×
27.07.2013
216.012.5a87

СПОСОБ ОПРЕДЕЛЕНИЯ ПРИРОСТА ПОДЪЕМНОЙ СИЛЫ ЛЕТАТЕЛЬНОГО АППАРАТА ПРИ ВНЕШНЕМ ПОДВОДЕ ЭНЕРГИИ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области экспериментальной аэродинамики летательных аппаратов, преимущественно к разработке методов воспроизведения в аэродинамических трубах условий обтекания летательных аппаратов и разработке методов повышения аэродинамического качества летательных аппаратов. Способ включает создание модели летательного аппарата и ее весовые испытания в аэродинамической трубе. Для определения прироста подъемной силы натурного летательного аппарата при внешнем подводе энергии по испытаниям его модели в аэродинамической трубе при изготовлении модели соблюдают геометрическое подобие с натурой формы ЛА и места энергоподвода, а в качестве внешнего энергоносителя используют нереагирующий газ с высокой удельной статической энтальпией, например гелий. Измеряют в аэродинамической трубе прирост подъемной силы модели при внешнем подводе энергоносителя и определяют коэффициент подобия, а затем определяют прирост подъемной силы для условий натурного полета. Технический результат заключается в возможности определения прироста подъемной силы натурного летательного аппарата при внешнем подводе энергии путем экспериментов на модели в аэродинамической трубе. 4 ил.
Основные результаты: Способ определения прироста подъемной силы летательного аппарата при внешнем подводе энергии, включающий создание модели летательного аппарата и ее весовые испытания в аэродинамической трубе, отличающийся тем, что создают геометрически подобные модели и места подвода газа-энергоносителя, реализуют в аэродинамической трубе режим полета натурного летательного аппарата, а вместо натурного энергоносителя используют нереагирующий газ с высокой удельной статической энтальпией, например гелий или холодный водород, производят измерение приращения подъемной силы модели и силы аэродинамического сопротивления в зависимости от расхода газа-энергоносителя и параметров набегающего потока, по известным значениям параметров набегающего потока и его энтальпии, а также величинам расхода энергоносителя и его энтальпии определяют коэффициент подобия Р для пересчета трубных измерений на натурный полет, равный: где ΔУ - прирост подъемной силы модели,U - скорость набегающего на модель потока, - расход газа-энергоносителя,Н - энтальпия набегающего потока,H - энтальпия газа-энергоносителя,а затем определяют прирост подъемной силы для условий натурного полета где β - коэффициент подобия, - расход газа энергоносителя,H - энтальпия набегающего потока,H - энтальпия газа энергоносителя,U - скорость набегающего потока,нат - относится к условиям натурного полета.
Реферат Свернуть Развернуть

Изобретение относится к области экспериментальной аэродинамики летательных аппаратов (ЛА), преимущественно к разработке методов воспроизведения в аэродинамических трубах (АДТ) условий обтекания ЛА и разработке методов повышения аэродинамического качества ЛА.

Известны способы и устройства определения аэродинамических нагрузок в АДТ на моделях ЛА [А.Поуп, К.Гойн. Аэродинамические трубы больших скоростей. М., 1968, Мир, с.504], заключающиеся в том, что геометрически подобную модель ЛА устанавливают в АДТ на аэродинамические весы и измеряют подъемную силу, силы аэродинамического сопротивления, моментные характеристики. Такой способ не пригоден при исследованиях влияния внешнего подвода энергии на аэродинамические нагрузки натурного ЛА, так как в аэродинамических трубах практически невозможно воспроизвести из-за существенного отличия размеров ЛА и его модели необходимое соотношение характеристик аэродинамических его времен обтекания и времен воспламенения и сгорания топлив..

Более близким к предлагаемому изобретению относится способ исследования влияния внешнего подвода энергии на нагрузки модели ЛА, изложенный в работе [Е.А.Флетчер, Р.Дж.Дорш, X.Ален. Горение высокореактивных топлив в сверхзвуковых воздушных потоках. ВРТ, ИЛ, М., №4, 1961, с.3]. Способ основан на том, что модель помещают в поток газа в АДТ, через отверстия в модели подают горячий газ-энергоноситель, являющийся продуктом горения борогидрида алюминия, воспламеняемого электрическим разрядом, измеряют распределение статического давления по поверхности модели и по этому распределению рассчитывают влияние впрыска горящего топлива на подъемную силу.

