×
27.06.2013
216.012.50d4

Результат интеллектуальной деятельности: СПОСОБ МОДИФИКАЦИИ ПОВЕРХНОСТИ МЕТАЛЛОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к технологии финишной обработки поверхности сплавов циркония и может найти применение в атомной промышленности, реакторостроении и металлургии. Способ включает микролегирование поверхностного слоя сплава с помощью магнитно-абразивной обработки магнитно-абразивным порошком с размером частиц от 250 до 600 мкм, с линейной скоростью вращения магнитных полюсов от 500 до 600 м/мин и при величине рабочего зазора между полюсами 2-10 мм с образованием защитного слоя оксидной пленки. В качестве магнитно-абразивного порошка используют порошок, содержащий α-ферромагнитную матрицу с содержанием в ней 50-55% карбида молибдена. Магнитно-абразивную обработку проводят в две стадии: на первой из которых напряженность магнитного поля в рабочем зазоре 1-1,5 Тл в течение 1-1,5 мин, и на второй стадии - напряженность магнитного поля 0,2-0,4 Тл в течение 1-0,5 мин. Технический результат: повышение и стабилизация величины напряжения пробоя, что повысит надежность эксплуатации тепловыделяющих элементов ядерного реактора. 2 пр.
Основные результаты: Способ модификации поверхности циркониевого сплава, включающий микролегирование поверхностного слоя сплава с помощью магнитно-абразивной обработки магнитно-абразивным порошком с размером частиц от 250 до 600 мкм, с линейной скоростью вращения магнитных полюсов от 500 до 600 м/мин и величиной рабочего зазора между полюсами 2-10 мм с образованием защитного слоя оксидной пленки, отличающийся тем, что в качестве магнитно-абразивного порошка используют порошок, содержащий α-ферромагнитную матрицу с содержанием в ней 50-55% карбида молибдена, при этом магнитно-абразивную обработку проводят в две стадии, на первой из которых напряженность магнитного поля в рабочем зазоре 1-1,5 Тл в течение 1-1,5 мин, и на второй стадии - напряженность магнитного поля 0,2-0,4 Тл в течение 1-0,5 мин.

Изобретение относится к технологии финишной обработки поверхности сплавов циркония и может найти применение в атомной промышленности, реакторостроении и металлургии.

Известен способ финишной обработки изделий из сплавов циркония, который заключается в снятии поверхностного слоя в смесях, содержащих плавиковую кислоту [Займовский А.С., Никулина А.В., Решетников Н.Г. Циркониевые сплавы в атомной энергетике. - М.: Энергоиздат, 1981. - 231 с.]. Существенным недостатком такой операции является неизбежное загрязнение поверхности фторидами, что ведет к нежелательным изменениям структуры в кристаллической решетке при облучении, из-за чего такие изделия не выдерживают испытаний в аварийных условиях.

Наиболее близким по технической сущности является способ модификации поверхности металлов, заключающийся в микролегировании поверхностного слоя металлов с помощью магнитно-абразивной обработки порошками, содержащими карбиды переходных металлов IV-VI групп Периодической системы, при скорости магнитно-абразивного резания не менее 500 м/мин, напряженности магнитного поля в рабочем зазоре между полюсами 0,4-0,7 Тл и величине рабочего зазора 2-5 мм [Патент РФ №2200771, МПК C23C 26/00. Способ модификации поверхности металлов. / К.Н.Никитин, В.К.Орлов, ИА.Шлепов (РФ). - №2001114427/02; заявл. 30.05.2001; опубл. 20.03.2003. - С.4]. Этот способ выбран за прототип.

Однако известно [Никитин К.Н., Балицкий В.Н., Н.Е.Некрасова. Влияние магнитно-абразивной обработки поверхности на коррозионные свойства оксидных пленок на сплаве циркония // «Современные аспекты твердотельной электрохимии». Сборник тезисов докладов. - М.: НИФХИ им. Л.Я,Карпова, октябрь-ноябрь, 2009, - с.153], что на сплаве, используемом в реакторостроении, Zr-1%Nb-1,2%Sn-0,35%Fe, обработанном таким способом, не формируется стабильный защитный оксидный слой, так как измерения напряжения пробоя показали, что оно колеблется в широком интервале 26-168 В. Такие защитные пленки не могут обеспечить высокую надежность эксплуатации тепловыделяющий сборок в условиях эксплуатации первого контура ядерного реактора.

Задачей данного изобретения является повышение и стабилизация величины напряжения пробоя, что повысит надежность эксплуатации тепловыделяющих элементов ядерного реактора, изготовленных из сплава Zr-1%Nb-1,2%Sn-0,35%Fe.

