×
20.08.2013
216.012.6185

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ РАСХОДА ЖИДКОГО МЕТАЛЛА ЧЕРЕЗ ПРОТОЧНУЮ ЧАСТЬ ЦИРКУЛЯЦИОННОГО КОНТУРА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области измерительной техники. Способ измерения расхода жидкого металла через проточную часть циркуляционного контура включает измерение электрического сопротивления рабочего канала между токоподводящими шинами при нулевом расходе и рабочей температуре жидкого металла, прокачку жидкого металла электромагнитным насосом через рабочий канал, измерение силы тока питания электромагнитного насоса и падения напряжения на его рабочем канале между токоподводящими шинами и вычисление расхода по формуле, учитывающей расход жидкого металла, силу тока питания насоса, падение напряжения на рабочем канале насоса, электрическое сопротивление рабочего канала насоса при нулевом расходе и постоянную величину, определяемую путем градуировки при рабочей температуре насоса. Технический результат заключается в упрощении циркуляционного контура. 2 ил.
Основные результаты: Способ измерения расхода жидкого металла через проточную часть циркуляционного контура, включающий измерение электрического сопротивления рабочего канала между токоподводящими шинами при нулевом расходе и рабочей температуре жидкого металла, прокачку жидкого металла электромагнитным насосом через рабочий канал, измерение силы тока питания электромагнитного насоса и падения напряжения на его рабочем канале между токоподводящими шинами, и вычисление расхода по формуле V=C(U-IR), где V - расход жидкого металла, м/с; I - сила тока питания насоса, А; U - падение напряжения на рабочем канале насоса, В; R - электрическое сопротивление рабочего канала насоса при нулевом расходе, Ом; С - постоянная величина, которую определяют градуировкой при рабочей температуре насоса, м/(с·B).

Изобретение относится к области измерительной техники, в частности к измерению расхода жидких металлов в циркуляционных контурах различных установок.

Известен электромагнитный способ измерения расхода жидкого металла, включающий прокачку его через участок трубопровода, снабженный двумя электродами, присоединенными диаметрально противоположно к его внешней поверхности, и помещенный в магнитное поле [Шерклиф Дж. Теория электромагнитного измерения расхода. М., Мир, 1965]. При движении жидкого металла вдоль трубопровода, помещенного в магнитное поле, в жидкости возникает электродвижущая сила (эдс) индукции, пропорциональная скорости жидкости и определяемая законом Фарадея. Измеряя разность потенциалов между электродами, определяют скорость и вычисляют расход жидкости.

Известен способ прокачки жидких металлов с помощью кондукционных электромагнитных насосов, содержащих магнитную систему и рабочий канал с перекачиваемым жидким металлом, снабженный токоподводящими шинами для пропускания через него постоянного тока в направлении, перпендикулярном магнитному полю. В соответствии с законом Ампера на проводник с током, находящийся в магнитном поле, действует сила, которая и заставляет жидкий металл двигаться вдоль рабочего канала насоса. При движении жидкого металла в магнитном поле такого насоса также возникает эдс индукции, пропорциональная скорости жидкости. Однако индуцированная эдс недоступна для непосредственного измерения, а разность потенциалов между токоподводящими шинами зависит не только от скорости жидкого металла, но и от силы тока, питающего насос.

Ни одно из указанных технических решений в отдельности не позволяет обеспечить комплексное решение задачи прокачки и измерения расхода жидкого металла в циркуляционном контуре. Поэтому требуется два устройства (насос и расходомер), каждое из которых имеет значительные размеры и массу, и соответствующую стоимость.

Цель данного изобретения состоит в исключении указанного недостатка, а именно в исключении излишнего оборудования циркуляционного контура.

Для исключения указанного недостатка предлагается:

- измерять электрическое сопротивление рабочего канала электромагнитного насоса при нулевом расходе жидкого металла при рабочей температуре;

- прокачивать жидкий металл с помощью электромагнитного насоса;

- измерять силу тока питания электромагнитного насоса I при прокачке жидкого металла;

- измерять падение напряжения U на рабочем канале электромагнитного насоса при прокачке жидкого металла;

- определять расход жидкого металла V по соотношению (1), с учетом измеренных величин, перечисленных выше, и градуировочного коэффициента С.