Однако такой способ чреват ошибками. Во-первых, это ошибки в определении количества подведенной энергии, так как время реакций горения при большой скорости потока соизмеримо с временем перемещения массы газа, то есть полностью энергия горения выделится за моделью вниз по потоку. Во-вторых, определение подъемной силы по распределению давления менее надежно, чем прямые измерения с помощью весов, а в горящем потоке использование, например, тензовесов затруднено.

Задачей и техническим результатом заявляемого изобретения является, прямое измерение прироста подъемной силы при подводе энергии к модели летательного аппарата с помощью нереагирующего энергоносителя, определение критерия подобия β связывающего результаты измерения прироста подъемной силы на модели в АДТ с приростом ее в натурном полете ЛА при внешнем подводе энергии.

Решение поставленной задачи и технический результат достигаются тем, что в способе определения подъемной силы летательного аппарата при внешнем подводе энергии включающем создание модели летательного аппарата и ее весовые испытания в аэродинамической трубе, создают геометрически подобные модели и места подвода газа-энергоносителя, реализуют в аэродинамической трубе режим полета натурного летательного аппарата, а вместо натурного энергоносителя используют нереагирующий газ с высокой удельной статической энтальпией, например, гелий или холодный водород, производят измерение приращения подъемной силы модели и силы аэродинамического сопротивления в зависимости от расхода газа-энергоносителя и параметров набегающего потока, по известным значениям параметров набегающего потока и его энтальпии, а также величины расхода энергоносителя и его энтальпии определяют коэффициент подобия β для пересчета трубных измерений на натурный полет равный:

,

где ΔУ - прирост подъемной силы модели,

U - скорость набегающего на модель потока,

- расход газа-энергоносителя,

H - энтальпия набегающего потока,

Hm - энтальпия газа-энергоносителя,

а затем определяют прирост подъемной силы для условий натурного полета

где β - коэффициент подобия,

- расход газа-энергоносителя,

H∞нат - энтальпия набегающего потока,

Hmнат - энтальпия газа-энергоносителя,

U∞нат - скорость набегающего потока,

нат - относится к условиям натурного полета.

Схемы и графики, поясняющие способ, приведены на фигурах 1, 2, 3, 4.

На фигуре 1 представлена схема трубного эксперимента.

На фигуре 2 - фотография модели, имеющей вид пластины.

На фигуре 3 показана зависимость приращения подъемной силы и лобового сопротивления на модели сверхзвукового пассажирского самолета (СПС) от расхода газа - энергоносителя.

На фигуре 4 показано приращение подъемной силы от параметра t (обобщающие результаты для разных моделей: пластина, треугольное крыло, сверхзвуковой пассажирский самолет (СПС).

На фигуре 1:

1 - сопло;

2 - рабочая часть (камера Эйфеля);

3 - диффузор;

4 - державка с моделью;

5 - холодильник;

6 - вакуумный затвор;

7 - баллон с газом-энергоносителем.

На фигуре 2:

4 - модель (пластина);

8 - отверстия для выхода газа - энергоносителя;

9 - элемент аэродинамических весов; 10 - державка;

11- трубки для подвода газа-энергоносителя.

Способ реализуется следующим образом. Поток воздуха подается в тракт АДТ из атмосферы и двигается за счет перепада давления между атмосферой и вакуумной емкостью. Поток (фиг.1) разгоняется в сопле 1, проходит через камеру Эйфеля 2, диффузор 3, холодильник 5, затвор 6. В камере Эйфеля размещена испытуемая модель 4. При достижении заданного режима работы АДТ из баллонов 7 к модели 4 через отверстия в модели 8, (фиг.2) по трассам 11 (фиг.2) подается газ-энергоноситель. Проводят весовые измерения с помощью внутримодельных весов 9 (фиг.2). Измеряют приращение подъемной силы и лобового сопротивления.

Для весовых измерений использованы быстродействующие 3-компонентные тензовесы с диапазоном измерений до 1 кг и быстродействием ~7·10-3 с. Тензовесы градуированы вместе с моделями и пневмотрассами. Влияние динамических составляющих сил проверяют на динамическом стенде.

Пример условий эксперимента:

число M потока М=5, давление Р0=1 атм, температура T0≈298 K, статическое давление в камере Эйфеля Рст≈2·102 Па, рабочий газ-воздух, газы-энергоносители - гелий, азот, кислород.

