×
27.06.2013
216.012.508c

Результат интеллектуальной деятельности: СПОСОБ ПОВЫШЕНИЯ МЕХАНИЧЕСКИХ СВОЙСТВ ПОЛИМЕРНОГО НАНОКОМПОЗИЦИОННОГО МАТЕРИАЛА НА ОСНОВЕ АНИЗОДИАМЕТРИЧЕСКОГО НАПОЛНИТЕЛЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу повышения механических свойств полимерного нанокомпозиционного материала на основе анизодиаметрического наполнителя. Согласно способу экструдируют и затем прессуют полученный экструдат. После экструзии проводят рентгеноструктурный анализ РСА экструдата для определения в нем ориентации частиц анизодиаметрического наполнителя относительно оси экструдата. Перед прессованием располагают экструдат в пресс-форме таким образом, чтобы ось основного направления ориентированных хлопьевидных частиц анизодиаметрического наполнителя совпадала с продольной осью пресс-формы и, соответственно, получаемой пленки. Изобретение позволяет повысить прочность получаемых изделий. 4 з.п. ф-лы, 2 табл., 2 пр.

Изобретение относится к области получения изделий из полимерных нанокомпозиционных материалов с анизодиаметрическими наноразмерными наполнителями. Результатом изобретения является создание изделий из нанокомпозиционного материала различной толщины с высокими механическими свойствами (см. табл.1, 2).

Состав: композиты из ПЭВД в количестве от 80-99%, слоистого нанонаполнителя в количестве 0,1-15%, технологических добавок (пластификаторов, антиоксидантов, пластификаторов) 0-4%, полученные прямым смешением в расплаве при температурах 170-220°С с последующей экструзией и прессованием пленок, толщиной от 0,18 мм до 4 мм, с предварительной ориентацией экструдата.

Известен метод получения эксфолиированных нанокомпозитов полимер/глина посредством твердофазного сдвигового измельчения (патент US №7223359). По этому методу эксфолиированные нанокомпозиты заданного состава (с низкими степенями наполнения) получают в две стадии. На первой наполнитель, предварительно модифицированный поверхностно-активным веществом - ПАВ (для улучшения совместимости с полимером), смешивают с расплавом полимера. Далее охлажденную ниже температуры плавления матрицы композицию перерабатывают в двухшнековом экструдере, в процессе чего в результате приложения больших сдвиговых напряжений происходит разделение слоистого силиката (глины) на отдельные пластины.

Известен способ получения эксфолиированного нанокомпозита полимер/глина (патент ЕР №105570). По этому способу нанонаполнитель - глину, модифицированную ПАВ - четвертичной аммониевой солью, смешивают с карбоновой кислотой или сульфокислотой, а затем в экструдере с расплавленным полимером при сдвиговом измельчении. При этом количество модифицированной глины составляет 1-40% масс. от полимера.

Недостатком всех известных способов является низкая разрывная прочность пленок, полученных из указанных составов.

Техническим результатом изобретения является получение композитов с разрывной прочностью, повышенной по сравнению с композитами того же состава и режима переработки, но не прошедшими данную стадию.

Технический результат достигается тем, что способ повышения механических свойств полимерного нанокомпозиционного материала на основе анизодиаметрического наполнителя, включает экструзию и последующее прессование полученного экструдата для изготовления пленки, причем после экструзии проводят рентгеноструктурный анализ РСА экструдата для определения в нем ориентации частиц анизодиаметрического наполнителя относительно оси экструдата, перед прессованием располагают экструдат в пресс-форме таким образом, чтобы ось основного направления ориентации хлопьевидных частиц анизодиаметрического наполнителя совпадала с продольной осью пресс-формы и, соответственно, получаемой пленки.

В частном случае реализации пленку из нанокомпозиционного материала прессуют толщиной не более 0,7 мм.

В другом частном случае реализации проводят дополнительное прессование стопки пленок толщиной не более 0,7 мм каждая до получения изделия общей толщиной не более 0,7 мм.

Возможен также вариант, когда для получения толстых пленок все пленки толщиной не более 0,7 мм укладываются в стопку хаотично относительно продольной оси пресс-формы.

В качестве наноразмерного анизодиаметрического наполнителя используют слоистый силикат, модифицированный алифатическими четвертичными аммониевыми солями - диметилдиоктадециламмонийбромидом или цетилтриметиламмонийбромидом.

