу подвергается соль K2SiF6, которую можно получать из отходов производства фосфорных удобрений с чистотой до 99 мас.% по основному веществу по простой технологической схеме (Аli Н. Abbar, J. Electrochem. Science and Technology, vol.2, №3, 2011, 168-173) [6] удешевляет процесс.

Новый технический результат, достигаемый заявленным изобретением, заключается в сужении температурного интервала электролитического выделения сплошных осадков Si, уменьшении потерь кремния в процессе электролиза, улучшения структуры сплошных осадков кремния за счет облегчения очистки конечного продукта от нежелательных примесей, облегчения условий эксплуатации электролизера путем замены атмосферы инертного газа над расплавом на атмосферу воздуха, возможность получения сплошных покрытий из электролитического кремния как на плоских, так и на изогнутых поверхностях.

Предложенный способ иллюстрируется следующими примерами.

Пример №1.

В графитовый тигель-анод в атмосфере воздуха загружали высушенную смесь солей следующего состава: КСl - 28,2; KF - 44,0; K2SiF6 - 27,8 мас.% и доводили до плавления при T=700°C. Проводили очистной электролиз на вспомогательном графитовом катоде, погруженном в центр тигля. Обязательный для получения сплошных осадков кремния процесс очистки вели в потенциостатическом режиме при напряжении между анодом и катодом 2.5 В. Время очистного электролиза - от 3 часов и больше. Затем удаляли вспомогательный электрод и на его место устанавливали рабочий электрод, в данном опыте графитовый стержень 0 10 мм. В дальнейшем проводили электролиз K2SiF6 с катодной плотностью тока 28÷42 мА/см2. Время процесса электролиза составило 17 часов. Толщина полученного сплошного покрытия из кремния- 0,5 мм. Выход по току катодного продукта ~84%

Пример №2.

Процедура опыта №2, как и всех последующих опытов, аналогична процедуре опыта №1. Состав электролита тот же самый: КСl - 44,8; KF - 28,5; K2SiF6 - 26,7 мас.%, рабочая температура процесса электролиза 700°С. В качестве рабочего электрода использовали графитовый стержень ⌀ 20 мм. Катодную плотность тока поддерживали на уровне 22÷28 мА/см2. Время процесса электролиза K2SiF6 - 19 часов. Толщина электролитического сплошного покрытия кремния - 0,4 мм. Выход по току катодного продукта ~ 92,8%.

Пример №3.

Опыт №3 вели в составе электролита аналогичном тому, что использовали в опыте №2 при температуре 700°С. В качестве материала катода-подложки использовали серебряную фольгу толщиной 50 мкм. Процесс электролиза K2SiF6 вели при катодной плотности тока - 30÷40 мА/см2 в течение 18 часов. Толщина сплошного покрытия из электролитического кремния составила 0.7 мм. Выход по току катодного продукта ~97%.

Пример №4.

Опыт примера №4 вели в составе электролита аналогичном тому, что использовали в опыте №2 при более низкой температуре процесса электролиза K2SiF6 - 680°C на катоде-подложке из графитового стержня ⌀10 мм в течение 24 часов с катодной плотностью тока 24-37 мА/см2. Толщина сплошного покрытия из электролитического кремния составила 0,5 мм. Выход по току катодного продукта составил ~77.3%.

Пример №5.

Опыт примера №5, также как опыт №4, вели при пониженной температуре 680°C в электролите того же состава, что и в опыте №2 в течение 19 часов. Катодом-подложкой служила плоская пластинка из стеклоуглерода. Катодную плотность тока поддерживали на уровне - 10÷22 мА/см2. Толщина сплошного покрытия из электролитического кремния составила 0,2 мм.

Пример №6.

Опыт примера №6 вели при температуре 700°C в составе электролита аналогичном тому, что использовали в опыте №2 при катодной плотности тока 11÷16 мА/см2. В качестве материала катода-подложки использовали графит плоской формы. За 24 часа получено сплошное покрытие из электролитического кремния толщиной 0,2 мм.

Пример №7.