Способ измерения расхода жидкого металла через проточную часть циркуляционного контура осуществляют следующим образом.

1. При закрытом напорном вентиле циркуляционного контура измеряют электрическое сопротивление рабочего канала R0 при нулевом расходе жидкого металла, при рабочей температуре.

2. Открывают напорный вентиль циркуляционного контура и осуществляют прокачку жидкого металла в циркуляционном контуре с помощью электромагнитного насоса.

3. Измеряют силу тока питания электромагнитного насоса I.

4. Измеряют падение напряжения U на рабочем канале электромагнитного насоса между токоподводящими шинами.

5. Вычисляют расход жидкого металла V по соотношению:

где V - расход жидкого металла, м3/с; С - градуировочный коэффициент, определяемый экспериментально, м3/(с·В); U - падение напряжения на рабочем канале электромагнитного насоса, В; I - сила тока питания электромагнитного насоса. А; R0 - электрическое сопротивление рабочего канала при нулевом расходе жидкого металла, при рабочей температуре.

На фиг.1 представлена эквивалентная электрическая схема кондукционного электромагнитного насоса. На указанном фиг.1 приняты следующие обозначения:

I - ток питания насоса;

Iж - ток в жидком металле, заполняющем рабочий канал электромагнитного насоса;

Ic - ток в стенке рабочего канала электромагнитного насоса;

Е - электродвижущая сила, индуцируемая в жидком металле, движущемся в рабочем канале электромагнитного насоса;

U - напряжение на стенке рабочего канала электромагнитного насоса;

Rж - электрическое сопротивление жидкого металла, между токоподводящими шинами электромагнитного насоса;

Rc - электрическое сопротивление стенки рабочего канала между токоподводящими шинами электромагнитного насоса, т.е. сопротивление пустого канала.

Следует заметить, что Rж и Rc являются постоянными величинами для конкретного насоса и конкретного теплоносителя.

На основании закона Кирхгофа для электрической цепи можно записать два уравнения:

Кроме того, из закона Ома следует

Совместное решение этих уравнений дает выражение для индуцированной эдс в виде

Сомножитель при токе питания I представляет собой электрическое сопротивление параллельно включенных сопротивлений стенки рабочего канала и жидкого металла в нем, т.е. сопротивление насоса между токоподводящими шинами R0.

Тогда уравнение (5) можно переписать в виде:

Сопротивление R0 легко измерить, когда индуцированная эдс равна нулю, т.е. при неподвижном жидком металле в рабочем канале.

где U0 и I0 - напряжение и ток, измеренные на пустом канале электромагнитного насоса.

Итак, для осуществления способа необходимо измерить электрическое сопротивление рабочего канала насоса при нулевом расходе теплоносителя, т.е. при закрытом вентиле на напорной линии. При этом канал насоса должен быть разогрет до рабочей температуры, при которой будет эксплуатироваться насос.

С другой стороны, эдс, индуцированная в жидкости при ее движении в магнитном поле, в соответствии с законом Фарадея, равна

где В - магнитная индукция, известная и постоянная величина для конкретного насоса, W - скорость жидкости, L - размер канала между электродами. В случае круглой трубы это - внутренний диаметр, а в случае прямоугольного канала - его высота. В любом случае - это постоянная величина для конкретного канала.

Объемный расход жидкости V равен

где S - поперечное сечение канала.

Из формул (8, 9, 10) следует формула для определения расхода жидкого металла

Обозначив постоянную для конкретного насоса величину (1+Rж/Rc)S/BL коэффициентом С, получим приведенную выше формулу (1)

где С - постоянная величина, равная

Поэтому для определения расхода по предлагаемому способу достаточно измерить, кроме сопротивления R0, ток питания насоса и падение напряжения на рабочем канале между токоподводящими шинами.

Однако вычисление коэффициента С по формуле (12) сопряжено со значительными погрешностями физических величин, входящих в нее. Достаточно сказать, что измерение магнитной индукции доступными приборами дает погрешность 1,5-2,5%. Поэтому, как и в известном электромагнитном способе измерения расхода, нужно произвести экспериментальную градуировку и определить коэффициент С.

Таким образом, формула (1) позволяет определить расход жидкого металла, создаваемого кондукционным насосом, без применения каких бы то ни было расходомеров.