Сущность способа заключается в следующем. При проведении механических испытаний обычно предполагают, что для полимеров применим принцип подобия. Поскольку основные механические характеристики - напряжение и удлинение - являются относительными величинами (отнесенными, соответственно, на исходные сечение и длину), они должны быть примерно одинаковы у образцов одного состава, имеющих разные геометрические размеры. Между тем, если обратиться к практике, то становится понятно, что принцип подобия часто не выполняется. Связь между размерами полимерных образцов и их прочностью (масштабный фактор) была изучена в работах Г.М.Бартенева, основные результаты которых суммированы в монографии [Бартенев Г.М. Прочность и механизм разрушения полимеров. М.: Химия, 1984]. Было установлено, что с увеличением толщины исследованных полимеров кривая распределения прочности смещается в область меньших значений, что обусловлено статистической природой прочности (с увеличением размеров полимерного образца вероятность содержания опасных дефектов увеличивается).

Исследования были выполнены на чистых полимерах. Отмечается, что в основе зависимости механических характеристик от размеров образцов может лежать не только наличие дефектов, однако и структурные отличия, но детально этот вопрос не исследовался.

Особенно важное значение этот фактор имеет для наполненных систем с наноразмерными наполнителями, так как механическая анизотропия в массивных образцах обусловлена различной ориентацией анизодиаметрических наночастиц в полимерной матрице, хотя влияние дефектов (в качестве которых могут выступать и частицы наполнителя) также остается сильным. С помощью метода РСА показано, что анизодиаметрические наночастицы слоистых силикатов по-разному текстурируются при прессовании изделий различного размера. Это обусловлено разной интенсивностью течения расплава полимера при прессовании изделий различного размера. В результате организации течения полимерного нанокомпозита можно провести планарное текстурирование наночастиц наполнителя, следствием чего является значительное повышение механических свойств изделия.

Полученные результаты касаются следующего:

1. Полученные композиты обладают повышенным в 2 раза модулем упругости по сравнению с чистым ПЭ, подвергшимся той же переработке.

2. Применение ориентации перед прессованием позволяет получить изделия с разрывной прочностью, повышенной на 40-120%, деформацией на 570% по сравнению с композитами того же состава и режима переработки, но не прошедшими данную стадию.

3. Применение описанного способа позволяет улучшить распределение слоистого силиката в полученных пленках. В результате наполнитель в виде хлопьев располагается в плоскости получаемой пленки планарно.

4. Применение тонкопленочной методики позволяет получить пленки с различной ориентацией по поверхности и в глубинных слоях, позволяя получать структуры, подобные ламинированным, без усложнения технологического процесса.

Авторами изобретения установлено, что при расположении основного направления хлопьев наполнителя под углом к продольной оси пленки механические свойства полимерного нанокомпозиционного материала резко ухудшаются.

Наиболее важным новым приемом в заявленном способе является то, что ориентацию хлопьевидного наполнителя определяют методом РСА, т.е. не подбирают на стадии получения композитов, а ориентируют потом в процессе формования.

ПРИМЕР 1

Механические свойства образцов различной толщины, изготовленных прессованием экструдатов, при различных направлениях вырубки «лопатки» из диска относительно оси экструдата. Состав нанокомпозита ПЭ 107-2К - 85% масс., Cloisite 20A - 15% масс. (Cloisite 20А - монтмориллонит хлопьеобразный нанонаполнитель обработанные ПАВ (модифицированный)).

Таблица 1
Толщина образца, мм Направление вырубки «лопатки» из диска относительно оси экструдата Модуль Е, МПа Предел текучести σпр.тек, МПа Прочность δпр.пр, МПа Деформация ε, %
0,7 Вдоль 130±1,8 8,2±0,2 11,6±0,9 500±46
Перпендикулярно 140±1,8 8,8±0,01 12,0±0,6 520±36
2,0 Вдоль 197±35 8,5±0,1 11,7±0,8 460±34
Перпендикулярно 157±27 7,3±0,1 7,5±0,2 80±68

Механические характеристики пленки толщиной 0,7 мм при всех направлениях вырубки образцов одинаковые. У образцов толщиной 2,0 мм механические характеристики пленки при направлении вырубки вдоль оси экструдата значительно выше, чем в перпендикулярном направлении.

ПРИМЕР 2

Механические свойства образцов, полученных из нанокомпозита состава ПЭ 107-2К - 85% масс., Cloisite 20A - 15% масс., толщиной от 2 мм, изготовленных различными способами.