Опыт примера №7 вели в составе электролита аналогичном тому, что использовали в опыте №1 при температуре 750°C. В качестве материала катода использовали графит плоской формы. Катодная плотность тока в ходе процесса электролиза K2SiF6 поддерживали на уровне 10÷12 мА/см2 в течение 19 часов. Толщина полученного сплошного покрытия электролитического кремния составила - 0,1 мм.

Пример 8.

Опыт примера №7 вели в составе электролита аналогичном тому, что использовали в опыте №1 при температуре 800°C. Сплошной осадок кремния получали на графитовом стержне ⌀10 мм в течение 4,5 часов с катодной плотностью тока 40 мА/см2. Толщина полученного сплошного покрытия электролитического кремния составляла - 0,3 мм. Выход по току катодного продукта ~83%.

Пример 9.

Опыт примера №9 вели при температуре 650°C, в электролите следующего состава: КСl - 52,1; KF - 33,2; K2SiF6 - 14,7 мас.%, при катодной плотности тока 20 мА/см2 в течение 25 часов. В качестве катода-подложки использовали стержень из углерода ⌀ 20 мм. Толщина полученного сплошного покрытия кремния составила - 0,4 мм. Выход по току катодного продукта ~80%.

Пример 10.

Опыт примера №10 вели при температуре 700°C, в электролите того же состава, что в опыте №9 при катодной плотности тока - 150 мА/см2 в течение 3,5 часов. В качестве катода использовали стержень из углерода ⌀10 мм. Толщина полученного сплошного покрытия кремния составила - 0,04 мм.

Все вышеперечисленные опыты по электролизу K2SiF6 вели в атмосфере воздуха. В ходе данных опытов сплошные электролитические осадки кремния были получены как на плоских электродах, так и на электродах обладающих различной кривизной поверхности. Выделившиеся на катоде пленки кремния периодически извлекали из ванны вместе со сменным электродом, и отделяли от электролита с использованием раствора соляной кислоты в дистиллированной воде. Затем катод вместе с покрытием разрезали, изучали поперечное сечение электролитического осадка кремния с помощью оптического и электронного микроскопа. В дальнейшем проводили химический и рентгенофазовый анализ электролитического осадка кремния.

Таким образом, заявленный способ позволяет получать сплошные осадки кремния на электродах простой и сложной конфигурации в атмосфере воздуха при электролизе K2SiF6 в расплаве солей. При этом процесс ведут в узком температурном интервале с небольшими потерями тепла с поверхности электролизера, что снижает его энергоемкость. Способ позволяет использовать электролизер упрощенной конструкции с применением дешевых конструкционных материалов. Возможность использовать в заявленном способе отходов производства фосфорных удобрений снижает себестоимость электролиза.

Способ электрохимического получения кремния в виде сплошных слоев, включающий электролиз гексафторсиликата калия (КSiF) в расплаве галогенидных солей, содержащем соединения кремния, отличающийся тем, что процесс электролиза KSiF ведут в расплаве КСl (15÷50) - KF (5÷50) - (10÷35) KSiF, мас.%, в интервале температур от 650 до 800°С, при варьировании катодной плотности тока от 10 мА/см до 150 мА/см в атмосфере воздуха.
Источник поступления информации: Роспатент

Showing 71-80 of 99 items.
01.11.2018
№218.016.9938

Способ получения керамики для извлечения гелия из газовых смесей

Изобретение относится к способам получения функциональной керамики, которая может использоваться для извлечения гелия из газовых смесей, включая природный газ, и разделения его изотопов. Способ включает прессование и обжиг тонкодисперсных порошков прекурсоров, в качестве которых используют...
Тип: Изобретение
Номер охранного документа: 0002671379
Дата охранного документа: 30.10.2018
24.01.2019
№219.016.b305

Потенциометрический датчик концентрации кислорода

Изобретение может быть использовано в электрохимии, металлургии, энергетике, автомобилестроении и других отраслях для определения содержания кислорода. Датчик содержит несущий элемент, выполненный в виде трубки из оксида алюминия. Несущий элемент с помощью стеклогерметика герметично соединен с...
Тип: Изобретение
Номер охранного документа: 0002677927
Дата охранного документа: 22.01.2019
14.03.2019
№219.016.df88

Способ получения газоплотного твердооксидного трубчатого электролита для несущей основы тотэ

