×
20.06.2013
216.012.4daa

Результат интеллектуальной деятельности: ЕМКОСТНЫЙ ДАТЧИК ДАВЛЕНИЯ

Вид РИД

Изобретение

№ охранного документа
0002485464
Дата охранного документа
20.06.2013
Аннотация: Изобретение относится к измерительной технике, в частности для измерения статического и динамического давления без нарушения целостности обтекания потока газа и изделий. Емкостный датчик давления состоит из двухсторонней фольгированной диэлектрической пленки, являющейся основанием датчика. На верхней поверхности основания датчика сформированы обкладки конденсатора с выводами. Фольга на нижней поверхности основания является экраном датчика. Мембрана датчика жестко закреплена на поверхности второй диэлектрической пленки. На обе поверхности мембраны нанесены третья и четвертая диэлектрические пленки. В датчик дополнительно введена пятая диэлектрическая пленка. Для защиты выводов установлен экран, покрытый шестой и седьмой диэлектрическими пленками. Дополнительно введен вывод в виде провода диаметром 1-2 мкм, покрытого изоляцией. Экран выполнен из того же материала, что и мембрана. Вторая пленка выполнена перфорированной с газообразным диэлектриком внутри ячейки и пропитана клеем. На основании датчика обкладки перфорированы и имеют не менее пяти отверстий для связи полости датчика под мембраной с атмосферным давлением. Техническим результатом является уменьшение гистерезиса датчика и повышение чувствительности и точности измерения статического давления. 1 ил.
Основные результаты: Емкостный датчик давления, состоящий из двухсторонней фольгированной диэлектрической пленки, являющейся основанием датчика, на верхней поверхности основания датчика сформированы обкладки конденсатора с выводами, охваченные экраном, фольга на нижней поверхности основания является экраном датчика, мембрана датчика жестко закреплена на поверхности второй диэлектрической пленки, причем на обе поверхности мембраны нанесены третья и четвертая диэлектрические пленки, отличающийся тем, что в него дополнительно введены пятая диэлектрическая пленка, для защиты выводов установлен экран, покрытый шестой и седьмой диэлектрическими пленками, а для подачи напряжения на мембрану дополнительно введен вывод в виде провода диаметром 1-2 мкм, покрытого изоляцией, причем экран выполнен из того же материала, что и мембрана, они имеют одинаковую толщину и для защиты их выводов между собой экран и мембрана электрически изолированы слоем герметика или пленкой толщиной 3-5 мкм, вторая пленка выполнена перфорированной с газообразным диэлектриком внутри ячейки и пропитана клеем, на основании датчика обкладки перфорированы и имеют не менее пяти отверстий для связи полости датчика под мембраной с атмосферным давлением, датчик смонтирован на поверхности изделия через пятую диэлектрическую пленку с канавками для поддержания связи ячейки с атмосферой через опорные отверстия.

Изобретение относится к измерительной технике и может быть использовано для измерения статического давления в машиностроении, авиационно-космической, криогенной технике.

Известен пленочный емкостный датчик давления, который состоит из четырех слоев диэлектрической пленки, выполненных из однородного материала. Первая пленка является изолятором. На второй пленке снизу металлизирован основной экран, сверху на поверхности этой пленки металлизированы верхние обкладки датчика прямоугольной формы. Вторые обкладки датчика металлизированы на наружной поверхности четвертой пленки. Между второй и четвертой пленками расположена третья перфорированная пленка. Соединение четырех пленок между собой и установка датчика на поверхности исследуемой модели осуществляется с помощью клея. Такое решение в указанной конструкции обеспечивает измерение динамического давления на поверхности исследуемого объекта без нарушения целостности модели и обтекаемого аэродинамического воздействия (см. а.с. СССР №1503472, 1987 г. Способ изготовления матричных емкостных датчиков давления, 1987, авторы А.А.Казарян, И.И.Чикин).

