×
20.06.2013
216.012.4c2b

Результат интеллектуальной деятельности: КОМПОЗИЦИЯ ПАСТООБРАЗНОГО РАКЕТНОГО ГОРЮЧЕГО ДЛЯ ПРЯМОТОЧНЫХ ВОЗДУШНО-РЕАКТИВНЫХ ДВИГАТЕЛЕЙ С КАМЕРОЙ ДОЖИГАНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к ракетной технике, а именно к области получения пастообразных горючих для прямоточных воздушно-реактивных двигателей с камерой дожигания. Предлагается композиция, содержащая нанодисперсные порошки металлов. В качестве нанодисперсных порошков применяют порошок бора или смесь порошков боридов алюминия с содержанием 34-62% алюминия, средний размер частиц порошка составляет 60-350 нм, полученные методом переконденсации в плазменном электродуговом реакторе. В качестве растворителя используют растворитель децилин общей формулы СН, загущенный полиэтиленом в количестве 2-10% при следующем соотношении компонентов, мас.%: Децилин 30-40 Полиэтилен 2,5-10 Нанодисперсный порошок бора или смесь боридов алюминия, содержащая 34-62% Al 15-35 Перхлорат аммония 15-35. Композиция данного пастообразного ракетного горючего обладает высокой скоростью сгорания, высокой теплотой и полнотой сгорания. 5 табл., 1 пр.
Основные результаты: Композиция пастообразного ракетного горючего для прямоточных воздушно-реактивных двигателей с камерой дожигания, содержащая нанодисперсные порошки металлов, отличающаяся тем, что в качестве нанодисперсных порошков применяют порошок бора или смесь порошков боридов алюминия с содержанием 34-62% алюминия, средний размер частиц порошка составляет 60-350 нм, полученные методом переконденсации в плазменном электродуговом реакторе, причем в качестве растворителя используют растворитель децилин общей формулы CH, загущенный полиэтиленом в количестве 2-10% при следующем соотношении компонентов, мас.%:

Изобретение относится к ракетной технике, а именно к области получения пастообразных горючих для прямоточных воздушно-реактивных двигателей (ПВРД) с камерой дожигания.

Объемная теплота сгорания известных жидких ракетных горючих, используемых в прямоточных воздушно-реактивных двигателях (ПВРД) и жидкостных ракетных двигателях (ЖРД), не превышает 9500 ккал/кг.Для повышения энергоемкости в жидкое горючее вводят компоненты с более высокой объемной теплотой сгорания, например мелкодисперсные порошки металлов таких, как алюминий, бор, титан, их сплавы и др. Для предотвращения седиментации частиц порошка металлов горючее загущают, т.е. переводят в гелеобразное или пастообразное состояние при сохранении его тиксотропных свойств. Такое горючее, подобно жидким, можно передавливать по трубам, распылять через форсунки, а также можно заправлять ракеты на старте и сравнительно просто регулировать модуль тяги. Кроме того, использование пастообразного горючего позволяет снизить потери на испарение и повысить пожаробезопасность.

Известно гелеобразное ракетное монотопливо, полученное диспергированием алюминия с размером частиц до 0,15 мкм в жидком окислителе - тетраоксиде азота (N2O4). Это топливо имеет удельный импульс близкий к 400 с (патент РФ №2309140, МПК С06В 47/04, C06D 5/10, 2007).

К недостаткам данного ракетного монотоплива относится высокая токсичность и химическая агрессивность окислителя - тетраоксида азота.

Гелеобразные горючие, содержащие 36-40% монометилгидразина в качестве жидкой фазы, до 60% порошка различных энергоемких металлов и их гидридов с размером частиц порошка металлов 6-10 мкм и от 1 до 3% гелеобразователя, в качестве которого применяют диметилмочевину или диоксид кремния, описаны в патентах США №4039360, МПК С06В 47/08, 1977; США №5438824, МПК F02K 9/00, 1995; США №5597947, МПК C10L 7/00, 1997. Седиментация металлов не происходит даже при нагрузке в несколько сотен g.

К недостаткам известных пастообразных горючих можно отнести большой размер диспергированных в горючих частиц порошков различных энергоемких металлов и их гидридов, что приводит к уменьшению скорости горения и неполному сгоранию.

