×
20.08.2013
216.012.6120

Результат интеллектуальной деятельности: ВЫХОДНОЕ УСТРОЙСТВО ДВУХКОНТУРНОГО ГАЗОТУРБИННОГО ДВИГАТЕЛЯ

Вид РИД

Изобретение

Аннотация: Выходное устройство содержит наружный корпус двигателя, внутренний корпус турбины, хвостовой обтекатель, элементы их крепления, расположенные за рабочим колесом последней ступени турбины, и смеситель. Элементы крепления выполнены в виде полых стоек. Смеситель выполнен в виде кольцевого элемента с расположенными внутри по его периметру сквозными лепестковыми каналами, чередующимися с лепестковыми каналами, закрепленными на выходных участках полых стоек. Сквозные каналы сообщены с внутренним каналом горячего газа, а каналы, закрепленные на выходных участках полых стоек, сообщены с наружным каналом холодного воздуха. Кольцевой элемент прикреплен к обтекателю турбины, корпусу двигателя и корпусу турбины. Входные участки профилированных стоек внутреннего контура повернуты навстречу направлению вращения рабочего колеса последней ступени турбины на угол 20-40° к ее продольной оси. Стенки каналов и средняя линия выходных участков стоек направлены вдоль продольной оси турбины. Длина хорды стойки выбрана таким образом, чтобы отношение длины хорды стойки к расстоянию между стойками составляло 1-3. Изобретение позволяет повысить коэффициент полезного действия турбины, обеспечить практически осевой поток на ее выходе, снизить инфракрасное излучение и улучшить охлаждение элементов конструкции. 1 з.п. ф-лы, 6 ил.

Изобретение относится к области авиационного двигателестроения, в частности к устройствам узловых соединений корпусов газотурбинных двигателей летательных аппаратов, конкретнее к конструкции выходных устройств в которых часть рабочего тела минует турбину.

Известно выходное устройство двухконтурного газотурбинного двигателя, содержащее наружный корпус двигателя, корпус турбины и затурбинный обтекатель, образующие наружный канал холодного воздуха и внутренний канал горячего газа и расположенные за рабочим колесом последней ступени турбины стойки крепления корпуса турбины и затурбинного обтекателя и смеситель /RU №2117796, МПК F02C 7/20, опубл. 20.08.1998 г./

Конструкция соединительных элементов корпусов известного решения способствует существенному загромождению периферийной зоны смесителя, что приводит к возникновению срывных зон, в которые поступает горячий газ из внутреннего канала. С холодным воздухом наружного канала в тракт охлаждения поступает горячий газ, что снижает эффективность охлаждения элементов конструкции и камеры сгорания, выходящий поток неравномерен и обладает значительными закручивающими потоками и инфракрасным излучением.

Задачей изобретения, является повышение надежности работы устройства, за счет облегчения транзита технологических сред во внутренней полости турбины, оптимизация загроможденности тракта с сохранением параметров потока воздуха на выходе из смесителя.

Ожидаемый технический результат повышение КПД последнего контура турбины при практически осевом потоке газа на выходе из турбины, повышение равномерности закрутки потока, улучшение охлаждения элементов конструкции, минимизация сопротивления и уменьшение инфракрасного излучения.

Ожидаемый технический результат достигается тем, что в известном выходном устройстве двухконтурного газотурбинного двигателя, содержащем наружный корпус двигателя, внутренний корпус турбины и хвостовой обтекатель, образующие наружный канал холодного воздуха и внутренний канал горячего газа, элементы крепления внутреннего и наружного корпусов и хвостового обтекателя за рабочим колесом последней ступени турбины и смеситель, по предложению, элементы крепления наружного корпуса двигателя, внутреннего корпуса турбины и обтекателя выполнены в виде полых аэродинамически профилированных стоек, а смеситель выполнен в виде кольцевого элемента с расположенными внутри по его периметру сквозными лепестковыми каналами, чередующимися с лепестковыми каналами, закрепленными на выходных участках полых стоек, сквозные каналы сообщены с внутренним каналом горячего газа, а каналы, закрепленные на выходных участках полых стоек сообщены с наружным каналом холодного воздуха, кольцевой элемент прикреплен к обтекателю турбины, корпусу двигателя и корпусу турбины, входные участки профилированных стоек внутреннего контура повернуты навстречу направлению вращения рабочего колеса последней ступени турбины на угол 20-40° к ее продольной оси, а стенки каналов и средняя линия выходных участков стоек направлены вдоль продольной оси турбины, при этом длина хорды стойки выбрана таким образом, чтобы отношение b/t=1-3, где b - длина хорды стойки; t - расстояние между стойками.