Таблица 2
Условия прессования образца толщиной 2 мм Направление вырубки «лопатки» из диска относительно оси экструдата Модуль Е, МПа Предел текучести σпр.тек, МПа Прочность δпр.пр, МПа Деформация ε,%
Толстый образец из экструдатов Вдоль 197+35 8,5+0,1 11,9+0,8 460+34
Перпендикулярно 157+27 7,3+0,1 7,5+0,2 80+68
Прессованием стопки пленок толщиной 0,7 мм Случайное 136+18 12,4+0,6 16,6+0,7 540+3

Если диаметр экструдата и толщина ограничительного кольца примерно равны, течение полимера незначительно, и в полученных пластинах в значительной степени сохраняется ориентация частиц наполнителя в исходных экструдатах (вдоль оси экструзии). Если толщина кольца гораздо меньше диаметра экструдата, при прессовании происходит интенсивное течение расплава полимера. При получении образца толщиной 2 мм прессованием стопки пленок толщиной 0,7 мм предел текучести, прочность и деформация выше при всех направления вырубки, чем у образцов, полученных из экструдатов.

Источник поступления информации: Роспатент

Showing 51-60 of 106 items.
27.12.2014
№216.013.14e7

Способ получения пленок аморфного кремния, содержащего нанокристаллические включения

Изобретение относится к области оптоэлектронной техники и может быть использовано для формирования активного слоя тонкопленочных солнечных элементов на основе гидрогенизированного кремния со стабильными параметрами относительно световых воздействий, в частности солнечного излучения. Сущность...
Тип: Изобретение
Номер охранного документа: 0002536775
Дата охранного документа: 27.12.2014
10.01.2015
№216.013.1743

Способ образования каналов на катоде в несамостоятельном дуговом разряде

Изобретение относится к области исследования физических свойств вещества, в частности к исследованию процессов в газоразрядных приборах и плазме. Между электродами при фиксированном расстоянии между ними подается напряжение, возникающий ток плавит и испаряет тонкую проволочку, которая...
Тип: Изобретение
Номер охранного документа: 0002537383
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1796

Способ изготовления материала газового сенсора селективного детектирования нs и его производных

Изобретение относится к области нанотехнологии сенсорных материалов и может быть использовано для создания полупроводниковых газовых сенсоров, селективных к содержанию в воздухе сероводорода и его производных. Сущность изобретения состоит в создании наногетерогенного материала на основе...
Тип: Изобретение
Номер охранного документа: 0002537466
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.182b

Способ получения пористого пирофосфата кальция

Изобретение относится к способу получения пористого пирофосфата кальция для использования в медицине. Способ включает подготовку исходной порошковой смеси, содержащей карбонат кальция и гидрофосфат аммония, формование заготовок и их обжиг. Причем карбонат кальция и гидрофосфат аммония...
Тип: Изобретение
Номер охранного документа: 0002537615
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1c19

Способ стимулирования восстановления иннервации тканей после травм и ишемии с помощью векторной конструкции

Изобретение относится к области генной инженерии и генной терапии и может быть использовано в регенеративной медицине, травматологии, трансплантологии и нейробиологии для стимуляции роста и регенерации нервов и восстановления иннервации ишемизированных тканей. Способ по настоящему изобретению...
Тип: Изобретение
Номер охранного документа: 0002538621
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1c90

Способ синтеза монокристаллических тетрагональных теллуридов железа и теллуридов железа, легированных серой и/или селеном

Изобретение относится к неорганической химии. Способ синтеза тетрагональных теллуридов железа и теллуридов железа, легированных селеном и/или серой, включает размещение в одном конце герметичной ампулы шихты из теллура, селена, серы и железа, заполнение ее смесью эвтектического состава из...
Тип: Изобретение
Номер охранного документа: 0002538740
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1d0a

Меченные тритием наноалмазы и способ их получения

Изобретение может использоваться для получения биологических радиоактивных меток. Способ получения меченных тритием наноалмазов методом термической активации трития включает приготовление водной суспензии наноалмазов со средним размером частиц не более 125 нм и содержанием дисперсной фазы от...
Тип: Изобретение
Номер охранного документа: 0002538862
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1df2

Способ получения органических растворителей из непищевого возобновляемого растительного сырья

Изобретение относится к биотехнологии. Способ получения комплекса органических растворителей, включающего ацетон, бутанол и этанол, из возобновляемого растительного целлюлозосодержащего сырья включает измельчение до размера частиц 20-80 мкм. Осуществляют предварительное осахаривание...
Тип: Изобретение
Номер охранного документа: 0002539094
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1e0c

Способ изготовления кремниевого чувствительного элемента для люминесцентного наносенсора кислорода

Изобретение относится к технологии получения кремниевых наноструктур. В способе изготовления кремниевого чувствительного элемента для люминесцентного сенсора кислорода на подложке монокристаллического кремния p-типа проводимости с кристаллографической ориентацией поверхности (100) с удельным...
Тип: Изобретение
Номер охранного документа: 0002539120
Дата охранного документа: 10.01.2015
20.01.2015
№216.013.202c