Поставленная задача решается тем, что повышение коррозионных характеристик защитного слоя оксидной пленки циркониевого сплава, характеризуемое напряжением пробоя, достигается микролегированием поверхностного слоя атомами металлов и окружающей атмосферы с помощью магнитно-абразивной обработки с размером частиц магнитно-абразивного порошка от 250 до 600 мкм, и скорости относительного перемещения детали и инструмента от 500 до 600 м/мин, и величине рабочего зазора между полюсами 2-10 мм, причем проводят магнитно-абразивную обработку сплава циркония Zr-1%Nb-1,2%Sn-0,35%Fe с использованием в качестве магнитно-абразивного порошка α-ферромагнитной матрицы, в которой содержится 50-55% карбида молибдена, а магнитно-абразивную обработку проводят в две стадии: на первой стадии при напряженности магнитного поля в рабочем зазоре 1-1,5 Тл в течение 1-1,5 мин, и на второй стадии при напряженности магнитного поля 0,2-0,4 Тл в течение 1-0,5 мин.

Изобратание иллюстрируется следующими примерами:

Пример 1. Трубчатые образцы из сплава Zr-1%Nb-1,2%Sn-0,35%Fe обрабатывают на установке для магнитно-абразивной обработки, с помощью магнитно-абразивного порошка, содержащего α-ферромагнитную матрицу Fe+55% Mo2C с фракцией 300-600 мкм без смазочно-охлаждающей жидкости (СОЖ), при величине рабочего зазора 2 мм и линейной скорости вращения магнитных полюсов 500 м/мин. Магнитно-абразивную обработку проводят в две стадии. На первой стадии магнитную индукцию в рабочем зазоре увеличивают до 1,5 Тл и обработку проводят в течение 1 мин. На второй стадии магнитную индукцию в рабочем зазоре уменьшают до 0,4 Тл и обработку проводят в течение 0,5 мин. Поверхность образцов после магнитно-абразивной обработки в таком режиме, в отличие от обычной серебристо-матовой, выглядит слегка загорелой и более матовой.

Образующийся модифицированный слой заметно изменяет электрофизические и коррозионные свойства сплава. При коррозионных испытаниях в воде при 350°C и давлении 200 атм через 2000 час привес составляет 25,0 мг/дм2, сравнимый с привесом 27,0 мг/дм2 для образцов после обычного травления во фтористоводородной ванне и сравнимый с привесом 26,0 мг/дм2 после магнитно-абразивной обработки, проводимой в одну стадию при использовании того же магнитно-абразивного порошка.

Напряжение пробоя слоя оксида после 2000 ч испытаний в автоклаве, характеризующее толщину защитного слоя оксидной пленки, для образцов после двустадийной магнитно-абразивной обработки достигает величины 210 В, что много выше напряжения пробоя 76 В для образцов после обычного травления во фтористоводородной ванне после тех же испытаний и выше чем напряжение пробоя 122 В для образцов после одностадийной магнитно-абразивной обработки после тех же испытаний.

Пример 2. Трубчатые образцы из сплава Zr-1%Nb-1,2%Sn-0,35%Fe обрабатывают на установке для магнитно-абразивной обработки, с помощью магнитно-абразивного порошка, содержащего α-ферромагнитную матрицу Fe+50% Mo2C с фракцией 250-500 мкм без смазочно-охлаждающей жидкости (СОЖ). При величине рабочего зазора 10 мм и линейной скорости вращения магнитных полюсов 600 м/мин. В отличие от обычного одностадийного режима магнитно-абразивную обработку проводят в две стадии. На первой стадии магнитную индукцию в рабочем зазоре увеличивают до 1 Тл и обработку проводят в течение 1,5 мин. На второй стадии магнитную индукцию в рабочем зазоре уменьшают до 0,2 Тл и обработку проводят в течение 1 мин. Поверхность образцов после магнитно-абразивной обработки в таком режиме, в отличие от обычной серебристо-матовой, выглядит слегка загорелой и более матовой.

Напряжение пробоя электрической емкости барьерного слоя оксида после 2000 ч испытаний в автоклаве, характеризующее толщину защитного слоя оксидной пленки, для образцов после двустадийной магнитно-абразивной обработки достигает величины 221 В, что много выше напряжения пробоя 76 В для образцов после обычного травления во фтористоводородной ванне после тех же испытаний и выше чем напряжение пробоя 168 В для образцов после одностадийной магнитно-абразивной обработки после тех же испытаний.

Как видно из приведенных примеров, при обработке поверхности сплава Zr-1%Nb-1,2%Sn-0,35%Fe по предложенному способу напряжение пробоя оксидной пленки поле испытаний в условиях, моделирующих ядерный реактор, составляет 210-221 В, что значительно превосходит соответствующие значения, полученные при использовании известных способов, - травление в HF (53-76 В) и магнитно-абразивной обработки в одну стадию (26-168 В). Таким образом, использование предлагаемого способа позволит увеличить надежность эксплуатации тепловыделяющих сборок АЭС.