Пример конкретного осуществления способа

Данный способ был реализован в опытном образце кондукционного электромагнитного насоса, имеющего следующие параметры:

Диаметр подсоединительных патрубков, мм 11
Ширина сплющенной части рабочего канала, мм 3
Высота сплющенной части рабочего канала, мм 16
Магнитная индукция, Тл 0,184
Масса насоса, кг 5
Ток питания, А 200
Перекачиваемая среда натрий
Температура натрия, °С 425
Электрическое сопротивление рабочего канала насоса при неподвижном натрии при температуре 425°С, Ом 76,5·10-6
Напор на закрытый вентиль, Па 10000
Производительность насоса (расход), м3 10-4
Напряжение на рабочем канале, В 14,5·10-3

Рабочий канал насоса выполнен из нержавеющей стали Х18Н10Т, магнитное поле создавалось постоянными магнитами, изготовленными из железо-никель-кобальтового сплава ЮН 13ДК24.

Испытания насоса и его градуировка в режиме расходомера производились на экспериментальном стенде, обеспечивающем возможность определения расхода натрия по времени заполнения мерного бака известного объема. Погрешность определения расхода, воспроизводимого на экспериментальном стенде, составляла ±0,8%. Градуировочная зависимость представлена на фиг.2 в виде (U-IR0)=f(V), где U - измеренное падение напряжения на рабочем канале, I - измеренный ток питания электромагнитного насоса,

R0 - измеренное электрическое сопротивление рабочего канала электромагнитного насоса,

V - расход натрия, вычисленный по формуле (1) описания изобретения.

Технический результат использования данного способа измерения расхода состоит в снижении капитальных затрат и стоимости эксплуатации циркуляционного контура.

Способ измерения расхода жидкого металла через проточную часть циркуляционного контура, включающий измерение электрического сопротивления рабочего канала между токоподводящими шинами при нулевом расходе и рабочей температуре жидкого металла, прокачку жидкого металла электромагнитным насосом через рабочий канал, измерение силы тока питания электромагнитного насоса и падения напряжения на его рабочем канале между токоподводящими шинами, и вычисление расхода по формуле V=C(U-IR), где V - расход жидкого металла, м/с; I - сила тока питания насоса, А; U - падение напряжения на рабочем канале насоса, В; R - электрическое сопротивление рабочего канала насоса при нулевом расходе, Ом; С - постоянная величина, которую определяют градуировкой при рабочей температуре насоса, м/(с·B).
СПОСОБ ИЗМЕРЕНИЯ РАСХОДА ЖИДКОГО МЕТАЛЛА ЧЕРЕЗ ПРОТОЧНУЮ ЧАСТЬ ЦИРКУЛЯЦИОННОГО КОНТУРА
СПОСОБ ИЗМЕРЕНИЯ РАСХОДА ЖИДКОГО МЕТАЛЛА ЧЕРЕЗ ПРОТОЧНУЮ ЧАСТЬ ЦИРКУЛЯЦИОННОГО КОНТУРА
Источник поступления информации: Роспатент

Showing 391-400 of 555 items.
29.12.2017
№217.015.fc4c

Композиционное покрытие на основе никеля с ультрадисперсными алмазами

Изобретение относится к никелированию и представляет собой композиционное покрытие на основе никеля, содержащее ультрадисперсные алмазы, которое может быть сформировано на различных металлических деталях, работающих в условиях повышенного износа и в присутствии агрессивных сред. Композиционное...
Тип: Изобретение
Номер охранного документа: 0002638480
Дата охранного документа: 13.12.2017
29.12.2017
№217.015.fe82

Композиция для пылеподавления и локализации продуктов горения после тушения пожара с радиационным фактором

Изобретение относится к средствам защиты окружающей среды от последствий пожаров, осложненных радиационным фактором. Композиция для пылеподавления и локализации радиоактивных продуктов горения после тушения пожара с радиационным фактором в качестве поверхностно-активного вещества содержит смесь...
Тип: Изобретение
Номер охранного документа: 0002638162
Дата охранного документа: 12.12.2017
29.12.2017
№217.015.fed8

Устройство для исследования термогидравлических характеристик жидкометаллического бланкета тяр

