×
10.07.2013
216.012.54e2

Результат интеллектуальной деятельности: ТУРБОРЕАКТИВНЫЙ ДВИГАТЕЛЬ. СПОСОБ ИСПЫТАНИЯ ТУРБОРЕАКТИВНОГО ДВИГАТЕЛЯ (ВАРИАНТЫ). СПОСОБ ПРОИЗВОДСТВА ТУРБОРЕАКТИВНОГО ДВИГАТЕЛЯ. СПОСОБ ПРОМЫШЛЕННОГО ПРОИЗВОДСТВА ТУРБОРЕАКТИВНОГО ДВИГАТЕЛЯ. СПОСОБ ЭКСПЛУАТАЦИИ ТУРБОРЕАКТИВНОГО ДВИГАТЕЛЯ

Вид РИД

Изобретение

Аннотация: Группа изобретений, связанных единым творческим замыслом, относится к области авиадвигателестроения, а именно к авиационным двигателям типа турбореактивных, способам их испытания, опытного и промышленного производства и эксплуатации. В группе изобретений изложены способы испытаний ТРД. Испытания проводят с измерением параметров работы двигателя на различных режимах в пределах запрограммированного диапазона полетных режимов для конкретной серии двигателей и осуществляют приведение полученных параметров к стандартным атмосферным условиям с учетом изменения свойств рабочего тела и геометрических характеристик проточной части двигателя при изменении атмосферных условий. Для чего предварительно создают и корректируют по результатам испытаний достаточного количества двигателей математическую модель двигателя, по которой определяют параметры двигателя при стандартных атмосферных условиях и различных температурах в объеме принятой программы. Фактические значения параметров относят к стандартным, вычисляют поправочные коэффициенты к измеренным параметрам. Приведение последних осуществляют умножением измеренных значений на отклонение факта от нормы с учетом поправочных коэффициентов. Разработанные варианты испытаний применимы при доводке, опытном и промышленном, серийном производстве и на стадии эксплуатации авиационных двигателей, в том числе после капитального ремонта, и обеспечивают более корректное приведения экспериментально полученных параметров двигателя с учетом принятых программ управления двигателем к параметрам, соответствующим стандартным атмосферным условиям, и повышение репрезентативности результатов испытаний для полного диапазона полетных циклов эксплуатации двигателя. При этом достигается повышение надежности результатов определения важнейших параметров работы двигателя в широком диапазоне температурных климатических условий при снижении трудоемкости и энергозатрат и сбережение ресурса двигателей при испытаниях. 6 н. и 3 з.п. ф-лы, 4 табл.

Группа изобретений, связанных единым творческим замыслом, относится к области авиадвигателестроения, а именно к авиационным двигателям типа турбореактивных, способам их испытания, опытного и промышленного производства и эксплуатации.

Известен турбореактивный двигатель, который выполнен двухконтурным, содержит корпус, опертые на него компрессоры и турбины, охлаждаемую камеру сгорания, топливно-насосную группу, реактивные сопла и систему управления с командными и исполнительными органами (Шульгин В.А., Гайсинский С.Я. Двухконтурные турбореактивные двигатели малошумных самолетов. М.: Машиностроение, 1984, стр.17-120).

Известен способ разработки и испытаний авиационных турбореактивных двигателей, заключающийся в измерении параметров по режимам работы двигателя и приведении их к стандартным атмосферным условиям с учетом изменения свойств рабочего тела и геометрических характеристик проточной части двигателя при изменении атмосферных условий (Ю.А.Литвинов, В.О.Боровик. Характеристики и эксплуатационные свойства авиационных турбореактивных двигателей. М.: Машиностроение, 1979, стр.136-137).

Известен способ разработки и испытаний авиационных двигателей типа турбореактивных, включающий отработку заданных режимов, контроль параметров и оценку по ним ресурса и надежности работы двигателя. С целью сокращения времени испытаний при доводке двигателей 10-20% испытания проводят с температурой газа перед турбиной, превышающей максимальную рабочую температуру на 45-65°С (SU 1151075 А1, опубл. 10.08.2004).

Известен способ промышленного производства авиационных двигателей типа турбореактивных, включающее изготовление и заводскую сборку силовых, контролирующих, командных и исполнительных агрегатов, блоков и систем двигателя, включая компрессоры, турбины, камеры сгорания, воздушную, топливную и масляную системы и систему управления двигателем (Богуслаев В.А., Качан А.Я., Долматов А.И., Мозговой В.Ф., Кореневский Е.Я. Технология производства авиационных двигателей Запорожье. Изд. Мотор Сич, 2009 [учеб.]; Ч.4 Сборка авиационных двигателей, раздел 3, с.26-61.