Изобретение относится к получению газоплотного твердооксидного трубчатого электролита с ионной проводимостью, который может быть использован при изготовлении различных электрохимических устройств, например твердооксидных топливных элементов (ТОТЭ), электролизеров и т.п. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002681771
Дата охранного документа: 12.03.2019
16.03.2019
№219.016.e1d6

Твердооксидный протонпроводящий материал

Изобретение относится к высокоплотным твердооксидным протонпроводящим материалам на основе иттрата лантана, которые могут быть использованы в качестве электролитов для среднетемпературных электрохимических устройств, включая твердооксидные топливные элементы, сенсоры и электролизеры. Материал...
Тип: Изобретение
Номер охранного документа: 0002681947
Дата охранного документа: 14.03.2019
29.03.2019
№219.016.ed71

Твердоэлектролитный потенциометрический датчик для анализа влажности воздуха и малых концентраций водорода

Изобретение относится к аналитической технике и может быть использовано для измерения влажности воздуха и малых концентраций водорода в газовых смесях. Датчик содержит три диска из протонпроводящего твердого электролита, герметично соединенные между собой с образованием двух полостей между...
Тип: Изобретение
Номер охранного документа: 0002683134
Дата охранного документа: 26.03.2019
10.04.2019
№219.016.feea

Способ создания билатеральной костной модели для исследования интеграции остеотропных материалов в эксперименте

Изобретение относится к экспериментальной медицине, а именно к оперативной травматологии и имплантологии, и может быть использовано для изучения интеграции остеотропных материалов, их участия в репаративных процессах костной ткани. Производят разрез в области коленного сустава....
Тип: Изобретение
Номер охранного документа: 0002684356
Дата охранного документа: 08.04.2019
19.04.2019
№219.017.321d

Способ электролиза расплавленных солей с кислородсодержащими добавками с использованием инертного анода

Изобретение относится к способам получения металлов, в частности алюминия, или сплавов электролизом расплавленных солей с кислородсодержащими добавками с использованием металлического и оксидно-металлического керметного инертного анода. В способе в процессе электролиза измеряют потенциал анода...
Тип: Изобретение
Номер охранного документа: 0002457286
Дата охранного документа: 27.07.2012
27.04.2019
№219.017.3d05

Способ электролитического получения алюминия

Изобретение относится к получению алюминия электролизом криолит-глиноземного расплава. Способ включает загрузку на этапе пуска электролизера в качестве электролита смеси криолита со фторидом алюминия с содержанием фторида алюминия от 25 до 35 мас.%. Обеспечивается сокращение времени пуска...
Тип: Изобретение
Номер охранного документа: 0002686408
Дата охранного документа: 25.04.2019
09.05.2019
№219.017.507b

Электрохимический способ получения нанопорошков диборида титана

Изобретение относится к электрохимическому способу получения нанопорошков диборида титана, может быть использовано в получении неоксидной керамики для высокотемпературных агрегатов типа электролизера для производства алюминия. Нанопорошки диборида титана получают импульсной анодно-катодной...
Тип: Изобретение
Номер охранного документа: 0002465096
Дата охранного документа: 27.10.2012
24.05.2019
№219.017.5dcc

Способ подготовки образцов костной ткани человека для исследования методом растровой электронной микроскопии

Изобретение относится к способу подготовки образцов поствитальной или пострезекционной костной ткани человека для исследования методом растровой электронной микроскопии. Способ характеризуется тем, что образцы вырезают абразивным кругом из костной заготовки, охлажденной жидким азотом, на 5 мин...
Тип: Изобретение
Номер охранного документа: 0002688944
Дата охранного документа: 23.05.2019
Showing 71-80 of 100 items.
19.04.2019
№219.017.321d

Способ электролиза расплавленных солей с кислородсодержащими добавками с использованием инертного анода

Изобретение относится к способам получения металлов, в частности алюминия, или сплавов электролизом расплавленных солей с кислородсодержащими добавками с использованием металлического и оксидно-металлического керметного инертного анода. В способе в процессе электролиза измеряют потенциал анода...
Тип: Изобретение
Номер охранного документа: 0002457286
Дата охранного документа: 27.07.2012
27.04.2019
№219.017.3d05