Зонд на основе полевого транзистора с наноразмерным каналом

Изобретение относится к измерительной технике, представляет собой зонд на основе полевого транзистора с наноразмерным каналом и может быть использовано при определении физико-химических и электрических параметров наноразмерных объектов физической, химической и биологической природы. Зонд...
Тип: Изобретение
Номер охранного документа: 0002539677
Дата охранного документа: 20.01.2015
Showing 51-60 of 117 items.
10.01.2015
№216.013.1743

Способ образования каналов на катоде в несамостоятельном дуговом разряде

Изобретение относится к области исследования физических свойств вещества, в частности к исследованию процессов в газоразрядных приборах и плазме. Между электродами при фиксированном расстоянии между ними подается напряжение, возникающий ток плавит и испаряет тонкую проволочку, которая...
Тип: Изобретение
Номер охранного документа: 0002537383
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1796

Способ изготовления материала газового сенсора селективного детектирования нs и его производных

Изобретение относится к области нанотехнологии сенсорных материалов и может быть использовано для создания полупроводниковых газовых сенсоров, селективных к содержанию в воздухе сероводорода и его производных. Сущность изобретения состоит в создании наногетерогенного материала на основе...
Тип: Изобретение
Номер охранного документа: 0002537466
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.182b

Способ получения пористого пирофосфата кальция

Изобретение относится к способу получения пористого пирофосфата кальция для использования в медицине. Способ включает подготовку исходной порошковой смеси, содержащей карбонат кальция и гидрофосфат аммония, формование заготовок и их обжиг. Причем карбонат кальция и гидрофосфат аммония...
Тип: Изобретение
Номер охранного документа: 0002537615
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1c19

Способ стимулирования восстановления иннервации тканей после травм и ишемии с помощью векторной конструкции

Изобретение относится к области генной инженерии и генной терапии и может быть использовано в регенеративной медицине, травматологии, трансплантологии и нейробиологии для стимуляции роста и регенерации нервов и восстановления иннервации ишемизированных тканей. Способ по настоящему изобретению...
Тип: Изобретение
Номер охранного документа: 0002538621
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1c90

Способ синтеза монокристаллических тетрагональных теллуридов железа и теллуридов железа, легированных серой и/или селеном

Изобретение относится к неорганической химии. Способ синтеза тетрагональных теллуридов железа и теллуридов железа, легированных селеном и/или серой, включает размещение в одном конце герметичной ампулы шихты из теллура, селена, серы и железа, заполнение ее смесью эвтектического состава из...
Тип: Изобретение
Номер охранного документа: 0002538740
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1d0a

Меченные тритием наноалмазы и способ их получения

Изобретение может использоваться для получения биологических радиоактивных меток. Способ получения меченных тритием наноалмазов методом термической активации трития включает приготовление водной суспензии наноалмазов со средним размером частиц не более 125 нм и содержанием дисперсной фазы от...
Тип: Изобретение
Номер охранного документа: 0002538862
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1df2

Способ получения органических растворителей из непищевого возобновляемого растительного сырья

Изобретение относится к биотехнологии. Способ получения комплекса органических растворителей, включающего ацетон, бутанол и этанол, из возобновляемого растительного целлюлозосодержащего сырья включает измельчение до размера частиц 20-80 мкм. Осуществляют предварительное осахаривание...
Тип: Изобретение
Номер охранного документа: 0002539094
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1e0c

Способ изготовления кремниевого чувствительного элемента для люминесцентного наносенсора кислорода

Изобретение относится к технологии получения кремниевых наноструктур. В способе изготовления кремниевого чувствительного элемента для люминесцентного сенсора кислорода на подложке монокристаллического кремния p-типа проводимости с кристаллографической ориентацией поверхности (100) с удельным...
Тип: Изобретение
Номер охранного документа: 0002539120
Дата охранного документа: 10.01.2015
20.01.2015
№216.013.202c

Зонд на основе полевого транзистора с наноразмерным каналом

Изобретение относится к измерительной технике, представляет собой зонд на основе полевого транзистора с наноразмерным каналом и может быть использовано при определении физико-химических и электрических параметров наноразмерных объектов физической, химической и биологической природы. Зонд...
Тип: Изобретение
Номер охранного документа: 0002539677
Дата охранного документа: 20.01.2015
27.01.2015
№216.013.206e

Способ оценки иммуносупрессивных свойств мезенхимальных стромальных клеток человека

Изобретение относится к области медицины, молекулярной биологии и биофармакологии. Предложен способ определения иммуносупрессивных свойств мезенхимальных стромальных клеток человека путем измерения уровня экспрессии молекулы HLA-DR на поверхности мембран клеток и измерение в клетках уровня...
Тип: Изобретение
Номер охранного документа: 0002539750
Дата охранного документа: 27.01.2015
+ добавить свой РИД