Смеситель может быть снабжен дополнительными сквозными лепестковыми каналами, размещенными между полыми стойками и сообщен с наружным каналом холодного воздуха. В предложенном решении для уменьшения захламленности канала средства крепления наружного корпуса двигателя, корпуса турбины и обтекателя выполнены в виде полых аэродинамически профилированных стоек. Для обеспечения благоприятного обтекания потоком самих стоек, а также обтекания элементов конструкции двигателя, расположенных за затурбинным устройством по основному потоку, и течения с минимальными потерями в проточной части двигателя после затурбинного устройства, необходимо, чтобы поток газа на выходе из турбины был направлен практически вдоль продольной оси двигателя с малой окружной составляющей вектора скорости. Для этого приходится, вынуждено увеличивать угол выхода и снижать скорость потока в относительном движении на выходе из рабочего колеса последней ступени турбины.

Согласно формуле Эйлера, КПД турбины зависит от угла выхода потока. Оптимальное значение угла выхода потока составляет 20…40°. Использование этой зависимости для последней ступени турбины приводит к завышенным потерям полного давления в последующей за турбиной проточной части двигателя (форсажная камера, реактивное сопло) из-за сильной закрутки потока. Минимальные потери полного давления возможны только при осевом или близком к осевому направлению потока газов.

Изменение угла закрутки потока после турбины осуществляется использованием профилированных стоек затурбинного устройства. Однако, определяющим геометрию стоек и их число являются не газодинамические параметры основного потока (их влияние на параметры не значительно), а параметры прочности и работоспособности стойки турбины. Через полые аэродинамически профилированные стойки в конструкции затурбинных устройств, проходят технологические трубопроводы, передающие турбине технологические среды. Для технического обслуживания турбины и размещения необходимого числа проводок в турбину и из нее достаточно 10-15 профилированных полых стоек, что является недостаточным для поворота потока. Поворот потока на необходимый угол с минимальными потерями полного давления можно получить путем удлинения профиля полых стоек. Чтобы не увеличивать осевой размер двигателя из-за увеличения осевого размера стоек затурбинного устройства в изобретении предлагается конструктивно объединить стойки и смеситель, выполнив смеситель в виде кольцевого элемента с расположенными внутри по его периметру сквозными лепестковыми каналами, чередующимися с лепестковыми каналами, закрепленными на выходных участках полых стоек. Сквозные каналы сообщены с внутренним каналом горячего газа, а каналы, закрепленные на выходных участках полых стоек, сообщены с наружным каналом холодного воздуха. Такое размещение каналов в смесителе обеспечивает транзит воздуха из наружного контура во внутренний, с последующим смешением газов в проточной части двигателя (в камере смешения форсажной камеры двигателя). Длина хорды профиля выбирается таким образом, чтобы отношение b/t=1…3, где b - длина хорды профиля, t - расстояние между профилями в решетке. Этим достигается поворот потока газов внутреннего контура до углов, близких к нулю относительно оси выходного устройства. При суммарной нехватке площади выходных каналов наружного контура, возможно использование между стойками карманов для дополнительного транзита наружного канала холодного воздуха, что позволит соблюсти закон равенства статических давлений потоков из внутреннего канала горячего газа и наружного канала холодного воздуха в месте смешения (необходимо для минимизации потерь на смешение потоков). Максимальная глубина этих каналов меньше, чем высота канала внутреннего контура. Выходные сечения каналов, проходящие в теле стойки располагаются таким образом, что сечение одного канала совпадает с входной кромкой соседней стойки. Данное расположение позволяет закрыть видимость лопаток турбины. Таким образом, инфракрасное излучение, исходящее от лопаток турбины, экранируется охлажденными воздухом из наружного контура стойками затурбинного устройства.