Известен способ эксплуатации авиационных двигателей типа ТРД, включающий, операции подготовки к работе, периодическое включение, работу двигателя, периодическое обслуживание, текущие и капитальный ремонты (Ю.А.Литвинов, В.О.Боровик. Характеристики и эксплуатационные свойства авиационных турбореактивных двигателей. М.: Машиностроение, 1979, с.136-137).

Общими недостатками указанных известных технических решений являются повышенная трудо- и энергоемкость испытаний и недостаточно высокая надежность оценки тяги двигателя в широком диапазоне режимов и региональных температурно-климатических условий эксплуатации вследствие неотработанности программы приведения конкретных результатов испытаний, выполняемых в различных температурных и климатических условиях, к результатам, отнесенным к стандартным условиям атмосферы известными способами, которые не учитывают с достаточной корректностью изменение параметров и режимов работы двигателя в зависимости от принятых программ, адекватных полетным циклам, характерным для конкретного назначения разрабатываемого, серийно производимого авиационного турбореактивного двигателя, что осложняет возможность приведения экспериментальных параметров испытаний к параметрам, соответствующим условиям стандартной атмосферы на каждой из стадий доводки, опытного и промышленного, серийного производства и эксплуатации авиационных двигателей.

Задача изобретения заключается в повышении надежности определения получаемых при испытаниях данных о статистических границах и возможных изменениях величины тяги авиационных турбореактивных двигателей на всех этапах от разработки до серийного промышленного производства и эксплуатации по различным программам и в различных температурно-климатических условиях, а также в обеспечении возможности корректного приведения полученных результатов к стандартным условиям атмосферы и через них к любым другим реальным температурным и климатическим условиям с учетом принятых программ управления двигателем и в повышении репрезентативности результатов испытаний для полного диапазона перечисленных ситуаций применительно к полетным циклам двигателя в учебных и боевых условиях в различных регионах и сезонных периодах эксплуатации.

Поставленная задача в части способа испытания турбореактивного двигателя по первому варианту решается тем, что согласно изобретению проводят испытания турбореактивного двигателя с измерением параметров его работы на различных режимах, параметры которых находятся в пределах параметров запрограммированного для конкретной серии двигателей диапазона полетных режимов, и осуществляют приведение полученных параметров к стандартным атмосферным условиям с учетом изменения свойств рабочего тела и геометрических характеристик проточной части турбореактивного двигателя при изменении атмосферных условий, при этом предварительно создают математическую модель турбореактивного двигателя, корректируют ее по результатам стендовых испытаний репрезентативного количества, обычно от трех до пяти, турбореактивных двигателей одной серии, а затем по математической модели определяют параметры турбореактивного двигателя при стандартных атмосферных условиях и различных температурах атмосферного воздуха из заданного рабочего диапазона температур стендовых испытаний с учетом принятой программы регулирования двигателя на максимальных и форсированных режимах, причем фактические значения параметров при конкретных температурах атмосферного воздуха каждого режима испытаний относят к значениям параметров при стандартных атмосферных условиях и вычисляют поправочные коэффициенты к измеренным параметрам в зависимости от температуры атмосферного воздуха, причем приведение измеренных параметров к стандартным атмосферным условиям осуществляют умножением измеренных значений на коэффициенты, учитывающие отклонение атмосферного давления от стандартного, и на поправочный коэффициент, отражающий зависимость от температуры атмосферного воздуха, зарегистрированной при конкретных испытаниях, анализируют полученные результаты и, с учетом полученных данных, выполняют последующий цикл испытаний с наибольшим нагружением испытуемого турбореактивного двигателя, включающем быстрый выход на максимальный или полный форсированный режим, быстрый сброс на режим малого газа с возможностью останова двигателя.