В патенте США №4090895, МПК С06В 43/00, 1978 г. описывается пастообразное (суспензионное) горючее, в котором в качестве жидкой фазы используют низшие спирты с числом атомов углерода от 1 до 3. В качестве высокоэнергетического компонента применяют тонкодисперсные порошки бора, алюминия, боридов алюминия, титана, циркония с размером частиц 0,1-10 мкм, гелеобразователем служит гидроксипропилцеллюлоза.

В примерах, приведенных в патенте, гелеобразные композиции содержат только аморфный бор, сферический алюминий, цирконий и борид циркония с размером частиц 1-10 мкм. Полученные композиции гелеобразного горючего отличаются термостабильностью, устойчивы при хранении и действием силы тяжести до 100 g.

Известные композиции предназначены для использования в жидкостном реактивном двигателе, в котором в качестве окислителя предложены фториды хлора F3Cl и F5Cl. Соотношение окислитель: горючее составляет 6:1. Композиции являются гипергольными. Необходимость большого количества окислителя в топливных баках ЖРД не дает никакого преимущества по сравнению с ПВРД, где в качестве окислителя используется атмосферный воздух. Кроме того, предложенные окислители являются весьма агрессивными и токсичными.

Для использования в ПВРД с камерой дожигания предложено твердое горючее (пат. США №6736912, МПК С06В 45/10, 2004), содержащее органическую матрицу, в которой диспергированы частицы металлов и частицы фторсодержащего окислителя, способного реагировать с частицами металлов с образованием субфторидов. Причем композиция содержит окислитель в количестве, достаточном для поддержания горения, но недостаточном для полного окисления горючих компонентов. Продукты неполного сгорания эжектируются в камеру дожигания, в которую вводится подогретый воздух для полного сгорания органической части и металлов.

К недостаткам композиции, предложенной в пат. США №6736912, принятом нами за прототип, можно отнести сравнительно невысокую теплоту сгорания, невысокую скорость сгорания композиции в первой камере сгорания, что затрудняет получение сверхзвуковых скоростей полета.

Об использовании в ПВРД с камерой дожигания пастообразных горючих нами сведений в патентной литературе не обнаружено.

Следует отметить, что в известных композициях гелеобразньгх горючих в качестве энергоемких компонентов заявлена широкая гамма различных металлов: Al, Sb, Be, В, Са, Со, Cu, Au, Fe, Mg, Zr и других, а также их сплавов, полученных электровзрывом электропроводящей проволоки, при этом указывается, что размер частиц не превышает 1 мкм. Однако этим методом нельзя получить порошки металлов, обладающих наиболее высокой теплотой сгорания, например бора, боридов алюминия, кремния, так как из них нельзя изготовить электропроводящую проволоку.

Задачей данного изобретения является получение композиции пастообразного ракетного горючего, обладающей высокой скоростью сгорания, высокой теплотой и полнотой сгорания, применяющейся в прямоточных воздушно-реактивных двигателях с камерой дожигания.

Для решения поставленной задачи предложена композиция пастообразного ракетного горючего для прямоточных воздушно-реактивных двигателей с камерой дожигания, содержащая нанодисперсные порошки металлов, отличающаяся тем, что в качестве нанодисперсных порошков применяют порошок бора или смесь порошков боридов алюминия с содержанием 34-62% алюминия, при этом средний размер частиц порошков составляет 60-350 нм, полученные методом переконденсации в плазменном электродуговом реакторе, причем в качестве дисперсионной фазы используют растворитель децилин общей формулы C10H16, загущенный полиэтиленом в количестве 2-10%, при следующем соотношении компонентов, мас.%:

Децилин 30-40
Полиэтилен 2,5-10
Нанодисперсный порошок
бора или смесь боридов
алюминия, содержащая
34-62% Al 15-35
Перхлорат аммония 15-35

Высокая теплота сгорания композиции и высокая скорость горения композиции обеспечиваются введением в нее нанодисперсных порошков бора и боридов алюминия, полученных методом переконденсации в плазменном электродуговом реакторе, позволяющим получать нанодисперсные порошки элементов, которые не являются электропроводящими или из которых нельзя изготовить проволоку.