Изобретение поясняется графически.

Фиг.1 - продольный разрез места соединения корпусов со смесителем;

фиг.2 - поперечный разрез соединения корпусов со смесителем;

фиг.3 - вид сзади на выходное устройство;

фиг.4 - продольный разрез места соединения корпусов со смесителем с дополнительными лепестковыми каналами;

фиг.5 - поперечный разрез соединения корпусов со смесителем с дополнительными лепестковыми каналами;

фиг.6 - вид сзади на выходное устройство с дополнительными лепестковыми каналами.

Выходное устройство двухконтурного газотурбинного двигателя содержит наружный корпус двигателя 1, корпус турбины 2 и затурбинный обтекатель 3, образующие участок газовоздушного тракта двигателя: канал наружного контура 4, по которому течет относительно холодный воздух, и канал внутреннего контура 5, по которому течет горячий газ. В канале внутреннего контура 5 расположены рабочие лопатки 6 рабочего колеса последней ступени турбины, закрепленные на диске 7. Хвостовой обтекатель 3 фиксируется в проточной части двигателя с помощью силовых элементов аэродинамически спрофилированный полых стоек 8 затурбинного устройства. Смеситель 2 потоков горячего газа и холодного воздуха выполнен в виде кольцевого элемента с расположенными внутри по его периметру сквозными лепестковыми каналами 9, по которым воздух из наружного контура 4 попадает в камеру смешения 10. Профилированные стойки 8 и внешние стенки лепестковых каналов 9 объединены между собой и образуют межстоечные каналы 11, по которым горячий газ из внутреннего контура 5 попадает в камеру смешения 10. Чередование лепестковых каналов 9 с межстоечными каналами 11 обеспечивает равномерное и быстрое перемешивание потоков холодного воздуха и горячего газа. Смеситель 2 прикреплен к затурбинному обтекателю 3, к внутреннему корпусу 2 и к наружному корпусу 1. При необходимости, смеситель 2 может иметь дополнительные сквозные лепестковые каналы 12 (вариант 2), расположенные между лепестковыми каналами 9. Глубина дополнительных каналов 12 меньше, чем высота проточной части внутреннего контура 5. Входной участок средней линии 13 профилированной стойки 8 внутреннего контура 5 повернуты навстречу направлению вращения рабочего колеса 7 последней ступени турбины на угол 20-40° к ее продольной оси 14, а стенки лепестковых каналов 9 и 12, и выходной участок средней линии 13 стойки направлены вдоль продольной оси 14 турбины.

При работе последнего колеса 7 турбины поток с рабочих лопаток 6 выходит с относительной средней скоростью w2 под углом β2 к фронту решетки из стоек 8. С учетом скорости вращения колеса 7 на выходе u2 абсолютная скорость потока будет равна c2 с углом α2 (фиг.2). Окружная составляющая скорости будет равна cu2=c2·cos α2. Если эта компонента будет отрицательной по отношению к направлению вращения, то при прочих равных условиях она будет давать приращение мощности N ступени, вычисляемой по формуле Эйлера:

N=m1u1cu1-m2u2cu2,

где m1 и m2 - расходы массы газа на входе и выходе из колеса; u1 и u2 - окружная скорость вращения колеса на входе и выходе потока из колеса; cu1 и cu2 - окружные составляющие абсолютных скоростей на входе и выходе потока из колеса.