Поставленная задача в части способа испытания турбореактивного двигателя по второму варианту решается тем, что согласно изобретению проводят испытания турбореактивного двигателя с измерением параметров его работы на различных режимах, параметры которых находятся в пределах параметров запрограммированного для конкретной серии двигателей диапазона полетных режимов, и осуществляют приведение полученных параметров к стандартным атмосферным условиям с учетом изменения свойств рабочего тела и геометрических характеристик проточной части турбореактивного двигателя при изменении атмосферных условий, при этом предварительно создают математическую модель турбореактивного двигателя, корректируют ее по результатам стендовых испытаний репрезентативного количества, обычно от трех до пяти, турбореактивных двигателей одной серии, а затем по математической модели определяют параметры турбореактивного двигателя при стандартных атмосферных условиях и различных температурах атмосферного воздуха из заданного рабочего диапазона температур стендовых испытаний с учетом принятой программы регулирования двигателя на максимальных и форсированных режимах, причем фактические значения параметров при конкретных температурах атмосферного воздуха каждого режима испытаний относят к значениям параметров при стандартных атмосферных условиях и вычисляют поправочные коэффициенты к измеренным параметрам в зависимости от температуры атмосферного воздуха, причем приведение измеренных параметров к стандартным атмосферным условиям осуществляют умножением измеренных значений на коэффициенты, учитывающие отклонение атмосферного давления от стандартного, и на поправочный коэффициент, отражающий зависимость от температуры атмосферного воздуха, зарегистрированной при конкретных испытаниях, анализируют полученные результаты и, с учетом полученных данных, выполняют последующий цикл испытаний с наибольшим нагружением испытуемого турбореактивного двигателя, включающем быстрый выход на максимальный или полный форсированный режим, быстрый сброс на режим малого газа с возможностью останова двигателя, причем быстрый выход на максимальный или форсированный режим, по меньшей мере, на части общего испытательного цикла осуществляют в темпе приемистости и сброса применительно к полетным циклам для боевого и учебного применения турбореактивного двигателя.

Поставленная задача в части способа производства турбореактивного двигателя решается тем, что согласно изобретению проектируют и/или осуществляют привязку с необходимыми изменениями и/или усовершенствованиями ранее разработанного проектного решения, под заданные параметры разрабатываемого турбореактивного двигателя, изготавливают опытный образец и производят испытания любым описанным выше способом испытания на соответствие заданным параметрам двигателя, проводят доводку, устраняют выявленные недостатки и несоответствия разрабатываемому решению и проводят испытания на определение фактических характеристик двигателя, по завершении программы испытаний анализируют полученные результаты, устраняют выявленные недостатки, при необходимости вносят изменения в конструкцию или в отдельные узлы ТРД и считают опытный образец выполненным и соответствующим заданной программе.

Поставленная задача в части турбореактивного двигателя решается тем, что двигатель согласно изобретению выполнен двухконтурным, содержит корпус, опертые на него турбины и компрессоры с роторами, по меньшей мере, одну охлаждаемую камеру сгорания, топливно-насосную группу, гидравлические топливную и масляную систему, реактивное сопло, по меньшей мере, которое выполнено с изменяющимся критическим сечением, и систему управления с командным и исполнительными органами, при этом двигатель испытан любым описанным выше способом испытания на определение фактических характеристик ресурса и надежности двигателя, по меньшей мере, на одной из стадий, а именно на стадиях доводки, либо в составе партии двигателей серийного промышленного производства, и/или испытан в процессе эксплуатации после капитального ремонта.

При этом турбореактивный двигатель может быть выполнен двухвальным и снабжен форсажной камерой.

Турбореактивный двигатель может быть выполнен трехвальным, содержит компрессоры и турбины низкого, среднего и высокого давлений и реактивное сопло с изменяемым вектором тяги.

Гидравлическая масляная система двигателя может быть оснащена двумя насосными группами, разводками маслопровода и форсунками, подающими смазочную жидкость к трущимся узлам, в том числе с возможностью обеспечения без перебойного снабжения узлов смазочной жидкостью, в том числе в режимах перевернутого полета летательного аппарата и соответствующего положения двигателя.

Поставленная задача в части способа промышленного производства турбореактивного двигателя решается тем, что согласно изобретению осуществляют, по меньшей мере, заводскую сборку двигателя, при этом монтируют корпус и силовые агрегаты двигателя, включая компрессоры, турбины, не менее чем одну камеру сгорания, реактивное сопло, воздушную, а также топливную и масляную гидравлические системы, мониторинговые, командные и исполнительные элементы, блоки и агрегаты системы управления, и производят стендовые испытания любым описанным выше способом испытания промышленно собранного серийного двигателя, в составе которых производят определение фактического ресурса и надежности работы двигателя и осуществляют проверку результатов на соответствие заданным значениям с последующим переводом результатов испытаний, полученных в конкретных атмосферно-климатических условиях, к значениям, соответствующим стандартным атмосферным условиям, с возможностью последующего пересчета конечных результатов, при необходимости, применительно к любым другим требуемым атмосферно-климатическим условиям, для работы в которых предназначен тот или иной серийный двигатель или партия одновременно произведенных идентичных турбореактивных двигателей с возможностью внесения указанных сведений в техническую документацию двигателя.