Измерялась подъемная сила У0 без подвода энергии к внешней поверхности модели, У - с подводом энергии, сила реакции при подводе газа-энергоносителя Fp. Тогда приращение подъемной силы ΔУ при подводе энергии равно:

ΔУ=У-У0-Fp

Расход подводимого к модели газа-энергоносителя m определялся по величине полного давления перед мерным соплом в трассе подвода газа. Величина скорости набегающего потока определялась по числу М потока для выбранного сопла (M=5).

Из приближенного интегрального анализа процессов массо и теплоотвода к гиперзвуковому потоку следует, что величина приращения подъемной силы ΔУ при подводе энергии к внешней поверхности модели зависит от расхода энергоносителя , энтальпии набегающего потока H, энтальпии энергоносителя Hm скорости набегающего потока U, и определяется из следующего соотношения:

Для удобства обозначим:

, т.е.

ΔУ=f(t)

Эта величина имеет размерность силы и является функцией прироста подъемной силы. Но, кроме того, прирост подъемной силы зависит от условий подвода энергоносителя: места подвода, расположения зоны реакции, направления потока газа - энергоносителя.

Как сказано выше, эту зависимость в заявляемом способе предложено определять в трубном эксперименте как коэффициент подобия β. Экспериментами с варьированием газов-энергоносителей с разными удельными энтальпиями (гелий, кислород, азот), с варьированием расходов энергоносителей была показана универсальность этого коэффициента при соблюдении геометрического подобия схем энергоподвода. Это является предпосылкой для использования этого коэффициента, определенного в АДТ, в условиях натурного полета (в дальнейшем это будет проверено в натурном полете).

Тогда приращение подъемной силы при внешнем подводе энергии в натурном полете определится:

На фигуре 3 приведены измеренные значения прироста подъемной силы ΔУ при подводе энергоносителя на модели СПС, прирост лобового сопротивления ΔX незначителен. Это относится только к малым углам атаки (α≈1°). На фигуре 4 представлена зависимость коэффициента β от параметра t для разных моделей. Согласно фигуре 4, в экспериментах максимальное увеличение подъемной силы при внешнем подводе энергии получено на модели треугольного крыла при значениях параметра t≤0,2 Ньютона.

Приведем пример использования измеренного по предлагаемому способу коэффициента β для оценки эффективности влияния на подъемную силу внешнего подвода энергии на натурном ЛА. В соответствии с вышеизложенным, при внешнем подводе энергии

В то же время при увеличении тяги двигателя за счет дополнительного расхода топлива рост подъемной силы составляет

где I - удельный импульс двигателя,

K - аэродинамическое качество,

g - ускорение силы тяжести.

Тогда

Это отношение больше единицы при значениях: I=2800 с (для ГПВРД на водороде, для которого Нmнат=1,22·105 кДж/(кг), β=1,45, U∞нат=1500 м/с, K≤4,2.

Для ЛА с ПВРД на керосине I≈1700 с. Тогда вплоть до значений качества К=7.

Таким образом, при использовании способа решена важная задача: в результате ряда методических экспериментов в АДТ с разными газами-энергоносителями и разными массовыми расходами их найден и предложен критерий подобия β связывающий результаты измерения прироста подъемной силы на модели в АДТ с приростом ее в натурном полете ЛА при внешнем подводе энергии. Это открывает возможность поиска путей повышения аэродинамического качества ЛА за счет подвода внешней энергии к его модели в трубном эксперименте с последующим пересчетом полученных результатов на условия натурного полета. Проведенные эксперименты с использованием других газов: азота, кислорода и др. подтвердили универсальность предложенной зависимости.

Изобретение позволяет определить прирост подъемной силы натурного летательного аппарата при внешнем подводе энергии путем экспериментов на модели в аэродинамической трубе, что дает значительные преимущества по сравнению со способом получения такой информации методом исследований в натурном полете.