Для организации безударного натекания потока на основные стойки 8 необходимо обеспечить θ1=90°-α2 или 20-40° от продольной оси 14 турбины. В межстоечном канале 11 газ из внутреннего контура 5 изменяет свое направление до осевого и попадает в камеру смешения 10, где перемешивается с воздухом из наружного контура 4. Воздух из наружного контура 4 попадает в камеру смешения 10 по лепестковым каналам 9 и 12. Площадь поперечного сечения на выходе из межстоечного канала 11, площадь поперечного сечения на выходе из лепестковых каналов 9 и 12, а также наличие и число дополнительных лепестковых каналов 12 определяется из условия минимальных потерь полного давления при смешении в камере смешения 10. Минимальные потери полного давления определяются из условия pcp.горср.хол., где рср.гор - статическое давления потока горячих газов внутреннего контура 5 на выходе из межстоечного канала 11, рср.хол. - статическое давления потока холодного воздуха из наружного контура 4 на выходе из лепестковых каналов.

Использование изобретения позволяет повысить КПД последнего контура турбины до 3% при практически осевом потоке газа на выходе из турбины, повысить равномерность закрутки потока и улучшить охлаждение элементов конструкции, оптимизировать сопротивление проточного тракта двигателя, а конструктивное выполнение и расположение стоек и каналов смесителя позволяет закрыть видимость лопаток турбины и экранировать инфракрасное излучение, исходящее от лопаток турбины, охлажденным воздухом из наружного контура и стойками затурбинного устройства.


ВЫХОДНОЕ УСТРОЙСТВО ДВУХКОНТУРНОГО ГАЗОТУРБИННОГО ДВИГАТЕЛЯ
ВЫХОДНОЕ УСТРОЙСТВО ДВУХКОНТУРНОГО ГАЗОТУРБИННОГО ДВИГАТЕЛЯ
ВЫХОДНОЕ УСТРОЙСТВО ДВУХКОНТУРНОГО ГАЗОТУРБИННОГО ДВИГАТЕЛЯ
ВЫХОДНОЕ УСТРОЙСТВО ДВУХКОНТУРНОГО ГАЗОТУРБИННОГО ДВИГАТЕЛЯ
ВЫХОДНОЕ УСТРОЙСТВО ДВУХКОНТУРНОГО ГАЗОТУРБИННОГО ДВИГАТЕЛЯ
ВЫХОДНОЕ УСТРОЙСТВО ДВУХКОНТУРНОГО ГАЗОТУРБИННОГО ДВИГАТЕЛЯ
Источник поступления информации: Роспатент

Showing 251-260 of 299 items.
29.03.2019
№219.016.f5f6

Газотурбинный двигатель

Газотурбинный двигатель выполнен двухконтурным и содержит компрессор высокого давления, примыкающую к нему думисную полость, камеру сгорания и оснащенные дисками с охлаждаемым сопловым аппаратом, включающим охлаждаемые сопловые лопатки, турбины высокого и низкого давления с проточной частью,...
Тип: Изобретение
Номер охранного документа: 0002450144
Дата охранного документа: 10.05.2012
29.03.2019
№219.016.f601

Турбореактивный двигатель и способ испытания турбореактивного двигателя

Изобретение относится к турбореактивным двигателям и к системам управления топливоподачей совместно с управлением другими параметрами турбореактивного двигателя, а именно критического сечения реактивного сопла и давления на турбинах. Турбореактивный двигатель, выполненный двухконтурным,...
Тип: Изобретение
Номер охранного документа: 0002451278
Дата охранного документа: 20.05.2012
10.04.2019
№219.016.ff53

Способ исследования динамических свойств вращающегося ротора

Изобретение относится к области турбомашиностроения, а именно к способам снижения уровня вибраций турбомашин, и может быть использовано в авиационных газотурбинных двигателях, роторы которых оборудованы упругими опорами. Способ исследования динамических свойств вращающегося ротора осуществляют...
Тип: Изобретение
Номер охранного документа: 0002273836
Дата охранного документа: 10.04.2006
10.04.2019
№219.017.02f1

Устройство для поворота реактивного сопла турбореактивного двигателя

Устройство для поворота реактивного сопла турбореактивного двигателя содержит неподвижный корпус с двумя дополнительными опорами Г-образной формы со стороны его наружной поверхности и подвижный корпус. Подвижный корпус шарнирно соединен с неподвижным корпусом в двух диаметрально противоположных...
Тип: Изобретение
Номер охранного документа: 0002310767
Дата охранного документа: 20.11.2007
19.04.2019
№219.017.2f5d