Поставленная задача в части способа эксплуатации турбореактивного двигателя решается тем, что способ согласно изобретению включает проверку готовности двигателя к работе перед каждым запуском, производят запуск, прогрев и вывод двигателя на рабочие режимы, предусмотренные регламентом, останов двигателя, периодически производят профилактические осмотры и текущие, а также, по меньшей мере, один капитальный ремонт, при этом после капитального ремонта турбореактивный двигатель подвергают стендовым испытаниям любым описанным выше способом испытания на определение фактического ресурса и надежности работы двигателя и соответствия требуемым параметрам с приведением результатов испытаний к условиям стандартной атмосферы, при необходимости производят послеремонтную доводку и/или выполняют повторные испытания, и пересчет результатов на заданные температуры и режимы послеремонтной эксплуатации с использованием математической модели турбореактивного двигателя и приемов приведения параметров любым описанным выше способом испытания.

Технический результат, обеспечиваемый разработанной совокупностью объектов и признаков группы изобретений, состоит в обеспечении повышенной надежности испытательно-вычислительного определения тяги и других важнейших эксплуатационных характеристик авиационных турбореактивных двигателей за счет менее энерго- и трудоемкого получения и более корректного приведения экспериментально полученных параметров двигателя к параметрам, соответствующим стандартным атмосферным условиям, и в повышении репрезентативности результатов испытаний для полного диапазона полетных циклов в климатических условиях различных регионов с учетом посезонного варьирования эксплуатации двигателя. Это достигают тем, что перед проведением испытаний создают математическую модель двигателя. Проводят испытания репрезентативного количества трех-пяти двигателей по разработанной программе и спектру режимов испытаний. По результатам испытаний корректируют математическую модель, посредством которой на базе последующих испытаний при конкретных температурах определяют параметры двигателя при стандартных атмосферных условиях и различных температурах в объеме принятой программы. Фактические значения параметров относят к стандартным, вычисляют поправочные коэффициенты к измеренным параметрам, причем приведение последних осуществляют умножением измеренных значений на отклонение факта от нормы с учетом поправочных коэффициентов. Это позволяет упростить последующие испытания, повысить корректность и расширить репрезентативность оценки важнейших характеристик, в первую очередь, тяги на всех этапах доводки, опытного и серийного промышленного производства и летной эксплуатации турбореактивных двигателей с корректным распространением репрезентативных оценок на широкий диапазон региональных и сезонных условий последующей летной эксплуатации двигателей, выполняемой в соответствии с изобретением.

Испытания турбореактивного двигателя проводят на различных режимах с параметрами, которые соответствуют параметрам полетных режимов по программе для конкретной серии двигателей. В процессе испытаний производят замеры и осуществляют приведение полученных значений параметров к стандартным атмосферным условиям. Приведение производят с учетом изменения свойств рабочего тела и геометрических характеристик проточной части турбореактивного двигателя при изменении атмосферных условий. Для этого предварительно создают математическую модель турбореактивного двигателя по типу см., например, Ю.А.Литвинов, В.О.Боровик. Характеристики и эксплуатационные свойства авиационных турбореактивных двигателей. М.: Машиностроение, 1979, стр.90-91, 106-107. Корректируют ее по результатам стендовых испытаний репрезентативного количества, обычно от трех до пяти, идентичных турбореактивного двигателей одной серии. Затем по математической модели определяют параметры турбореактивного двигателя при стандартных атмосферных условиях и различных температурах атмосферного воздуха в пределах, предусмотренных программой для испытания двигателя на максимальных и форсированных режимах. Причем фактические значения параметров при конкретных температурах атмосферного воздуха каждого режима испытаний относят к значениям параметров при стандартных атмосферных условиях. Вычисляют поправочные коэффициенты к измеренным параметрам в зависимости от температуры атмосферного воздуха. Приведение измеренных параметров к стандартным атмосферным условиям осуществляют умножением измеренных значений на коэффициенты, учитывающие отклонение атмосферного давления от стандартного, и поправочный коэффициент, отражающий зависимость измеренных значений параметров от температуры атмосферного воздуха, зарегистрированной при конкретных испытаниях турбореактивного двигателя. Затем с учетом полученных данных выполняют последующий цикл испытаний с наибольшим нагружением двигателя, включающем быстрый выход на максимальный или полный форсированный режим, быстрый сброс на режим малого газа с возможностью останова двигателя.

