×
27.06.2013
216.012.51a6

Результат интеллектуальной деятельности: СПОСОБ ИССЛЕДОВАНИЯ ОБРАЗЦОВ НЕКОНСОЛИДИРОВАННЫХ ПОРИСТЫХ СРЕД

Вид РИД

Изобретение

№ охранного документа
0002486495
Дата охранного документа
27.06.2013
Аннотация: Использование: для исследования образцов неконсолидированных пористых сред. Сущность: заключается в том, что образец предварительно замораживают, замороженный образец в условиях отрицательной температуры приводят в контакт с замороженным раствором рентгеноконтрастного агента, по окончании насыщения образца проводят компьютерную рентгеновскую микротомографию образца при отрицательных температурах и путем анализа полученного компьютерного томографического изображения определяют пространственное распределение и концентрацию ледяных и/или газогидратных включений, открытой и закрытой пористости, распределение пор по размерам, удельную поверхность в образце. Технический результат: повышение точности оценки характеристик неконсолидированных пористых сред. 9 з.п. ф-лы, 1 ил.

Изобретение относится к области исследования образцов неконсолидированных пористых сред и может быть использовано для изучения открытой или закрытой пористости, распределения пор по размерам, удельной поверхности, пространственного распределения и концентрации ледяных и/или газогидратных включений в поровом пространстве образцов, определения размера включений и т.д.

Большинство методов исследования свойств пористых структур, в частности петрофизических свойств горных пород, разработано для консолидированных материалов (В.М.Добрынин, Б.Ю.Вендельштейн, Д.А.Кожевников, Петрофизика (физика горных пород), М.: "Нефть и газ" РГУ нефти и газа им. И.М.Губкина, 2004 год. - 368 с. ISBN 5-7246-0295-4; Гудок Н.С., Богданович Н.Н., Мартынов В.Г. Определение физических свойств нефтеводосодержащих пород, М.: ООО «Недра-Бизнесцентр», 2007 год. - 592 с. ISBN 978-5-8365-0298-0). Для исследования слабосцементированных пород требуется специальное оборудование и модификация известных методов, чтобы во время измерений сохранялись структура порового пространства и объем образца (US Pat. 4587857, Method for mounting poorly consolidated core samples). Часто возникает необходимость пропитывания образцов специальными растворами, которые, застывая, цементируют поровое пространство, однако при этом возможно нарушение исходного строения и изменение свойств (US Pat. 3941191, Method of consolidating unconsolidated or insufficiently consolidated formations). Известны также и методы исследования, предусматривающие предварительное низкотемпературное замораживание образцов неконсолидированных пористых сред (см., например, O.Torsaeter, The effect of freezing of slightly consolidated cores, SPE Formation Evaluation, 1987, v.2, N3, p.357-360). В дальнейшем для исследования макро и микростроения органоминерального скелета замороженные образцы неконсолидированных пористых сред подвергаются вакумной сублимации. Однако при этом теряется информация о поровых флюидах, кроме того, сублимированные образцы неконсолидированных сред могут деформироваться и рассыпаться, что ведет к неточностям характеристик порового пространства.

Для идентификации органоминерального скелета, порового пространства и замороженных поровых флюидов (ледяных образований, газовых гидратов) предлагается метод улучшения их контрасности, что позволяет производить расчеты характеристи пористого материала и оценки пространственного распределения и концентрирования льда и/или газовых гидратов в поровом пространстве с помощью анализа рентгеновских изображений.

В соответствии с заявленным способом исследования образцов неконсолидированных пород образец предварительно замораживают, в условиях отрицательной температуры приводят в контакт с замороженным раствором рентгеноконтрастного агента, по окончании насыщения образца проводят компьютерную рентгеновскую микротомографию образца при отрицательных температурах и определяют петрофизические характеристики и пространственное распределение, концентрацию ледяных и/или газогидратных включений путем анализа полученного компьютерного томографического изображения.