Недостатки в конструкции датчика заключаются в том, что в чувствительном элементе (ЧЭ), т.е. в мембране из полиимидной пленки, покрытой металлом толщиной 300-400 A°, при воздействии статического давления и при длительном режиме работы и после снятия нагрузки наблюдается большой гистерезис. Кроме этого в замкнутом объеме под мембраной перфорированная пленка, наполненная газом (воздухом) и не связанная с атмосферным давлением, при нагревании газа расширяется, и в результате на выходе датчика к полезному сигналу прибавляется тепловой шум и вследствие искажаются результаты измерения статического давления.

Наиболее близким к изобретению техническим решением является емкостный датчик давления, основанный на принципе зависимости параметров, определяющих его электрическую емкость. Такими параметрами являются диэлектрическая постоянная среды между обкладками, расстояние между ними или площадь взаимного перекрытия.

Основание датчика из фольгированной диэлектрической пленки содержит экран на нижней поверхности диэлектрической пленки. На верхней поверхности сформированы экран, обкладка конденсатора, контактные площадки. Датчик имеет отверстие для связи с атмосферным давлением, четыре сквозных отверстия, нижнее кольцо жесткости, между мембраной и обкладками. Мембрана покрыта полиимидной пленкой с обеих сторон и содержит верхнее кольцо жесткости. Собранный пакет между собой скрепляют клеем. На поверхности диэлектрической пленки обкладки, экран, контактные площадки формируют способом фотолитографии. Реальная толщина диэлектрической пленки 100-140 мкм, толщина пленки обкладки из меди или другого материала 10-20 мкм. Нижнее кольцо жесткости изготавливают из твердого диэлектрика или из металла. С целью обеспечения гибкости, защиты мембраны от механических повреждений и внешних воздействий ее покрывают с обеих сторон полиамидокислотным лаком толщиной 5-15 мкм по известной технологии. Высоту нижнего кольца жесткости выбирают 0,8-1,0 мм. При этом толщину мембраны выбирают 5-140 мкм.

Такое решение позволяет измерить статическое давление (см. патент РФ №2055334, 1996 г. Емкостный датчик давления и способ его сборки. Автор А.А.Казарян).

Датчик имеет следующий недостаток: конструкция не гибкая, трудно наклеить на поверхности модели большой кривизны.

Задачей настоящего изобретения является реализация метода бездренажного измерения полей давления на поверхности изделия обтекаемым потоком газа. Поставленной задачи достигают путем снижения жесткости конструкции датчика за счет использования гибких тонких диэлектрических пленок и пленок из высококачественных сплавов например FeNi или Ni. Техническим результатом является существенное уменьшение гистерезиса датчика и повышение чувствительности и точности измерения статического давления.

Задача и технический результат также достигаются тем, что в емкостный датчик давления, состоящий из двухсторонней фольгированной диэлектрической пленки, являющейся основанием датчика, на верхней поверхности основания датчика сформированы обкладки конденсатора с выводами, охваченные экраном, фольга на нижней поверхности основания является экраном датчика, мембрана датчика жестко закреплена на поверхности второй диэлектрической пленки, причем на обе поверхности мембраны нанесены третья и четвертая диэлектрические пленки, в него дополнительно введены пятая диэлектрическая пленка, для защиты выводов установлен экран, покрытый шестой и седьмой диэлектрическими пленками, а для подачи напряжения на мембрану дополнительно введен вывод в виде провода диаметром 1-2 мкм, покрытого изоляцией, причем экран выполнен из того же материала, что и мембрана, они имеют одинаковую толщину и для защиты их выводов между собой экран и мембрана электрически изолированы слоем герметика или пленкой толщиной 3-5 мкм, вторая пленка выполнена перфорированной с газообразным диэлектриком внутри ячейки и пропитана клеем, на основании датчика обкладки перфорированы и имеют не менее пяти отверстий для связи полости датчика под мембраной с атмосферным давлением, датчик смонтирован на поверхности изделия через пятую диэлектрическую пленку с канавками для поддержания связи ячейки с атмосферой через опорные отверстия.

На фигуре представлена конструкция датчика из нескольких ЧЭ и отдельные его узлы.