В другом варианте испытания турбореактивного двигателя проводят с последовательной совокупностью действий предыдущего варианта. Затем с учетом полученных данных дополнительно выполняют последовательный цикл испытаний с наибольшим нагружением двигателя, включающем быстрый выход на максимальный или полный форсированный режим, быстрый сброс на режим малого газа с возможностью останова двигателя. Быстрый выход на максимальный или форсированный режимы, по меньшей мере, на части общего испытательного цикла осуществляют в темпе приемистости и сброса применительно к полетным циклам для боевого и учебного применения турбореактивного двигателя.

При необходимости повышения объемной достоверности спектра режимов испытаний, по меньшей мере, до 20% циклов испытания турбореактивного двигателя выполняют без прогрева на режиме малый газ после запуска.

В способе производства турбореактивного двигателя проектируют и/или осуществляют привязку с необходимыми изменениями и/или усовершенствованиями ранее разработанного проектного решения, под заданные параметры разрабатываемого турбореактивного двигателя. Изготавливают опытный образец. Производят испытания любым описанным выше способом испытания ТРД на соответствие заданным параметрам двигателя. Проводят доводку, устраняют выявленные недостатки и несоответствия разрабатываемому решению и проводят испытания на определение фактических характеристик двигателя. По завершении программы испытаний анализируют полученные результаты, устраняют выявленные недостатки, при необходимости вносят изменения в конструкцию или в отдельные узлы ТРД и считают опытный образец выполненным и соответствующим заданной программе.

Турбореактивный двигатель выполнен двухконтурным, содержит корпус, опертые на него турбины и компрессоры с роторами, по меньшей мере, одну охлаждаемую камеру сгорания, топливно-насосную группу, гидравлические топливную и масляную систему, реактивное сопло, по меньшей мере, которое выполнено с изменяющимся критическим сечением, и систему управления с командным и исполнительными органами. Двигатель испытан любым описанным выше способом испытания на определение фактических характеристик ресурса и надежности двигателя, по меньшей мере, на одной из стадий, а именно на стадиях доводки, либо в составе партии двигателей серийного промышленного производства, и/или испытан в процессе эксплуатации после капитального ремонта.

Вариантно турбореактивный двигатель выполняют двухвальным и оснащают форсажной камерой.

Вариантно турбореактивный двигатель выполняют трехвальным, содержащим компрессоры и турбины низкого, среднего и высокого давлений и реактивное сопло с изменяемым вектором тяги.

Для обеспечения устойчивой работы в перевернутом положении, характерном для длительного полета летательного аппарата (ЛА) при выполнении фигур высшего пилотажа или в боевых условиях, газотурбинный двигатель может быть оснащен модифицированной гидравлической масляной системой. Такая система снабжена двумя насосными группами, разводками масляных магистралей и системами форсунок, подающих смазочную жидкость к трущимся элементам узлов. Этим обеспечивают возможность бесперебойного снабжения узлов смазочной жидкостью в указанных экстремальных режимах работы двигателя.

В способе промышленного производства турбореактивного двигателя осуществляют, по меньшей мере, заводскую сборку двигателя. Монтируют корпус и силовые агрегаты двигателя, включая компрессоры, турбины, не менее чем одну камеру сгорания, реактивное сопло, воздушную, а также топливную и масляную гидравлические системы, мониторинговые, командные и исполнительные элементы, блоки и агрегаты системы управления. Производят стендовые испытания любым описанным выше способом испытания промышленно собранного серийного двигателя. В составе испытаний производят определение фактического ресурса и надежности работы двигателя и осуществляют проверку результатов на соответствие заданным значениям с последующим переводом результатов испытаний, полученных в конкретных атмосферно-климатических условиях, к значениям, соответствующим стандартным атмосферным условиям, с возможностью последующего пересчета конечных результатов, при необходимости, применительно к любым другим требуемым атмосферно-климатическим условиям, для работы в которых предназначен тот или иной серийный двигатель или партия одновременно произведенных идентичных турбореактивных двигателей с возможностью внесения указанных сведений в техническую документацию двигателя.

Способ эксплуатации турбореактивного двигателя включает проверку готовности двигателя к работе перед каждым запуском. Производят запуск, прогрев и вывод двигателя на рабочие режимы, предусмотренные регламентом, останов двигателя. Периодически производят профилактические осмотры и текущие, а также, по меньшей мере, один капитальный ремонт. После капитального ремонта турбореактивный двигатель подвергают стендовым испытаниям любым описанным выше способом испытания на определение фактического ресурса и надежности работы двигателя и соответствия требуемым параметрам с приведением результатов испытаний к условиям стандартной атмосферы. При необходимости производят послеремонтную доводку и/или выполняют повторные испытания. Производят пересчет результатов на заданные температуры и режимы послеремонтной эксплуатации с использованием математической модели турбореактивного двигателя и приемов приведения параметров любым описанным выше способом.