Изобретение относится к устройству для исследования термогидравлических характеристик жидкометаллического бланкета термоядерного реактора. Устройство для исследования термогидравлических характеристик свинец-литиевого бланкета содержит вертикальные подъемный и опускной каналы прямоугольного...
Тип: Изобретение
Номер охранного документа: 0002634307
Дата охранного документа: 25.10.2017
19.01.2018
№218.016.0368

Интерактивная автоматизированная система обучения

Изобретение относится к автоматизированным средствам обучения. Интерактивная автоматизированная система обучения содержит по крайней мере один программно-аппаратный комплекс, поддерживающий в режиме диалога автоматизированные циклы обучения и контроля знаний обучающихся, который выполнен в виде...
Тип: Изобретение
Номер охранного документа: 0002630441
Дата охранного документа: 07.09.2017
19.01.2018
№218.016.0bea

Способ изготовления рейстрековой обмотки из токопроводящей ленты

Изобретение относится к электроэнергетике, а именно к электрическим машинам перспективных аэрокосмических электроэнергетических установок с обмотками, работающими при криогенных (сверхнизких) температурах, и предназначено для использования при изготовлении обмоток электрических машин и магнитов...
Тип: Изобретение
Номер охранного документа: 0002632474
Дата охранного документа: 05.10.2017
19.01.2018
№218.016.0e65

Бланкет термоядерного реактора

Изобретение конструкции бланкета термоядерного реактора. Заявленный бланкет состоит из по крайней мере из одного вертикального металлического модуля, нижняя часть которого заполнена кипящим раствором сырьевого материала и соединена патрубком с устройством для извлечения из раствора целевых...
Тип: Изобретение
Номер охранного документа: 0002633373
Дата охранного документа: 12.10.2017
20.01.2018
№218.016.0f90

Устройство для измерения характеристик спектральных линий плазмы в реакторе-токамаке

Изобретение относится к устройству для измерения спектральных характеристик плазмы реактора-токамака. Устройство содержит измерительный объем с расположенными в нем катодами и анодом тлеющего разряда, размещенный в стенке вакуумной камеры реактора-токамака, соединенный диагностическим каналом с...
Тип: Изобретение
Номер охранного документа: 0002633517
Дата охранного документа: 13.10.2017
20.01.2018
№218.016.0ffd

Бланкет термоядерного реактора с естественной циркуляцией

Изобретение относится к конструкции бланкета термоядерного реактора. В заявленном устройстве предусмотрено наличие по крайней мере одного вертикального металлического модуля с раствором сырьевого материала, соединенного патрубками, расположенными в верхней и нижней части, с контуром...
Тип: Изобретение
Номер охранного документа: 0002633419
Дата охранного документа: 16.10.2017
20.01.2018
№218.016.1227

Многоканальная самодиагностируемая вычислительная система с резервированием замещением и способ повышения ее отказоустойчивости (варианты)

Изобретение относится к вычислительной технике и может быть использовано в ракетно-космической и авиационной технике. Технический результатом заключается в повышении надежности и отказоустойчивости многоканальной вычислительной системы. Технический результат достигается за счет диагностирования...
Тип: Изобретение
Номер охранного документа: 0002634189
Дата охранного документа: 24.10.2017
20.01.2018
№218.016.1365

Аэродромная тележка-погрузчик

Изобретение относится к обслуживанию авиационной техники. Аэродромная тележка - погрузчик содержит ходовую часть (1), механизм (26) поперечного перемещения, механизм (10) подъема. Механизм поперечного перемещения имеет неподвижную раму (25) с закрепленными на ней катками (43), внутреннюю...
Тип: Изобретение
Номер охранного документа: 0002634518
Дата охранного документа: 31.10.2017
Showing 391-400 of 414 items.
29.12.2017
№217.015.fc4c

Композиционное покрытие на основе никеля с ультрадисперсными алмазами

Изобретение относится к никелированию и представляет собой композиционное покрытие на основе никеля, содержащее ультрадисперсные алмазы, которое может быть сформировано на различных металлических деталях, работающих в условиях повышенного износа и в присутствии агрессивных сред. Композиционное...
Тип: Изобретение
Номер охранного документа: 0002638480
Дата охранного документа: 13.12.2017
29.12.2017
№217.015.fe82

Композиция для пылеподавления и локализации продуктов горения после тушения пожара с радиационным фактором