Способ определения прироста подъемной силы летательного аппарата при внешнем подводе энергии, включающий создание модели летательного аппарата и ее весовые испытания в аэродинамической трубе, отличающийся тем, что создают геометрически подобные модели и места подвода газа-энергоносителя, реализуют в аэродинамической трубе режим полета натурного летательного аппарата, а вместо натурного энергоносителя используют нереагирующий газ с высокой удельной статической энтальпией, например гелий или холодный водород, производят измерение приращения подъемной силы модели и силы аэродинамического сопротивления в зависимости от расхода газа-энергоносителя и параметров набегающего потока, по известным значениям параметров набегающего потока и его энтальпии, а также величинам расхода энергоносителя и его энтальпии определяют коэффициент подобия Р для пересчета трубных измерений на натурный полет, равный: где ΔУ - прирост подъемной силы модели,U - скорость набегающего на модель потока, - расход газа-энергоносителя,Н - энтальпия набегающего потока,H - энтальпия газа-энергоносителя,а затем определяют прирост подъемной силы для условий натурного полета где β - коэффициент подобия, - расход газа энергоносителя,H - энтальпия набегающего потока,H - энтальпия газа энергоносителя,U - скорость набегающего потока,нат - относится к условиям натурного полета.
СПОСОБ ОПРЕДЕЛЕНИЯ ПРИРОСТА ПОДЪЕМНОЙ СИЛЫ ЛЕТАТЕЛЬНОГО АППАРАТА ПРИ ВНЕШНЕМ ПОДВОДЕ ЭНЕРГИИ
СПОСОБ ОПРЕДЕЛЕНИЯ ПРИРОСТА ПОДЪЕМНОЙ СИЛЫ ЛЕТАТЕЛЬНОГО АППАРАТА ПРИ ВНЕШНЕМ ПОДВОДЕ ЭНЕРГИИ
СПОСОБ ОПРЕДЕЛЕНИЯ ПРИРОСТА ПОДЪЕМНОЙ СИЛЫ ЛЕТАТЕЛЬНОГО АППАРАТА ПРИ ВНЕШНЕМ ПОДВОДЕ ЭНЕРГИИ
СПОСОБ ОПРЕДЕЛЕНИЯ ПРИРОСТА ПОДЪЕМНОЙ СИЛЫ ЛЕТАТЕЛЬНОГО АППАРАТА ПРИ ВНЕШНЕМ ПОДВОДЕ ЭНЕРГИИ
СПОСОБ ОПРЕДЕЛЕНИЯ ПРИРОСТА ПОДЪЕМНОЙ СИЛЫ ЛЕТАТЕЛЬНОГО АППАРАТА ПРИ ВНЕШНЕМ ПОДВОДЕ ЭНЕРГИИ
СПОСОБ ОПРЕДЕЛЕНИЯ ПРИРОСТА ПОДЪЕМНОЙ СИЛЫ ЛЕТАТЕЛЬНОГО АППАРАТА ПРИ ВНЕШНЕМ ПОДВОДЕ ЭНЕРГИИ
СПОСОБ ОПРЕДЕЛЕНИЯ ПРИРОСТА ПОДЪЕМНОЙ СИЛЫ ЛЕТАТЕЛЬНОГО АППАРАТА ПРИ ВНЕШНЕМ ПОДВОДЕ ЭНЕРГИИ
СПОСОБ ОПРЕДЕЛЕНИЯ ПРИРОСТА ПОДЪЕМНОЙ СИЛЫ ЛЕТАТЕЛЬНОГО АППАРАТА ПРИ ВНЕШНЕМ ПОДВОДЕ ЭНЕРГИИ
Источник поступления информации: Роспатент

Showing 1-10 of 258 items.
10.02.2013
№216.012.2454

Способ адаптации рабочей части аэродинамической трубы для получения безындукционного обтекания моделей летательных аппаратов и устройство для его осуществления

Заявленная группа изобретений относится к области экспериментальной аэродинамики и может быть использована при проведении испытаний в трансзвуковых аэродинамических трубах. Предложен новый способ адаптации рабочей части аэродинамической трубы, содержащий новую технологию получения на границах...
Тип: Изобретение
Номер охранного документа: 0002474802
Дата охранного документа: 10.02.2013
20.03.2013
№216.012.302a

Измерительное устройство

Изобретение относится к области измерительной техники и может быть использовано для измерения неэлектрических величин при помощи тензометрических мостовых датчиков с инструментальными усилителями, запитанных постоянным током. Техническим результатом изобретения является повышение точности...
Тип: Изобретение
Номер охранного документа: 0002477865
Дата охранного документа: 20.03.2013
10.05.2013
№216.012.3cfa

Способ фрезерования на станках с чпу моделей лопаток роторов газотурбинных двигателей