Основание датчика из фольгированной медью или никелем диэлектрической пленки содержит экран 1 на нижней поверхности первой диэлектрической пленки 2. На верхней поверхности сформированы экран 3, обкладки 4 с выводами и контактными площадками 5, образующие ЧЭ датчика. Датчик имеет опорные отверстия 6 для связи с атмосферным давлением, вторую диэлектрическую пленку 7 с ячейками 8, мембрану 9 из металлической пленки, обе стороны которой покрыты третьей 10 и четвертой 11 диэлектрическими пленками (сеч. Г-Г, В-В). Для ЧЭ предусмотрена объединенная мембрана датчика, сформированная из диэлектрических 10 и 11 и металлической 9 пленок. Выводы и контактные площадки от влияния внешних электромагнитных помех защищены экраном для защиты выводов 9, покрытым шестой и седьмой диэлектрическими пленками 10/, 11/. Мембрана 9 и экран 91 между собой электрически изолированы пленкой-изолятором или герметиком 12 (сеч. А-А, Б-Б). Толщину δ изоляционной пленки или герметика между экраном 9/ и мембраной 9 выбирают равной 3-5 мм. Напряжение поляризации на мембрану подают тонким (диаметр 1-2 мкм) проводом (выводом) 13, покрытым изоляцией (сеч. А-А, В-В). Датчик на изделие 14/ монтируют через пятую диэлектрическую пленку 14, образуют канавку 15 и не перекрывают опорные отверстия 6 для связи с атмосферным давлением. Металлические пленки 9, 9/ покрыты диэлектрическими пленками 10, 11 и 10/, 11/, в частности из полиимидной пленки, благодаря чему становятся более технологичными, эластичными для обращения и сборки датчика. Благодаря этому предотвращается появление дефектов, трещин, неровностей и т.д. металлических пленок 9, 9/ в процессе натяжения мембраны на поверхности собранного пакета датчика. При этом сохранены и обеспечены высокие качества сборки датчика, гарантировано обеспечение хороших метрологических характеристик. В зависимости от величины измеряемого давления толщину металлической пленки в конструкции датчика выбирают одинаковой и равной: 2, 5, 7, 10, 20 и 40 мкм. Для измерения локального значения давления диаметр ячейки 8 на второй диэлектрической пленке 7 выбирают 0,5-1,0 мм в количестве нескольких десятков штук. При одиночном отверстии под мембраной диаметр ячейки 8 выбирают 3-6 мм, размеры обкладки 4 4×6-6×9 мм. Неподвижные обкладки 4 датчика выбирают круглой, квадратной, прямоугольной формы из Ni или из Cu толщиной 3-5 мкм. Толщина первой 2, пятой 14 диэлектрических пленок 5-12 мкм. Указанные материалы известны в промышленности. Толщина второй диэлектрической пленки из полиимида или из стеклоткани, пропитанной клеем, 4-60 мкм. Обкладки 4 с выводами 5, разметку опорных отверстий 6 формируют с помощью фотолитографии. Расстояние между выводами 5 и экраном 3 - 0,3-1,0 мм. Ширина выводов 0,5-1,0 мм. Вывод 13 из провода диаметром 1-2 мкм, покрытого изоляцией для подачи напряжения поляризации датчика, располагают между экраном 9/ и второй диэлектрической пленкой 7. Пайка выводов на нижней поверхности мембраны - обычная. Собранный пакет между собой скрепляют жидким или сухим клеем на эпоксидно-каучуковой основе или другими клеями. Пленки на поверхности мембраны и экрана формируют с помощью полиамидокислотного лака по известной технологии.

Из предлагаемой конструкции датчика для измерения давления ЧЭ датчика выбирают от одного до нескольких десятков на одной подложке. При этом в расчете емкостных тонкопленочных датчиков давления допущено, что материал мембраны однороден и ее упругие свойства одинаковы во всех трех направлениях, слои диэлектрических пленок 10, 11 толщиной 5-10 мкм, играющие роль мембраны, не влияют на деформирование (на изгиб) пленки. При этом в теоретической модели конструкции датчика рассмотрен однослойный случай. Если толщина диэлектрических пленок 10, 11 существенно меньше толщины металлической пленки 9, то при расчетах используются модуль упругости металла, и коэффициент Пуассона и толщина металла. При противоположном соотношении берутся те же параметры диэлектрической пленки. Такой упрощенный подход позволил описать основы реализации предложенного датчика и получить хорошее совпадение расчетных и экспериментальных данных.