Испытания авиационных турбореактивных двигателей производят на этапах доводки, опытного и промышленного производства и эксплуатации следующим образом.

Пример реализации способа испытания турбореактивного двигателя (ТРД)

Испытаниям подвергают репрезентативную группу из трех-пяти ТРД. При этом используют предварительно разработанную математическую модель двигателя. Испытания указанной группы ТРД проводят при температуре tвx=0°C, Ba=745 мм рт.ст.

По результатам замеров и их статистического обобщения получают значения параметров: усилия тяги двигателя R=985 кгс и частоту вращения n=98,8%.

Для последующей оценки результатов испытаний используют математическую модель двигателя, по которой проводят расчет параметров на различных режимах работы двигателя в диапазоне температур воздуха на входе в двигатель, в том числе и при tвх=+15°C. Результаты расчета представлены в Табл.1

Табл.1
tвx, °C -15 0 +15 +30
Температура на входе в двигатель
R, кгс 1000 980 970 950
Усилие тяги
n,%
Частота вращения 98 99 100 100

Сопоставляют полученные выше данные и вычисляют поправочные коэффициенты путем отношения значения параметра при tвx=+15°C к значениям параметра в заданном диапазоне температур на входе в двигатель (Табл.2)

Табл.2
tвx, °C -15 ±0 +15 +30
Kr 0,97 0,99 1 1,021
Kn 1,02 1,01 1 1

Затем определяют параметры при стандартных атмосферных условиях (МСА)

кгс,

nМСА=n×Kn=98,8×1,01=99,79%

и вносят полученные данные в сопроводительную документацию соответствующей группы TPД.

Используют полученные выше параметры ТРД для вычисления соответствующих параметров применительно к температурно-климатическим условиям конкретных районов эксплуатации двигателей в диапазоне рабочих температур наружного воздуха tвх=±50°С. Экстремальные для указанного диапазона температур значения параметров ТРД, полученные на основе результатов испытаний с использованием математической модели и данных при стандартных атмосферных условиях (МСА), представлены в Табл.3 и Табл.4.

Табл.3
tвх, °С
Температура на входе в двигатель -50 -15 0 +15 +20 +50
R, кгс
Усилие от тяги 1200 1000 980 970 950 900
n, %
Частота вращения 96 98 99 100 100 100

Табл.4
tвх, °С -50 -15 0 +15 +20 +50
KR 0,81 0,97 0,99 1 1,021 1,078
Kn 1,042 1,02 1,01 1 1 1

Из Табл.3 и Табл. 4 видно, что тяга в экстремальном диапазоне температур от (-50)°С до (+50)°С изменяется на одну треть при изменении оборотов на 4%.

Таким образом, изобретение позволяет повысить достоверность результатов испытаний турбореактивных двигателей с учетом принятых программ управления.

Изложенную выше последовательность испытания ТРД применяют на всех этапах от разработки и доводки до промышленного производства, эксплуатации и капитального ремонта авиационных двигателей.

Источник поступления информации: Роспатент

Showing 61-70 of 377 items.
20.03.2014
№216.012.acac

Химический вертикальный электронасосный агрегат с рабочим колесом закрытого типа и способ перекачивания химически агрессивных жидкостей

Изобретение относится к насосостроению, а именно к химическим вертикальным центробежным электронасосным агрегатам. Агрегат включает привод - электродвигатель, переходник с силовой муфтой и центробежный полупогружной насос. Корпус насоса выполнен сборным и включает размещенный над опорной...
Тип: Изобретение
Номер охранного документа: 0002509919
Дата охранного документа: 20.03.2014
20.03.2014
№216.012.acad

Конструктивно-технологический модельный ряд химических вертикальных насосов (варианты)

Изобретение относится к насосостроению, а именно к химическим вертикальным центробежным насосам. Каждый репрезентативный насос из конструктивно-технологического модельного ряда содержит однотипную конструктивную систему. Каждый насос выполнен центробежным, полупогружным, снабжен опорной плитой....
Тип: Изобретение
Номер охранного документа: 0002509920
Дата охранного документа: 20.03.2014
20.03.2014
№216.012.acae

Химический горизонтальный насос с рабочим колесом открытого типа

Изобретение относится к насосостроению, а именно к конструкциям химических горизонтальных центробежных насосов с рабочим колесом открытого типа, предназначенных для перекачивания химически агрессивных жидкостей. Предлагаемый насос выполнен одноступенчатым, консольного типа, содержит ходовую и...
Тип: Изобретение
Номер охранного документа: 0002509921
Дата охранного документа: 20.03.2014
20.03.2014
№216.012.acaf