Ротор турбомашины

Ротор турбомашины относится к авиадвигателестроению, в частности к узлам крепления дисков на валу двигателя. Ротор турбомашины содержит диск с цапфой и вал, фланцы которых соединены стяжными болтами и сцентрированы друг относительно друга по цилиндрической посадочной поверхности на фланцах....
Тип: Изобретение
Номер охранного документа: 0002375587
Дата охранного документа: 10.12.2009
19.04.2019
№219.017.2f7e

Устройство для крепления газотурбинного двигателя к летательному аппарату

Изобретение относится к области авиационной техники и может быть использовано в узлах крепления двигателя к самолету. Устройство для крепления газотурбинного двигателя к летательному аппарату содержит передний и задний пояса подвесок, одна из которых выполнена в виде траверсы с соединительными...
Тип: Изобретение
Номер охранного документа: 0002377162
Дата охранного документа: 27.12.2009
19.04.2019
№219.017.31e4

Авиационный газотурбинный двигатель

Изобретение относится к области авиадвигателестроения, а именно к авиационным газотурбинным двигателям. Авиационный газотурбинный двигатель содержит корпус, турбокомпрессорную группу, камеру сгорания, реактивное сопло, систему автоматического управления и снабженные насосными группами топливную...
Тип: Изобретение
Номер охранного документа: 0002458235
Дата охранного документа: 10.08.2012
19.04.2019
№219.017.31e5

Способ работы газотурбинного двигателя

Изобретение относится к области авиадвигателестроения, а именно к способам работы газотурбинных двигателей, предназначенных для эксплуатации на сверхзвуковых самолетах. Двигатель выполнен двухконтурным, содержащим турбокомпрессорную группу, включающую установленный в подшипниках ротор, в...
Тип: Изобретение
Номер охранного документа: 0002458234
Дата охранного документа: 10.08.2012
19.04.2019
№219.017.31f1

Авиационный газотурбинный двигатель

Изобретение относится к области авиадвигателестроения, а именно к авиационным газотурбинным двигателям. Авиационный газотурбинный двигатель содержит корпус, турбокомпрессорную группу, камеру сгорания, реактивное сопло, систему автоматического управления и снабженные насосными группами топливную...
Тип: Изобретение
Номер охранного документа: 0002458237
Дата охранного документа: 10.08.2012
19.04.2019
№219.017.31f3

Газотурбинный двигатель

Изобретение относится к области авиадвигателестроения, а именно к газотурбинным двигателям, предназначенным для эксплуатации на сверхзвуковых самолетах. Газотурбинный двигатель содержит корпус, турбокомпрессорную группу, включающую установленный в опорных и опорно-упорных подшипниках ротор не...
Тип: Изобретение
Номер охранного документа: 0002458233
Дата охранного документа: 10.08.2012
Showing 251-260 of 322 items.
16.02.2019
№219.016.bb26

Охлаждаемая турбина двухконтурного газотурбинного двигателя

Охлаждаемая турбина двухконтурного газотурбинного двигателя содержит коллектор с узлом для соединения с источником высокотемпературного воздуха, коллектор с узлом для соединения с источником низкотемпературного воздуха, междисковую полость, рабочие колеса турбин высокого и низкого давления с...
Тип: Изобретение
Номер охранного документа: 0002680023
Дата охранного документа: 14.02.2019
01.03.2019
№219.016.c915

Упругая торсионная муфта

Изобретение относится к области машиностроения и может быть использовано для передачи крутящего момента между вращающимися деталями, в частности, в судостроении. Упругая торсионная муфта содержит две полумуфты, соединенные между собой торсионом. Ведомая полумуфта изготовлена из композитного...
Тип: Изобретение
Номер охранного документа: 0002268414
Дата охранного документа: 20.01.2006
01.03.2019
№219.016.cc63