Размеры ЧЭ и габаритные размеры датчика выбирают, исходя из конфигурации конструкции изделия и требования проводимого эксперимента. Предложенная конструкция датчика позволяет реализовать метод бездренажного определения полей давления и обусловлена выполнением следующих задач:

- проведение прочностных и аэродинамических исследований без нарушения целостности изделия;

- измерение локальных и интегральных значений статического и пульсации давления;

- совмещение и одновременное измерение распределения с весовыми, температурными и другими видами измерений.

Для представления принципов работы предложенного емкостного датчика пренебрегаем амортизирующим действием воздушной подслойки и краевыми эффектами. При этом емкость ЧЭ с газообразным диэлектриком толщиной ячейки δ1 и толщиной диэлектрической пленки δ2, каждая из них одинаковой площадью S, под мембраной определяется как: . Тогда емкость ЧЭ без учета краевых эффектов с относительной диэлектрической проницаемостью можно преобразовать как: . Если воздушный зазор ячейки под мембраной изменяется от воздействий давления Δ, то емкость C возрастает на ΔC; тогда . Следовательно относительное приращение емкости определяется как: , где . Видно из выражений, что учтено полное расстояние (δ12) между обкладками конденсатора. Если толщину диэлектрической пленки δ2 в этих выражениях пренебречь, то получим относительное приращение емкости только с воздушными ячейками; N1 - коэффициент преобразования (чувствительности), который зависит только от относительной диэлектрической проницаемости и отношения толщины слоев диэлектрика. Если в последнем выражении предполагать, что N1·Δδ1/(δ12)<<1, тогда N1 также является и коэффициентом нелинейности. Таким образом, чувствительность и нелинейность возрастают с ростом диэлектрической проницаемости и толщины δ2 [Т.П.Нурберт. Измерительные преобразователи неэлектрических величин. - Л.: Энергия, 1970. - стр.247-249].

Чувствительность датчика в случае конструкции с малым воздушным зазором δ1 не зависит от толщины диэлектрической пленки δ1 при условии, что емкость утечки внешней цепи намного меньше по сравнению с емкостью ЧЭ датчика. Это приводит к отрицанию (аннулированию) возрастания жесткости воздушной прослойки, когда зазор δ1 уменьшается и наоборот, жесткость W воздушной прослойки толщиной δ1 и площадью S для скорости звука в воздухе ν, плотности воздуха ρ и ускорение q=9,81 м/с2 будет .

Как известно, для снижения такого отрицательного влияния, т.е. ограничения чувствительности в обычных конденсаторных микрофонах неподвижную обкладку 4 перфорируют, например микрофоны фирмы Брюль и Къер (Дания). Такое конструктивное решение практически повышает чувствительность датчика не менее чем на порядок. Число перфорированных отверстий (опорные отверстия) выбирают не менее пяти.

Другая особенность, с чем сталкиваются, особенно при высоких частотах - это инерционность воздушной прослойки, соприкасающейся с вибрирующей мембраной. При этом возможно, что масса воздушного слоя может быть сравнима с массой мембраны. Совокупное действие вышесказанного сказывается на динамической чувствительности и частотной характеристике.

Принцип работы датчика. При изменении давления на величину Р изменяется расстояние между обкладками 4 и объединенной мембраной. Изменение этого расстояния приводит к изменению емкости C и приращения емкости ΔC. Напряжение поляризации датчика подают через вывод 13 диаметром 1-2 мкм из провода, покрытого изоляцией. Выходное напряжение, снимаемое с выходов ЧЭ (между выводом 13 и контактами 5) пропорционально коэффициенту приращения емкости ЧЭ и напряжению поляризации датчика U, т.е. .

Технико-экономический эффект предложенной конструкции датчика повышается за счет измерения статического и динамического давления без больших погрешностей, без дополнительных затрат для проведения эксперимента, без механической обработки изделий и крепления датчика. Появляется возможность совместить эксперименты измерения давления с весовыми, тепловыми экспериментами, при этом не нарушая обтекания физического явления.