Изобретение относится к машиностроению и может быть использовано в авиадвигателестроении при обработке профиля пера рабочих лопаток газотурбинных двигателей, в частности аэродинамических моделей лопаток роторов газотурбинных двигателей, имеющих малую толщину и осевые габариты 200-300 мм. Способ...
Тип: Изобретение
Номер охранного документа: 0002481177
Дата охранного документа: 10.05.2013
20.05.2013
№216.012.4044

Система управления самолётом

Изобретение относится к области систем управления летательными аппаратами. Предлагаемая система улучшает характеристики продольного движения за счет введения блока оценки продольной устойчивости самолета и компенсации ее изменения по режимам полета. Ликвидируются характерные для интегральных...
Тип: Изобретение
Номер охранного документа: 0002482022
Дата охранного документа: 20.05.2013
20.05.2013
№216.012.41f7

Способ создания потока газа в гиперзвуковой вакуумной аэродинамической трубе и аэродинамическая труба

Изобретения относятся к области промышленной аэродинамики, в частности к гиперзвуковым аэродинамическим трубам (АДТ). Предложены способ создания потока и аэродинамическая труба (АДТ) непрерывного действия, охватывающая весь гиперзвуковой диапазон скоростей с числами Маха М≥5, причем для...
Тип: Изобретение
Номер охранного документа: 0002482457
Дата охранного документа: 20.05.2013
20.05.2013
№216.012.427e

Аэродинамический стенд для проведения фундаментальных исследований по генерации электроэнергии мгд-методами с использованием в качестве рабочего газа высокотемпературного водорода (h)

Изобретение относится к области энергетики, преимущественно к созданию аварийных энергетических установок большой мощности, работающих на принципе магнитогазодинамического преобразования энергии. Заявленное устройство включает источник высокотемпературного газа, устройство подачи присадки,...
Тип: Изобретение
Номер охранного документа: 0002482592
Дата охранного документа: 20.05.2013
10.07.2013
№216.012.53c7

Треугольное крыло для сверхзвуковых летательных аппаратов

Изобретение относится к области авиационной техники. Треугольное крыло имеет вершину и центральную хорду, расположенные в плоскости симметрии крыла, прямолинейные передние кромки, выходящие из вершины, и неплоскую срединную поверхность. Срединная поверхность выполнена из двух элементов, которые...
Тип: Изобретение
Номер охранного документа: 0002487050
Дата охранного документа: 10.07.2013
10.07.2013
№216.012.53c8

Предкрылок крыла самолета и способ его обтекания

Группа изобретений относится к области авиации. Предкрылок крыла самолета подвижно соединен с основным крылом и содержит аэродинамически обтекаемую поверхность, включающую заднюю нижнюю кромку. Часть задней нижней кромки предкрылка выполнена по форме гладкой волнистой линии либо волнистой линии...
Тип: Изобретение
Номер охранного документа: 0002487051
Дата охранного документа: 10.07.2013
20.07.2013
№216.012.57a0

Устройство для локального подвода энергии к потоку воздуха, обтекающего объект (варианты)

Изобретение относится к аэродинамике и к энергетическим установкам транспортных средств, в частности к устройствам для улучшения аэродинамического качества путем подвода энергии к их внешней поверхности. Устройство для локального подвода энергии к потоку воздуха, обтекающего объект, содержит...
Тип: Изобретение
Номер охранного документа: 0002488040
Дата охранного документа: 20.07.2013
20.07.2013
№216.012.57cb

Способ измерения негерметичности изделий

Изобретение относится к области испытательной техники и может быть использовано для измерения негерметичности изделий, работающих под избыточным давлением. Техническим результатом является повышение точности измерения негерметичности изделия в разных условиях окружающей среды при неодинаковых...
Тип: Изобретение
Номер охранного документа: 0002488083
Дата охранного документа: 20.07.2013
Showing 1-10 of 140 items.
10.02.2013
№216.012.2454

Способ адаптации рабочей части аэродинамической трубы для получения безындукционного обтекания моделей летательных аппаратов и устройство для его осуществления

Заявленная группа изобретений относится к области экспериментальной аэродинамики и может быть использована при проведении испытаний в трансзвуковых аэродинамических трубах. Предложен новый способ адаптации рабочей части аэродинамической трубы, содержащий новую технологию получения на границах...
Тип: Изобретение
Номер охранного документа: 0002474802
Дата охранного документа: 10.02.2013
20.03.2013
№216.012.302a