Химический вертикальный насос с рабочим колесом закрытого типа

Изобретение относится к насосостроению, а именно к вертикальным насосам для перекачивания химически агрессивных жидкостей. Насос выполнен центробежным полупогружным, содержит корпус, в котором установлен ротор с валом и рабочим колесом закрытого типа, и снабжен опорной плитой. Корпус насоса...
Тип: Изобретение
Номер охранного документа: 0002509922
Дата охранного документа: 20.03.2014
20.03.2014
№216.012.acb0

Химический вертикальный электронасосный агрегат с рабочим колесом открытого типа и способ перекачивания химически агрессивных жидкостей

Изобретение относится к насосостроению. Агрегат включает привод в виде электродвигателя, переходник с силовой муфтой и центробежный полупогружной насос. Корпус насоса выполнен сборным и включает размещенный над опорной плитой корпус ходовой части, а также прикрепленный к опорной плите снизу...
Тип: Изобретение
Номер охранного документа: 0002509923
Дата охранного документа: 20.03.2014
20.03.2014
№216.012.acb1

Вертикальный пульповый насос с рабочим колесом открытого типа (варианты)

Изобретение относится к пульповым насосам вертикального типа. Насос выполнен центробежным, консольным, полупогружным, содержит корпуса ходовой и проточной части. Корпус ходовой части оснащен корпусами подшипников и корпусом удлиняющей вставки. Корпуса ходовой части выполнены совместно...
Тип: Изобретение
Номер охранного документа: 0002509924
Дата охранного документа: 20.03.2014
20.03.2014
№216.012.acb2

Способ производства химического вертикального электронасосного агрегата и электронасосный агрегат, выполненный этим способом (варианты)

Изобретение относится к насосостроению. Способ производства включает изготовление сборного корпуса насоса из соединяемых с опорной плитой корпуса ходовой части с подшипниковыми опорами, корпуса подвески и корпуса проточной части, изготовление вала ротора насоса, рабочего колеса, корпуса...
Тип: Изобретение
Номер охранного документа: 0002509925
Дата охранного документа: 20.03.2014
20.03.2014
№216.012.acb3

Способ изготовления электронасосного агрегата модельного ряда и модельный ряд электронасосных агрегатов, изготовленных этим способом

Изобретение относится к способу изготовления пульпового электронасосного агрегата вертикального типа и его конструкции. Способ изготовления агрегата включает сборку насоса. Насос включает корпусы ходовой и проточной частей. Рабочее колесо изготавливают в виде крыльчатки закрытого типа с дисками...
Тип: Изобретение
Номер охранного документа: 0002509926
Дата охранного документа: 20.03.2014
10.04.2014
№216.012.af61

Конструктивно-технологический модельный ряд химических горизонтальных насосов и способ перекачивания химических жидкостных сред насосами конструктивно-технологического модельного ряда (варианты)

Группа изобретений относится к насосостроению, а именно к химическим горизонтальным центробежным насосам. Конструктивно-технологический модельный ряд химических насосов включает совокупность насосов. Каждый насос ряда выполнен по однотипной системе центробежным, одноступенчатым, содержащим вал...
Тип: Изобретение
Номер охранного документа: 0002510612
Дата охранного документа: 10.04.2014
10.04.2014
№216.012.b411

Способ определения температуры газа перед турбиной на форсажном режиме турбореактивного двигателя

Изобретение относится к авиации и предназначено для определения температуры газа при испытаниях и эксплуатации газотурбинных двигателей на форсажных режимах. Техническим результатом, объективно достигаемым при использовании заявленного способа, является повышение точности определения...
Тип: Изобретение
Номер охранного документа: 0002511814
Дата охранного документа: 10.04.2014
Showing 61-70 of 416 items.
20.03.2014
№216.012.acac

Химический вертикальный электронасосный агрегат с рабочим колесом закрытого типа и способ перекачивания химически агрессивных жидкостей

Изобретение относится к насосостроению, а именно к химическим вертикальным центробежным электронасосным агрегатам. Агрегат включает привод - электродвигатель, переходник с силовой муфтой и центробежный полупогружной насос. Корпус насоса выполнен сборным и включает размещенный над опорной...
Тип: Изобретение
Номер охранного документа: 0002509919
Дата охранного документа: 20.03.2014
20.03.2014
№216.012.acad

Конструктивно-технологический модельный ряд химических вертикальных насосов (варианты)