С этой целью, из многочисленных результатов измерения партии датчиков приводится зависимость нагружения и разгрузки датчиков между давлением, приращение выходной емкости практически линейно. Экспериментально получено приращение выходного сигнала (емкости) - оно практически линейно, и приращение выходного сигнала изменяется на величину упругой части изгибным удлинением мембраны. Нагружение датчика давлением 0-25000 Па показало, что мембрана во внутрь ячейки перемещается упругой и при повторных (от 2 до 8) нагружения и разгрузках наблюдается линейность, параллельность прямых и обратных ходов выходных параметров ΔC от давления P.

Параметры датчиков при нагружении статическим давлением, в условиях влажности ~90%, температуры 25°C, атмосферном давлении 100±4 кПа (750±3 мм рт.ст.):

размер обкладки конденсатора, мм 6×9
размер ячейки, мм ⌀2; ⌀3; ⌀4; ⌀5
толщина мембраны датчика из FeNi сплава, мкм 20
толщина датчика, мкм 100-130
верхний предел ожидаемого измеряемого
давления, Па 2·105; 104; 2,5·103; 2,5·102
нижний порог измерения давления, Па 20; 10; 5; 1
вариация выходного сигнала (при уровне
давления 25000 Па), % 1,5; 2,3; 3,1; 3,5
начальная емкость датчика, пФ 22-31; 13-23; -; 15-16
коэффициент преобразования, 1/Па ~(1,2÷6)10-6.

Емкостный датчик давления, состоящий из двухсторонней фольгированной диэлектрической пленки, являющейся основанием датчика, на верхней поверхности основания датчика сформированы обкладки конденсатора с выводами, охваченные экраном, фольга на нижней поверхности основания является экраном датчика, мембрана датчика жестко закреплена на поверхности второй диэлектрической пленки, причем на обе поверхности мембраны нанесены третья и четвертая диэлектрические пленки, отличающийся тем, что в него дополнительно введены пятая диэлектрическая пленка, для защиты выводов установлен экран, покрытый шестой и седьмой диэлектрическими пленками, а для подачи напряжения на мембрану дополнительно введен вывод в виде провода диаметром 1-2 мкм, покрытого изоляцией, причем экран выполнен из того же материала, что и мембрана, они имеют одинаковую толщину и для защиты их выводов между собой экран и мембрана электрически изолированы слоем герметика или пленкой толщиной 3-5 мкм, вторая пленка выполнена перфорированной с газообразным диэлектриком внутри ячейки и пропитана клеем, на основании датчика обкладки перфорированы и имеют не менее пяти отверстий для связи полости датчика под мембраной с атмосферным давлением, датчик смонтирован на поверхности изделия через пятую диэлектрическую пленку с канавками для поддержания связи ячейки с атмосферой через опорные отверстия.
ЕМКОСТНЫЙ ДАТЧИК ДАВЛЕНИЯ
Источник поступления информации: Роспатент

Showing 181-190 of 258 items.
10.05.2018
№218.016.3aaa

Система управления судовым движителем

Система управления судовым движителем содержит задающее устройство, блок сравнения, два усилителя, два электромагнита золотника, золотник, устройство ввода скорости изменения управляемого параметра, устройство изменения скорости подачи рабочей жидкости, исполнительный механизм, судовой...
Тип: Изобретение
Номер охранного документа: 0002647335
Дата охранного документа: 15.03.2018
10.05.2018
№218.016.47db

Антенный обтекатель и способ его изготовления

Изобретение относится к области ракетной техники, в частности к головным радиопрозрачным обтекателям пеленгационных сверхширокополосных антенн, работающих в диапазоне ультравысоких (УВЧ) и сверхвысоких (СВЧ) частот, и может быть использовано при проектировании и изготовлении радиопрозрачных...
Тип: Изобретение
Номер охранного документа: 0002650725
Дата охранного документа: 17.04.2018
09.06.2018
№218.016.5e45

Способ изготовления деталей из волокнистого полимерного композиционного материала