Измерительное устройство

Изобретение относится к области измерительной техники и может быть использовано для измерения неэлектрических величин при помощи тензометрических мостовых датчиков с инструментальными усилителями, запитанных постоянным током. Техническим результатом изобретения является повышение точности...
Тип: Изобретение
Номер охранного документа: 0002477865
Дата охранного документа: 20.03.2013
10.05.2013
№216.012.3cfa

Способ фрезерования на станках с чпу моделей лопаток роторов газотурбинных двигателей

Изобретение относится к машиностроению и может быть использовано в авиадвигателестроении при обработке профиля пера рабочих лопаток газотурбинных двигателей, в частности аэродинамических моделей лопаток роторов газотурбинных двигателей, имеющих малую толщину и осевые габариты 200-300 мм. Способ...
Тип: Изобретение
Номер охранного документа: 0002481177
Дата охранного документа: 10.05.2013
20.05.2013
№216.012.4044

Система управления самолётом

Изобретение относится к области систем управления летательными аппаратами. Предлагаемая система улучшает характеристики продольного движения за счет введения блока оценки продольной устойчивости самолета и компенсации ее изменения по режимам полета. Ликвидируются характерные для интегральных...
Тип: Изобретение
Номер охранного документа: 0002482022
Дата охранного документа: 20.05.2013
20.05.2013
№216.012.41f7

Способ создания потока газа в гиперзвуковой вакуумной аэродинамической трубе и аэродинамическая труба

Изобретения относятся к области промышленной аэродинамики, в частности к гиперзвуковым аэродинамическим трубам (АДТ). Предложены способ создания потока и аэродинамическая труба (АДТ) непрерывного действия, охватывающая весь гиперзвуковой диапазон скоростей с числами Маха М≥5, причем для...
Тип: Изобретение
Номер охранного документа: 0002482457
Дата охранного документа: 20.05.2013
20.05.2013
№216.012.427e

Аэродинамический стенд для проведения фундаментальных исследований по генерации электроэнергии мгд-методами с использованием в качестве рабочего газа высокотемпературного водорода (h)

Изобретение относится к области энергетики, преимущественно к созданию аварийных энергетических установок большой мощности, работающих на принципе магнитогазодинамического преобразования энергии. Заявленное устройство включает источник высокотемпературного газа, устройство подачи присадки,...
Тип: Изобретение
Номер охранного документа: 0002482592
Дата охранного документа: 20.05.2013
10.07.2013
№216.012.53c7

Треугольное крыло для сверхзвуковых летательных аппаратов

Изобретение относится к области авиационной техники. Треугольное крыло имеет вершину и центральную хорду, расположенные в плоскости симметрии крыла, прямолинейные передние кромки, выходящие из вершины, и неплоскую срединную поверхность. Срединная поверхность выполнена из двух элементов, которые...
Тип: Изобретение
Номер охранного документа: 0002487050
Дата охранного документа: 10.07.2013
10.07.2013
№216.012.53c8

Предкрылок крыла самолета и способ его обтекания

Группа изобретений относится к области авиации. Предкрылок крыла самолета подвижно соединен с основным крылом и содержит аэродинамически обтекаемую поверхность, включающую заднюю нижнюю кромку. Часть задней нижней кромки предкрылка выполнена по форме гладкой волнистой линии либо волнистой линии...
Тип: Изобретение
Номер охранного документа: 0002487051
Дата охранного документа: 10.07.2013
20.07.2013
№216.012.57a0

Устройство для локального подвода энергии к потоку воздуха, обтекающего объект (варианты)

Изобретение относится к аэродинамике и к энергетическим установкам транспортных средств, в частности к устройствам для улучшения аэродинамического качества путем подвода энергии к их внешней поверхности. Устройство для локального подвода энергии к потоку воздуха, обтекающего объект, содержит...
Тип: Изобретение
Номер охранного документа: 0002488040
Дата охранного документа: 20.07.2013
20.07.2013
№216.012.57cb

Способ измерения негерметичности изделий

Изобретение относится к области испытательной техники и может быть использовано для измерения негерметичности изделий, работающих под избыточным давлением. Техническим результатом является повышение точности измерения негерметичности изделия в разных условиях окружающей среды при неодинаковых...
Тип: Изобретение
Номер охранного документа: 0002488083
Дата охранного документа: 20.07.2013
+ добавить свой РИД