Способ модификации поверхности циркониевого сплава, включающий микролегирование поверхностного слоя сплава с помощью магнитно-абразивной обработки магнитно-абразивным порошком с размером частиц от 250 до 600 мкм, с линейной скоростью вращения магнитных полюсов от 500 до 600 м/мин и величиной рабочего зазора между полюсами 2-10 мм с образованием защитного слоя оксидной пленки, отличающийся тем, что в качестве магнитно-абразивного порошка используют порошок, содержащий α-ферромагнитную матрицу с содержанием в ней 50-55% карбида молибдена, при этом магнитно-абразивную обработку проводят в две стадии, на первой из которых напряженность магнитного поля в рабочем зазоре 1-1,5 Тл в течение 1-1,5 мин, и на второй стадии - напряженность магнитного поля 0,2-0,4 Тл в течение 1-0,5 мин.
Источник поступления информации: Роспатент

Showing 11-17 of 17 items.
12.01.2017
№217.015.5cc9

Способ электромембранной регенерации раствора снятия хромовых покрытий

Изобретение относится к гальванотехнике и может использоваться на участках гальванического хромирования. Способ регенерации раствора для снятия хромового покрытия, содержащего гидроксид и хромат натрия, включает проведение электрохимической обработки регенерируемого раствора в камерах...
Тип: Изобретение
Номер охранного документа: 0002591025
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.86f1

Способ получения нитрата церия (iv)

Изобретение относится к способу получения нитрата церия (IV) электрохимическим окислением нитрата церия (III) в анодной камере электролизера, содержащей раствор с начальной концентрацией ионов церия (III) 100-130 г/л и начальной концентрацией свободной азотной кислоты в анолите и в католите...
Тип: Изобретение
Номер охранного документа: 0002603642
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.8741

Способ электромембранной регенерации раствора снятия кадмиевых покрытий и устройство для его осуществления

Изобретение относится к регенерации технологических растворов. Способ регенерации раствора для снятия кадмиевого покрытия, содержащего нитрат аммония 100-200 г/л, включает электролиз регенерируемого раствора в двухкамерном электролизере с катионообменной мембраной, катодом из нержавеющей стали...
Тип: Изобретение
Номер охранного документа: 0002603522
Дата охранного документа: 27.11.2016
25.08.2017
№217.015.c138

Способ электроосаждения покрытий никель-фосфор

Изобретение относится к области гальванотехники и может быть использовано при нанесении покрытий с повышенной твердостью и износостойкостью. Способ включает нанесение покрытия из электролита, содержащего сульфат никеля семиводный, аминоуксусную кислоту, хлорид-ион, гипофосфит натрия одноводный,...
Тип: Изобретение
Номер охранного документа: 0002617470
Дата охранного документа: 25.04.2017
25.08.2017
№217.015.cbcc

Способ электрохимической регенерации медно-аммиачного травильного раствора

Изобретение относится к гальванотехнике. Способ включает электрохимическую обработку регенерируемого медно-аммиачного травильного раствора в трехкамерном электролизере с двумя катодными камерами и двумя катионообменными мембранами, причем сначала регенерируемый раствор подвергают...
Тип: Изобретение
Номер охранного документа: 0002620228
Дата охранного документа: 23.05.2017
26.08.2017
№217.015.dcdf

Способ изготовления массивов кобальтовых нанопроволок

Изобретение относится к изготовлению массивов кобальтовых нанопроволок в порах трековых мембран. Способ включает электроосаждение кобальта в поры трековых мембран из электролита, содержащего CoSO⋅7HO - 300-320 г/л, HBO - 30-40 г/л, при рН 3,5-3,8 и температуре 40-45°С. Электроосаждение проводят...
Тип: Изобретение
Номер охранного документа: 0002624573
Дата охранного документа: 04.07.2017
19.01.2018
№218.016.05ed

Способ электролитического осаждения медных покрытий

Изобретение относится к области гальванотехники и может быть использовано в производстве печатных плат и других компонентов электронных устройств. Способ электролитического осаждения медных покрытий из электролита, содержащего пентагидрат сульфата меди и серную кислоту, с использованием...
Тип: Изобретение
Номер охранного документа: 0002630994
Дата охранного документа: 15.09.2017
Showing 11-13 of 13 items.
13.01.2017
№217.015.6b96

Способ химического нанесения покрытий из сплава никель-медь-фосфор

Изобретение относится к химическому нанесению металлических покрытий из сплавов на основе никеля. Способ включает выдержку изделий в водном растворе, содержащем компоненты при следующем соотношении, моль/л: соль никеля 0,075-0,125; соль меди - 0,0008-0,008, соль свинца (0,6-1,2)·10; гипофосфит...
Тип: Изобретение
Номер охранного документа: 0002592601
Дата охранного документа: 27.07.2016
13.01.2017
№217.015.6c53

Способ химического нанесения покрытий из сплава никель-фосфор

Изобретение относится к химическому нанесению металлических покрытий из сплавов на основе никеля и может найти применение в машиностроении, приборостроении и авиастроении для создания коррозионно-стойких, износостойких и декоративных покрытий. Способ включает выдержку изделий в водном растворе,...
Тип: Изобретение
Номер охранного документа: 0002592654
Дата охранного документа: 27.07.2016
25.08.2017
№217.015.9d4a

Редиспергируемый в воде полимерный порошок

Изобретение относится к редиспергируемым в воде полимерным порошкам на основе акриловых сополимеров и акриламида, которые могут быть использованы в качестве полимерного связующего в строительных смесях, в качестве пленкообразующего компонента в лакокрасочных материалах и клеях, в качестве...
Тип: Изобретение
Номер охранного документа: 0002610512
Дата охранного документа: 13.02.2017
+ добавить свой РИД