Изобретение относится к технологии формования деталей, состоящих из композиционного материала на основе термоактивной матрицы, а именно к способу изготовления деталей из волокнистого полимерного композиционного материала. Способ изобретения включает операции: на одной из рабочих поверхностей...
Тип: Изобретение
Номер охранного документа: 0002656317
Дата охранного документа: 04.06.2018
21.07.2018
№218.016.7349

Комплекс средств оперативно-командной связи и передачи данных

Изобретение относится к области автоматики, управления и организации оперативно-командной связи и передачи данных в объектах и между объектами автоматизированных систем управления. Технический результат - дополнительные режимы работы комплекса по передаче данных и прослушиванию голосовой...
Тип: Изобретение
Номер охранного документа: 0002661796
Дата охранного документа: 19.07.2018
28.07.2018
№218.016.768a

Высотный дирижабль

Изобретение относится к области воздухоплавания. Высотный дирижабль имеет полужесткую конструкцию, внутреннюю и внешнюю оболочки, прослойка между которыми наполнена воздухом, внутренняя оболочка разделена на отсеки и наполнена несущим газом. Имеются два продольных боковых жестких элемента,...
Тип: Изобретение
Номер охранного документа: 0002662593
Дата охранного документа: 26.07.2018
19.08.2018
№218.016.7d43

Двухканальная акустическая форсунка

Изобретение относится к области энергетики и предназначено для подачи газообразного топлива и газовых компонентов в камеру сгорания воздушно-реактивных двигателей. Двухканальная акустическая форсунка для распиливания газообразного топлива содержит полый цилиндрический корпус с патрубками...
Тип: Изобретение
Номер охранного документа: 0002664489
Дата охранного документа: 17.08.2018
01.09.2018
№218.016.81f8

Корпус для микросистем измерения силы тока

Использование: для датчиков тока. Сущность изобретения заключается в том, что корпус для микросистем измерения силы тока, содержащий крышку и сопрягаемые между собой две части корпуса: основание и вставку, верхняя поверхность основания выполнена с углублением для размещения компонентов...
Тип: Изобретение
Номер охранного документа: 0002665491
Дата охранного документа: 30.08.2018
19.01.2019
№219.016.b1f5

Способ сварки трением с перемешиванием алюминиевых заготовок переменной толщины

Изобретение может быть использовано при изготовлении сварных конструкций из алюминиевых полуфабрикатов переменной толщины методом сварки трением с перемешиванием. В процессе сварки проводится пошаговый контроль температуры поверхности сварного шва позади сварочного инструмента. При фиксировании...
Тип: Изобретение
Номер охранного документа: 0002677559
Дата охранного документа: 17.01.2019
20.02.2019
№219.016.c227

Гидроакустический приемоизлучающий тракт

Заявлен гидроакустический приемоизлучающий тракт, содержащий блок управления 1, соединенный со вторыми входами блока индикации 2 и основного усилителя 3, а также с синтезатором 4, выходы которого соединены со вторыми входами n смесителей 5-6, а также через n каналов, состоящих каждый из...
Тип: Изобретение
Номер охранного документа: 0002453861
Дата охранного документа: 20.06.2012
20.02.2019
№219.016.c24e

Гидроцилиндр с механическим затвором в крайних положениях поршня

Изобретение относится к области судостроения, машиностроения и касается вопроса создания движительно-рулевых подъемных, винторулевых и подруливающих комплексов с фиксацией полного, высшего положения механизма в крайнем положении. Гидроцилиндр с механическим замком в крайних положениях поршня...
Тип: Изобретение
Номер охранного документа: 0002458817
Дата охранного документа: 20.08.2012
Showing 181-190 of 193 items.
26.08.2017
№217.015.dd35

Устройство для контроля герметичности топливного бака самолета

Изобретение относится к испытательной технике и может быть использовано при контроле герметичности самолетных топливных баков сложной конфигурации. Контроль герметичности осуществляется с использованием рабочей газовой смеси воздуха с контрольным газом (элегазом или гелием). За пределами...
Тип: Изобретение
Номер охранного документа: 0002624618
Дата охранного документа: 04.07.2017
26.08.2017
№217.015.e424