Топливный коллектор камеры сгорания газотурбинного двигателя

Изобретение относится к области авиадвигателестроения, а именно к конструкции топливного коллектора камеры сгорания газотурбинного двигателя (ГТД). Топливный коллектор камеры сгорания газотурбинного двигателя содержит кольцевую трубу для подачи топлива к форсункам, установленную внутри корпуса...
Тип: Изобретение
Номер охранного документа: 0002375597
Дата охранного документа: 10.12.2009
01.03.2019
№219.016.ceca

Устройство для наземных испытаний силовой установки в составе летательного аппарата

Устройство для наземных испытаний силовой установки в составе летательного аппарата относится к области специальных испытаний авиационных газотурбинных двигателей, в частности, к устройствам для проведения наземных испытаний двигателя в составе летательного аппарата для измерения силы...
Тип: Изобретение
Номер охранного документа: 0002456569
Дата охранного документа: 20.07.2012
01.03.2019
№219.016.d084

Плоское сопло турбореактивного двигателя

Плоское сопло турбореактивного двигателя содержит корпус, шарнирно прикрепленные к нему дозвуковые створки, сверхзвуковые створки, внешние створки, кронштейны и гидроцилиндры, соединенные с рычагами, жестко прикрепленными к дозвуковым створкам, установленные снаружи боковых стенок корпуса...
Тип: Изобретение
Номер охранного документа: 0002462609
Дата охранного документа: 27.09.2012
17.03.2019
№219.016.e2a8

Способ работы газотурбинной установки

Изобретение относится к области эксплуатации газотурбинных двигателей, в частности к двигателям, применяемым в качестве привода газоперекачивающих агрегатов и энергоустановок. Способ работы газотурбинной установки, включающий подачу топлива в дежурные и основные горелочные устройства на...
Тип: Изобретение
Номер охранного документа: 0002682218
Дата охранного документа: 15.03.2019
17.03.2019
№219.016.e2a9

Способ настройки осевой нагрузки на упорный подшипник опоры ротора газотурбинного двигателя

Изобретение относится к способам определения осевой нагрузки, действующей на упорный подшипник, в частности к способам, позволяющим настроить эту нагрузку на опорах работающих газотурбинных двигателей. Способ настройки осевой нагрузки на упорный подшипник опоры ротора газотурбинного двигателя...
Тип: Изобретение
Номер охранного документа: 0002682215
Дата охранного документа: 15.03.2019
29.03.2019
№219.016.ed9b

Сопловый аппарат турбины высокого давления (твд) газотурбинного двигателя (варианты), сопловый венец соплового аппарата твд и лопатка соплового аппарата твд

Группа изобретений относится к авиадвигателестроению, а именно к конструкциям сопловых аппаратов ТВД и трактам воздушного охлаждения сопловых лопаток авиационных газотурбинных двигателей ГПА. Сопловый аппарат включает сопловый венец. Сопловый венец выполнен из 14 сопловых блоков. Каждый блок...
Тип: Изобретение
Номер охранного документа: 0002683053
Дата охранного документа: 26.03.2019
29.03.2019
№219.016.f2e0

Способ наддува опор двухроторного газотурбинного двигателя

Изобретение относится к области газотурбинного двигателестроения, а именно к способам наддува опор газотурбинных двигателей. На режиме запуска двигателя с момента начала запуска до частоты вращения роторов двигателя, близкой к частоте их вращения на режиме «малый газ», и режиме останова...
Тип: Изобретение
Номер охранного документа: 0002374470
Дата охранного документа: 27.11.2009
29.03.2019
№219.016.f5ec

Турбореактивный двигатель

Турбореактивный двигатель выполнен двухконтурным и содержит корпус, турбины с роторами, компрессоры, топливно-насосную группу, реактивные сопла с изменяющимся критическим сечением, охлаждаемую камеру сгорания и систему управления. Система управления выполнена с командным и исполнительными...
Тип: Изобретение
Номер охранного документа: 0002459099
Дата охранного документа: 20.08.2012
+ добавить свой РИД