В качестве рентгеноконтрастного агента используют водорастворимое соединение, в состав которого входит химический элемент, обладающий высокой степенью ослабления рентгеновского излучения.

В качестве химического элемента, обладающего способностью ослаблять рентгеновское излучение, используют элемент с большим атомным весом, а водорастворимое соединение представляет собой его соль или оксид.

В качестве элемента с большим атомным весом может быть использован тяжелый металл из группы Pb, Ba, Sr, Ra и др.

Контакт образца с замороженным раствором рентгеноконтрастного агента осуществляют при температуре ниже температуры фазового перехода лед-вода, то есть плавления льда в образце, предпочтительно от -7°C до -10°C.

Предварительно исследуемый образец мерзлых пород и замороженный раствор рентгеноконтрастного агента могут быть выдержаны при температуре от -7°C до -10°C до стабилизации температуры по образцу.

Компьютерную рентгеновскую микротомографию образца проводят в услових отрицательной температуры, во избежание плавления льда/газогидрата в поровом пространстве, предпочтительно при температуре -7°C до -10°C.

Изобретение поясняется фиг.1, где приведен фрагмент изображения 2-мерного среза 3-мерной цифровой модели неконсолидиррованного речного песка, сцементированного льдом. Изображение получено с помощью эксперимента по рентгеновской микротомографии проводимой при температуре -10°C. Данное изображение получено с применением рентгеноконтрастного агента.

В основе метода рентгеновской микротомографии лежит реконструкция пространственного распределения линейного коэффициента ослабления (ЛКО) рентгеновского излучения в тонких слоях исследуемого образца с помощью компьютерной обработки проекции рентгеновских лучей в различных направлениях вдоль исследуемого слоя.

Величина ЛКО в каждом материале зависит от химического состава, плотности вещества и от энергии излучения:

µ=µmρ,

µm - массовый коэффициент затухания под воздействием рентгеновского излучения (см2/г), ρ - плотность (г/см3).

Заявленное изобретение основано на эффекте диффузии ионов водорастворимых соединений элементов, обладающих способностью ослаблять рентгеновское излучение (например, солей тяжелых металлов), по твердой фазе льда/гидрата в поровом пространстве пород при низких температурах, что обеспечивает улучшение контраста при проведении рентгеновской микротомографии при низких (отрицательных) температурах льда/гидрата.

Подходящими рентгеноконтрастными агентами являются водорастворимые соединения, содержащие элементы с большим атомным номером, например соли тяжелых металлов (Pb, Ba, Sr, Ra и т.д.). В качестве соли тяжелого металла выбирают растворимую соль в соответствии с таблицей растворимости неорганических веществ в воде. Такими солями могут быть: Pb(NO3)2, BaCl2 и др.

В примере реализации изобретения для улучшения рентгеновского контраста льда/газогидрата в поровом пространстве породы использовался замороженный 1% раствор Pb(NO3)2 в качестве источника ионов свинца для диффузии по твердой фазе льда/газогидрата при отрицательных температурах.

Насыщение льда солью металлов ведет, например, к понижению температуры фазового перехода лед-вода, что в свою очередь может приводить к таянию образца при температурах ниже 0°C (фазового перехода лед-вода для дистиллированной воды при нормальном давлении). С другой стороны, при понижении температуры скорость дифузии ионов в образец замедляется, что ведет к увеличению времени контакта для насыщения образца ионами. В общем случае температура при контакте образца с замороженным раствором должна быть меньше температуры фазового перехода лед-вода или газогидрат/вода в образце.