Способ изготовления пропитанных смолой деталей из композиционного материала

Изобретение относится к способу изготовления пропитанных смолой деталей из композиционного материала и может применяться в различных областях (авиационной, космической, судостроительной, автомобильной и других). Согласно способу изготовления пропитанных смолой деталей из композиционного...
Тип: Изобретение
Номер охранного документа: 0002626413
Дата охранного документа: 27.07.2017
26.08.2017
№217.015.e66b

Способ контроля герметичности топливного бака самолета

Изобретение относится к области контроля герметичности полых изделий и может быть использовано для контроля герметичности самолетных топливных баков преимущественно сложной конфигурации. Сущность: контроль герметичности осуществляют с использованием рабочей газовой смеси воздуха с контрольным...
Тип: Изобретение
Номер охранного документа: 0002626976
Дата охранного документа: 02.08.2017
19.01.2018
№218.016.051c

Способ снижения лобового сопротивления аппаратов на статической воздушной подушке

Изобретение относится к способам снижения лобового сопротивления аппаратов на статической воздушной подушке и касается транспортных средств с малым отношением длины к ширине. Для снижения скорости и изменения направления набегающего воздуха из отверстий в носовой части корпуса аппарата...
Тип: Изобретение
Номер охранного документа: 0002630875
Дата охранного документа: 13.09.2017
19.01.2018
№218.016.05dd

Устройство для мерной резки углеродного волокна

Изобретение относится к области машиностроения, а именно к устройству для мерной резки углеродного волокна, и может быть использовано при производстве углеродного волокна и изделий из полимерных композиционных материалов, упрочненных углеродным волокном. Задачей изобретения является разработка...
Тип: Изобретение
Номер охранного документа: 0002631037
Дата охранного документа: 15.09.2017
20.01.2018
№218.016.1183

Образец для испытаний сотового заполнителя

Изобретение относится к исследованию прочностных свойств материалов и может применяться при аттестации сотовых структур при изготовлении трехслойных конструкций кораблестроения, авиастроения и космической техники. Образец включает два одинаковых блока сотового заполнителя с приклеенными к их...
Тип: Изобретение
Номер охранного документа: 0002634020
Дата охранного документа: 23.10.2017
20.01.2018
№218.016.1530

Направляющая насадка воздушного винта

Изобретение относится к движителям транспортных средств, преимущественно амфибийных судов на воздушной подушке и глиссеров. Направляющая насадка воздушного винта содержит предвинтовую и винтовую насадки, которые установлены коаксиально с образованием кольцевого канала. Предвинтовая насадка в...
Тип: Изобретение
Номер охранного документа: 0002634856
Дата охранного документа: 07.11.2017
13.02.2018
№218.016.2013

Установка для промывки топливного бака летательного аппарата газонасыщенной жидкостью (варианты)

Изобретение относится к техническому обслуживанию летательных аппаратов. Установка для промывки топливного бака включает в себя узел промывки, который размещается внутри топливного бака (2), магистраль (4) нагнетания газонасыщенной моющей жидкости в узел промывки и магистраль (5) слива из...
Тип: Изобретение
Номер охранного документа: 0002641408
Дата охранного документа: 17.01.2018
13.02.2018
№218.016.224e

Высотный активно-реактивный снаряд и способ его функционирования

Группа изобретений относится к военной технике, а именно к активно-реактивным снарядам. Технический результат - увеличение высоты и вероятности поражения быстролетящей цели средствами противовоздушной и противоракетной обороны за счет улучшения полноты сгорания топлива, топливной эффективности...
Тип: Изобретение
Номер охранного документа: 0002642197
Дата охранного документа: 24.01.2018
04.04.2018
№218.016.3261

Способ калибровки видеограмметрических систем и контрольное приспособление для его осуществления

Изобретение относится к области оптических бесконтактных измерений геометрических параметров формы, положения, движения и деформации объектов в пространстве, в частности к ближней цифровой фотограмметрии и видеограмметрии, и может применяться для прецизионной калибровки видеограмметрических...
Тип: Изобретение
Номер охранного документа: 0002645432
Дата охранного документа: 21.02.2018
+ добавить свой РИД