В качестве жидкой фазы выбран растворитель децилин общей формулы C10H16, обладающий высокой плотностью и высокой объемной теплотой сгорания. Для загущения углеводорода используют полиэтилен в количестве 2,5-10%. В композицию вводят перхлорат аммония в количестве, достаточном для поддержания горения, но недостаточном для полного сгорания горючих компонентов. При горении за счет взаимодействия нанодисперсных металлов с перхлоратом аммония происходит газификация и пиролиз углеводородной части, и продукты сгорания, обогащенные горючим, а также несгоревшее пастообразное горючее, обладающее тиксотропными свойствами, поступают в камеру дожигания, где они смешиваются с воздухом, поступающим из атмосферы при полете ракеты. В камере дожигания происходит полное сгорание горючего.

Пример.

Гранулы полиэтилена растворяют в децилине при нагревании и перемешивании. Полученный раствор переносят в двухшнековый смеситель типа Вернера-Пфлейдерера и при перемешивании вносят нанодисперсный порошок металла, затем добавляют перхлорат аммония. После чего для гомогенизации смесь перемешивают 1,5 часа при комнатной температуре.

По описанному методу были получены все пастообразные горючие. Горючие отличаются термостойкостью, стабильностью при хранении, расслаивания не происходит при ускорении до 100 g.

Состав, некоторые физико-химические свойства и скорости сгорания композиций приведены в таблицах 1-4, в которых использованы следующие обозначения: АСД-4 порошок сферического алюминия с частицами микронного размера, н-Al - порошок наноразмерного алюминия со средним размером частиц 150 - 200 нм, н-В - порошок наноразмерного бора со средним размером частиц 90-120 нм, БА - смесь наноразмерных порошков боридов алюминия со средним размером частиц 120-150 нм, Вам - порошок бора аморфного, цифры при БА означают содержание алюминия в смеси боридов алюминия, ПХА - перхлорат аммония, ТП - децилин, загущенный полиэтиленом, L0 - количество воздуха, необходимое для дожигания композиции горючего.

Таблица 1
Влияние металла на скорость горения композиции, содержащей: 50% ТП, 30% ПХА и 20% металла
Композиция Металл (средний размер частиц) Плотность композиции, г/см3 Теплота сгорания, ккал/л Скорость сгорания, мм/с L0, кг/кг
П-8 АСД-4 (5-10 мкм) 1,30 8590 1,1 7,4
П-9 н-Al (200 нм) 1,30 8590 1,2 7,4
П-4 БА-52 (110) 1,30 9380 4,0 7,95

Скорость горения композиции П-4, содержащей борид алюминия, в три с лишним раза выше скорости горения композиций, содержащих микронный и наноразмерный порошки алюминия. Кроме того, эта композиция превосходит композиции П-8 и П-9 по теплоте сгорания и количеству необходимого для полного сгорания воздуха.

Таблица 2
Влияние металла на скорость горения композиции, содержащей: 50% ТП, 20% ПХА и 30% металла
Композиция Металл (средний размер частиц) Плотность композиции, г/см3 Теплота сгорания, ккал/л Скорость сгорания, мм/с L0, кг/кг
П-21 АСД-4 (5-10 мкм) 1,33 9730 1,0 7,9
П-20 н-Al (200 нм) 1,33 9730 3,2 7,9
П-12 В ам (5-7 мкм) 1,30 12060 2,8 9,69
П-13-1 н-В (90 нм) 1,30 12060 7,5 9,69
П-13-2 н-В (120 нм) 1,30 12060 7,4 9,69
П-14 н-Al/B ам 50/50 1,31 10790 3,0 8,8
П-15 н-Al/н-В 50/50 1,31 10790 3,4 8,8
П-5 БА-52 (110 нм) 1,31 10780 6,2 8,72

В этой серии композиции с наноразмерными бором и боридом алюминия также имеют более высокую скорость горения, чем композиции с их микронными аналогами или даже с механическими смесями нано-алюминия и нано-бора.

Как следует из табл.3, на скорость горения влияет и массовое соотношение между окислителем и металлом, наиболее предпочтительным является соотношение окислителя к металлу, равное 20/30-25/25.