Образец неконсолидированной пористой среды и приготовленный 1% раствор Pb(NO3)2 замораживают при температуре -15°C - -20°C, после чего замороженный раствор и замороженный образец переносят в холодильную камеру с температурой около -7°C, где они выдерживаются до стабилизации температуры. После этого образец устанавливают на замороженный раствор, т.е. осуществляют их непосредственный контакт. Образец в контакте с замороженным раствором выдерживают при изотермических условиях (температура постоянная около -7°C) в течение 7 дней. За это время происходит диффузионное насыщение образца мерзлых пород ионами тяжелого металла. По окончании насыщения контакт образца с замороженным раствором зачищается и образец готов для сканирования на рентгеновском томографе при отрицательных температурах.

Проводят исследование образца с помощью низкотемпературной приставки (Cooling stage, http://www.skyscan.be/products/stages.htm) на рентгеновском микротомографе. Образец сканировался при температуре около -10°C, чтобы избежать таяния льда.

Результатом сканирования является 3-х мерная цифровая модель керна, анализ которой позволяет определить петрофизические характеристики неконсолидированной горной породы, а также распределения льда/газогидрата в поровом пространстве и т.д.


СПОСОБ ИССЛЕДОВАНИЯ ОБРАЗЦОВ НЕКОНСОЛИДИРОВАННЫХ ПОРИСТЫХ СРЕД
Источник поступления информации: Роспатент

Showing 101-110 of 113 items.
09.06.2019
№219.017.7fca

Способ определения смачиваемости пористых материалов

Способ определения смачиваемости пористых материалов предусматривает размещение образца пористого материала в ячейке калориметра и обеспечение контакта образца со смачивающей жидкостью. Осуществляют постоянную регистрацию теплового потока в ячейку и на основании результатов измерения с учетом...
Тип: Изобретение
Номер охранного документа: 0002468353
Дата охранного документа: 27.11.2012
03.07.2019
№219.017.a417

Распознание расклинивающего агента с помощью мобильного устройства

Изобретение относится к анализу размеров и формы частиц. Техническим результатом является быстрый и репрезентативный анализ размеров и формы частиц. Способ анализа размеров и формы частиц, используемых в скважинных операциях, содержащий: получение изображения подложки, включающего эталон...
Тип: Изобретение
Номер охранного документа: 0002693201
Дата охранного документа: 01.07.2019
19.03.2020
№220.018.0d23

Способ вывода на режим скважины, пробуренной в естественно трещиноватом пласте

Изобретение относится к области технологий подготовки скважины, пробуренной в естественно трещиноватом пласте, к выводу на режим, в частности к оптимизации параметров, оказывающих непосредственное влияние на повышение продуктивности скважины после проведения гидравлического разрыва пласта...
Тип: Изобретение
Номер охранного документа: 0002717019
Дата охранного документа: 17.03.2020
21.03.2020
№220.018.0edc

Способ определения физических характеристик однородной среды и ее границ

Изобретение относится к области геофизики и может быть использовано для определения границ однородной среды при обработке сейсмических данных. Согласно заявленному способу осуществляют регистрацию гармонической волны, представляющей собой колебание физической величины вдоль одного...
Тип: Изобретение
Номер охранного документа: 0002717162
Дата охранного документа: 18.03.2020
07.06.2020
№220.018.2527

Способ определения межфазного натяжения между двумя флюидами

Изобретение относится к способам определения межфазного натяжения (МН) между двумя флюидами. Техническим результатом является повышение точности определения МН между двумя флюидами. В соответствии с изобретением предварительно определяют плотность флюидов при заданных давлении и температуре и...
Тип: Изобретение
Номер охранного документа: 0002722896
Дата охранного документа: 04.06.2020
31.07.2020
№220.018.3923

Способ определения работающих интервалов глубин нефтяных и газовых пластов

Изобретение относится к промыслово-геофизическим исследованиям, а именно, к способу скважинной акустической шумометрии. Технический результат заключается в повышении точности и достоверности определения работающих интервалов глубин нефтяных и газовых пластов. В соответствии со способом...
Тип: Изобретение
Номер охранного документа: 0002728123
Дата охранного документа: 28.07.2020
31.07.2020
№220.018.3952