Изобретение относится к насосостроению, а именно к химическим вертикальным центробежным насосам. Каждый репрезентативный насос из конструктивно-технологического модельного ряда содержит однотипную конструктивную систему. Каждый насос выполнен центробежным, полупогружным, снабжен опорной плитой....
Тип: Изобретение
Номер охранного документа: 0002509920
Дата охранного документа: 20.03.2014
20.03.2014
№216.012.acae

Химический горизонтальный насос с рабочим колесом открытого типа

Изобретение относится к насосостроению, а именно к конструкциям химических горизонтальных центробежных насосов с рабочим колесом открытого типа, предназначенных для перекачивания химически агрессивных жидкостей. Предлагаемый насос выполнен одноступенчатым, консольного типа, содержит ходовую и...
Тип: Изобретение
Номер охранного документа: 0002509921
Дата охранного документа: 20.03.2014
20.03.2014
№216.012.acaf

Химический вертикальный насос с рабочим колесом закрытого типа

Изобретение относится к насосостроению, а именно к вертикальным насосам для перекачивания химически агрессивных жидкостей. Насос выполнен центробежным полупогружным, содержит корпус, в котором установлен ротор с валом и рабочим колесом закрытого типа, и снабжен опорной плитой. Корпус насоса...
Тип: Изобретение
Номер охранного документа: 0002509922
Дата охранного документа: 20.03.2014
20.03.2014
№216.012.acb0

Химический вертикальный электронасосный агрегат с рабочим колесом открытого типа и способ перекачивания химически агрессивных жидкостей

Изобретение относится к насосостроению. Агрегат включает привод в виде электродвигателя, переходник с силовой муфтой и центробежный полупогружной насос. Корпус насоса выполнен сборным и включает размещенный над опорной плитой корпус ходовой части, а также прикрепленный к опорной плите снизу...
Тип: Изобретение
Номер охранного документа: 0002509923
Дата охранного документа: 20.03.2014
20.03.2014
№216.012.acb1

Вертикальный пульповый насос с рабочим колесом открытого типа (варианты)

Изобретение относится к пульповым насосам вертикального типа. Насос выполнен центробежным, консольным, полупогружным, содержит корпуса ходовой и проточной части. Корпус ходовой части оснащен корпусами подшипников и корпусом удлиняющей вставки. Корпуса ходовой части выполнены совместно...
Тип: Изобретение
Номер охранного документа: 0002509924
Дата охранного документа: 20.03.2014
20.03.2014
№216.012.acb2

Способ производства химического вертикального электронасосного агрегата и электронасосный агрегат, выполненный этим способом (варианты)

Изобретение относится к насосостроению. Способ производства включает изготовление сборного корпуса насоса из соединяемых с опорной плитой корпуса ходовой части с подшипниковыми опорами, корпуса подвески и корпуса проточной части, изготовление вала ротора насоса, рабочего колеса, корпуса...
Тип: Изобретение
Номер охранного документа: 0002509925
Дата охранного документа: 20.03.2014
20.03.2014
№216.012.acb3

Способ изготовления электронасосного агрегата модельного ряда и модельный ряд электронасосных агрегатов, изготовленных этим способом

Изобретение относится к способу изготовления пульпового электронасосного агрегата вертикального типа и его конструкции. Способ изготовления агрегата включает сборку насоса. Насос включает корпусы ходовой и проточной частей. Рабочее колесо изготавливают в виде крыльчатки закрытого типа с дисками...
Тип: Изобретение
Номер охранного документа: 0002509926
Дата охранного документа: 20.03.2014
10.04.2014
№216.012.af61

Конструктивно-технологический модельный ряд химических горизонтальных насосов и способ перекачивания химических жидкостных сред насосами конструктивно-технологического модельного ряда (варианты)

Группа изобретений относится к насосостроению, а именно к химическим горизонтальным центробежным насосам. Конструктивно-технологический модельный ряд химических насосов включает совокупность насосов. Каждый насос ряда выполнен по однотипной системе центробежным, одноступенчатым, содержащим вал...
Тип: Изобретение
Номер охранного документа: 0002510612
Дата охранного документа: 10.04.2014
10.04.2014
№216.012.b411

Способ определения температуры газа перед турбиной на форсажном режиме турбореактивного двигателя

Изобретение относится к авиации и предназначено для определения температуры газа при испытаниях и эксплуатации газотурбинных двигателей на форсажных режимах. Техническим результатом, объективно достигаемым при использовании заявленного способа, является повышение точности определения...
Тип: Изобретение
Номер охранного документа: 0002511814
Дата охранного документа: 10.04.2014
+ добавить свой РИД