Изобретение относится к средствам защиты окружающей среды от последствий пожаров, осложненных радиационным фактором. Композиция для пылеподавления и локализации радиоактивных продуктов горения после тушения пожара с радиационным фактором в качестве поверхностно-активного вещества содержит смесь...
Тип: Изобретение
Номер охранного документа: 0002638162
Дата охранного документа: 12.12.2017
29.12.2017
№217.015.fed8

Устройство для исследования термогидравлических характеристик жидкометаллического бланкета тяр

Изобретение относится к устройству для исследования термогидравлических характеристик жидкометаллического бланкета термоядерного реактора. Устройство для исследования термогидравлических характеристик свинец-литиевого бланкета содержит вертикальные подъемный и опускной каналы прямоугольного...
Тип: Изобретение
Номер охранного документа: 0002634307
Дата охранного документа: 25.10.2017
19.01.2018
№218.016.0368

Интерактивная автоматизированная система обучения

Изобретение относится к автоматизированным средствам обучения. Интерактивная автоматизированная система обучения содержит по крайней мере один программно-аппаратный комплекс, поддерживающий в режиме диалога автоматизированные циклы обучения и контроля знаний обучающихся, который выполнен в виде...
Тип: Изобретение
Номер охранного документа: 0002630441
Дата охранного документа: 07.09.2017
19.01.2018
№218.016.0bea

Способ изготовления рейстрековой обмотки из токопроводящей ленты

Изобретение относится к электроэнергетике, а именно к электрическим машинам перспективных аэрокосмических электроэнергетических установок с обмотками, работающими при криогенных (сверхнизких) температурах, и предназначено для использования при изготовлении обмоток электрических машин и магнитов...
Тип: Изобретение
Номер охранного документа: 0002632474
Дата охранного документа: 05.10.2017
19.01.2018
№218.016.0e65

Бланкет термоядерного реактора

Изобретение конструкции бланкета термоядерного реактора. Заявленный бланкет состоит из по крайней мере из одного вертикального металлического модуля, нижняя часть которого заполнена кипящим раствором сырьевого материала и соединена патрубком с устройством для извлечения из раствора целевых...
Тип: Изобретение
Номер охранного документа: 0002633373
Дата охранного документа: 12.10.2017
20.01.2018
№218.016.0f90

Устройство для измерения характеристик спектральных линий плазмы в реакторе-токамаке

Изобретение относится к устройству для измерения спектральных характеристик плазмы реактора-токамака. Устройство содержит измерительный объем с расположенными в нем катодами и анодом тлеющего разряда, размещенный в стенке вакуумной камеры реактора-токамака, соединенный диагностическим каналом с...
Тип: Изобретение
Номер охранного документа: 0002633517
Дата охранного документа: 13.10.2017
20.01.2018
№218.016.0ffd

Бланкет термоядерного реактора с естественной циркуляцией

Изобретение относится к конструкции бланкета термоядерного реактора. В заявленном устройстве предусмотрено наличие по крайней мере одного вертикального металлического модуля с раствором сырьевого материала, соединенного патрубками, расположенными в верхней и нижней части, с контуром...
Тип: Изобретение
Номер охранного документа: 0002633419
Дата охранного документа: 16.10.2017
20.01.2018
№218.016.1227

Многоканальная самодиагностируемая вычислительная система с резервированием замещением и способ повышения ее отказоустойчивости (варианты)

Изобретение относится к вычислительной технике и может быть использовано в ракетно-космической и авиационной технике. Технический результатом заключается в повышении надежности и отказоустойчивости многоканальной вычислительной системы. Технический результат достигается за счет диагностирования...
Тип: Изобретение
Номер охранного документа: 0002634189
Дата охранного документа: 24.10.2017
20.01.2018
№218.016.1365

Аэродромная тележка-погрузчик

Изобретение относится к обслуживанию авиационной техники. Аэродромная тележка - погрузчик содержит ходовую часть (1), механизм (26) поперечного перемещения, механизм (10) подъема. Механизм поперечного перемещения имеет неподвижную раму (25) с закрепленными на ней катками (43), внутреннюю...
Тип: Изобретение
Номер охранного документа: 0002634518
Дата охранного документа: 31.10.2017
+ добавить свой РИД