Способ определения распределения объемных долей флюидов по стволу скважины

Изобретение относится к промыслово-геофизическим исследованиям и предназначено для определения объемных долей флюидов по стволу скважины. Техническим результатом заявленного изобретения является повышение точности, достоверности и надежности определения объемных долей флюидов по стволу...
Тип: Изобретение
Номер охранного документа: 0002728119
Дата охранного документа: 28.07.2020
31.07.2020
№220.018.396d

Способ определения характеристик фильтрационного потока в околоскважинной зоне пласта

Изобретение относится к промыслово-геофизическим исследованиям, а именно к способу скважинной акустической шумометрии. Технический результат заключается в повышении точности и достоверности определения характеристик фильтрационных потоков жидкостей и газа в околоскважинной зоне пласта, а также...
Тип: Изобретение
Номер охранного документа: 0002728121
Дата охранного документа: 28.07.2020
31.07.2020
№220.018.3aa1

Способ взаимной калибровки датчиков температуры скважинного флюида, установленных на перфорационной колонне

Изобретение относится к области измерений давления и температуры в скважине во время перфорации и последующего опробования скважины. Технический результат заключается в обеспечении взаимной калибровки датчиков температуры в скважине до проведения перфорации, что в свою очередь обеспечивает...
Тип: Изобретение
Номер охранного документа: 0002728116
Дата охранного документа: 28.07.2020
23.04.2023
№223.018.51d5

Способ прогнозирования гидроразрыва пласта, способ гидроразрыва пласта, способы прогнозирования рисков гидроразрыва пласта

Изобретение относится к нефтегазовой промышленности и может найти применение при стимулировании подземного пласта с помощью операции гидравлического разрыва (ГРП) пласта, в частности, при использовании методов математического моделирования, которые позволяют делать прогноз геометрии трещины ГРП...
Тип: Изобретение
Номер охранного документа: 0002730576
Дата охранного документа: 24.08.2020
Showing 81-84 of 84 items.
09.06.2019
№219.017.7fca

Способ определения смачиваемости пористых материалов

Способ определения смачиваемости пористых материалов предусматривает размещение образца пористого материала в ячейке калориметра и обеспечение контакта образца со смачивающей жидкостью. Осуществляют постоянную регистрацию теплового потока в ячейку и на основании результатов измерения с учетом...
Тип: Изобретение
Номер охранного документа: 0002468353
Дата охранного документа: 27.11.2012
26.06.2019
№219.017.92d1

Способ получения целлюлозосодержащего геля

Изобретение относится к способам получения композиций в виде гелей, содержащих наноразмерную целлюлозу, и может быть использовано в целлюлозно-бумажной, текстильной, химической, пищевой отраслях промышленности. Способ получения целлюлозосодержащего геля, включающий кислотную и окислительную...
Тип: Изобретение
Номер охранного документа: 0002692349
Дата охранного документа: 24.06.2019
10.07.2019
№219.017.a999

Способ добычи природного газа из газогидратной залежи

Изобретение относится к газовой промышленности, в частности, к разработке газогидратных месторождений. Способ добычи природного газа из газогидратной залежи заключается в том, что сооружают скважину на газопроницаемый газогидратный пласт, вскрывают этот пласт и периодически проводят закачку в...
Тип: Изобретение
Номер охранного документа: 0002693983
Дата охранного документа: 08.07.2019
04.11.2019
№219.017.de39

Биоразлагаемая низкотемпературная пластичная смазка и способ ее получения

Изобретение относится к экологичным (биоразлагаемым) низкотемпературным смазкам и может применяться в узлах трения машин и механизмов в условиях Крайнего Севера, при температурах окружающей среды до минус 50°С. Описанная биоразлагаемая низкотемпературная пластичная смазка содержит, % мас.:...
Тип: Изобретение
Номер охранного документа: 0002704968
Дата охранного документа: 01.11.2019
+ добавить свой РИД