Способ электролитического получения алюминия

Изобретение относится к получению алюминия электролизом криолит-глиноземного расплава. Способ включает загрузку на этапе пуска электролизера в качестве электролита смеси криолита со фторидом алюминия с содержанием фторида алюминия от 25 до 35 мас.%. Обеспечивается сокращение времени пуска...
Тип: Изобретение
Номер охранного документа: 0002686408
Дата охранного документа: 25.04.2019
09.06.2019
№219.017.7d54

Способ получения нано- и микроволокон кремния электролизом диоксида кремния из расплавов солей

Изобретение относится к производству электролитического кремния в виде нановолокон или микроволокон с использованием сырья - диоксида кремния. Сущность изобретения: способ получения нано- или микрооволокон кремния характеризуется тем, что процесс электролиза SiO ведут в расплаве LiF (0÷3) - KCl...
Тип: Изобретение
Номер охранного документа: 0002427526
Дата охранного документа: 27.08.2011
09.06.2019
№219.017.7e1f

Инертный анод для электролитического получения металлов

Изобретение относится к области цветной металлургии и электролитическому получению металлов и может быть использовано при получении алюминия электролизом криолит-глиноземного расплава с применением инертных анодов. Инертный анод содержит металлическую фазу и керамическую фазу, включающую оксид...
Тип: Изобретение
Номер охранного документа: 0002401324
Дата охранного документа: 10.10.2010
09.06.2019
№219.017.7e28

Способ получения алюминиевых сплавов электролизом

Изобретение относится к цветной металлургии, в частности для получения сплавов на основе алюминия электрохимическим способом. Способ включает введение в расплавленный алюминий катода легирующих элементов из малорастворимого анода путем растворения его в калиевом криолит-глиноземном расплаве,...
Тип: Изобретение
Номер охранного документа: 0002401327
Дата охранного документа: 10.10.2010
27.06.2019
№219.017.9894

Электрохимический способ получения микрокристаллов вольфрам-молибденового сплава

Изобретение относится к области высокотемпературной электрохимии, в частности к электролитическому получению микрокристаллического осадка сплава вольфрам-молибден, и может быть использовано для изготовления устройств, применяемых в условиях повышенных температур, а именно: оснащения водородных...
Тип: Изобретение
Номер охранного документа: 0002692543
Дата охранного документа: 25.06.2019
14.07.2019
№219.017.b451

Способ получения алюминия электролизом расплава

Изобретение относится к цветной металлургии и способу электролитического получения алюминия. Способ включает электролиз расплава KF-NaF-AlF с добавками АlО при температуре электролита 700-900°С и поддержание криолитового отношения (KF+NaF)/AlF от 1,1 до 1,9. Электролиз ведут при анодной...
Тип: Изобретение
Номер охранного документа: 0002415973
Дата охранного документа: 10.04.2011
19.07.2019
№219.017.b611

Способ контроля содержания глинозема при электролизе криолит-глиноземного расплава

Изобретение относится к получению алюминия электролизом криолит-глиноземного расплава, в частности к способу контроля содержания глинозема при электролизе криолит-глиноземного расплава. Способ включает определение эмпирической линейной зависимости концентрации глинозема в криолит-глиноземном...
Тип: Изобретение
Номер охранного документа: 0002694860
Дата охранного документа: 17.07.2019
03.08.2019
№219.017.bc0f

Установка для очистки галогенидных солей

Изобретение относится к области химической технологии и может быть использовано для получения особо чистых галогенидных солей методом зонной перекристаллизации, применяемых, в частности, при пирохимической переработке ядерного топлива, химическом и электрохимическом синтезе элементов и...
Тип: Изобретение
Номер охранного документа: 0002696474
Дата охранного документа: 01.08.2019
02.10.2019
№219.017.cfc0

Способ переработки оксидного ядерного топлива

Изобретение относится к ядерной энергетике и может быть использовано преимущественно в замкнутом ядерном топливном цикле (ЗЯТЦ). Способ включает восстановление компонентов оксидного ядерного топлива при электролизе расплава хлорида лития с добавкой оксида лития в количестве не менее 1 мас. % с...
Тип: Изобретение
Номер охранного документа: 0002700934
Дата охранного документа: 24.09.2019
+ добавить свой РИД