Таблица 3
Влияние соотношения ПХА и БА-52 в композиции на скорость ее горения. Содержание ТП в композиции 50%.
Композиция Содержание, % Плотность композиции, г/см3 Теплота сгорания, ккал/л Скорость сгорания, мм/с L0, кг/кг
ПХА БА-52
П-7 15 35 1,32 11530 4,4 10,07
П-5 20 30 1,31 10780 6,2 8,72
П-2 25 25 1,30 10035 5,3 8,52
П-4 30 20 1,30 9380 4,0 7,95
П-6 35 15 1,28 8590 1,9 7,15

В то же время соотношение между алюминием и бором в бориде алюминия в композициях с БА-34 до БА-62 не оказывает существенного влияния на скорость горения (табл.4). Однако дальнейшее увеличение или снижение содержания алюминия приводит к уменьшению скорости горения. Поэтому предпочтительно использовать бориды алюминия с содержанием алюминия от 34 до 62%.

Таблица 4
Влияние содержания алюминия в смеси боридов алюминия на скорость горения композиции, содержащей 50% ТП, 25% ПХА, 25% БА
Композиция Количество алюминия в БА, % Скорость сгорания, мм/с
П-БА-65 65 4,9
П-БА-62 62 5,2
П-БА-52 52 5,5
П-БА-43 43 5,7
П-БА-34 34 5,8
П-БА-30 30 5,1

На технологию изготовления пастообразного горючего и на его седиментационную устойчивость влияет также загущенность децилина полиэтиленом. В таблице 5 приведены скорости горения паст с разным соотношением децилина и полиэтилена.

Из приведенных данных в таблицах 1-5 следует, что по сравнению с обычно используемыми в ракетных топливах порошками алюминия АСД-4 и широко исследуемого в настоящее время наноалюминия нанодисперсные порошки боридов алюминия и нанобора более эффективны по скорости горения, они имеют высокую теплоту сгорания при сравнительно большом значении L0.

Композиция пастообразного ракетного горючего для прямоточных воздушно-реактивных двигателей с камерой дожигания, содержащая нанодисперсные порошки металлов, отличающаяся тем, что в качестве нанодисперсных порошков применяют порошок бора или смесь порошков боридов алюминия с содержанием 34-62% алюминия, средний размер частиц порошка составляет 60-350 нм, полученные методом переконденсации в плазменном электродуговом реакторе, причем в качестве растворителя используют растворитель децилин общей формулы CH, загущенный полиэтиленом в количестве 2-10% при следующем соотношении компонентов, мас.%:
Источник поступления информации: Роспатент

Showing 21-30 of 62 items.
20.07.2014
№216.012.ddfc

Способ улучшения адгезии к металлам силиконовых композиционных материалов, получаемых по реакции полиприсоединения

Изобретение относится к силиконовым композиционным материалам. Способ улучшения адгезии к металлам силиконовых композиционных материалов включает получение по реакции полиприсоединения композиционного материал, содержащего полидиметилсилоксан с концевыми винильными группами общей формулы...
Тип: Изобретение
Номер охранного документа: 0002522614
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.de2c

Способ нерпрерываемого производства пучка ионов карборана с постоянной самоочисткой ионного источника и компонент системы экстракции ионного имплантатора

Изобретение относится к области очистки поверхностей газонаполненных разрядных приборов в процессе покрытия материалов ионами, вводимыми в разрядное пространство. Технический результат - увеличение производительности установки. В ионизационную камеру подают рабочее вещество на основе карборана...
Тип: Изобретение
Номер охранного документа: 0002522662
Дата охранного документа: 20.07.2014
27.07.2014
№216.012.e4b8

Способ получения поли(органо)(алкокси)(гидрокси)силоксанов с заданной степенью поликонденсации

Изобретение относится к химии и технологии получения поли(органо)(алкокси)(гидрокси)силоксанов с заданными степенями поликонденсации (n1). Предложен способ получения поли(органо)(алкокси)(гидрокси)силоксанов с заданными степенями поликонденсации (n1) ацидогидролитической поликонденсацией...
Тип: Изобретение
Номер охранного документа: 0002524342
Дата охранного документа: 27.07.2014
10.08.2014
№216.012.e613

Способ получения гетероаннулярных 1,1'-бис-(диметилалкоксисилил)ферроценов

Изобретение относится к способам получения симметричных дизамещенных 1,1′-бис-(триорганосилил)ферроценов. Предложен способ получения гетероаннулярных 1,1′-бис-(диметилалкоксисилил)-ферроценов взаимодействием безводного хлористого железа и диметилалкоксисилилциклопентадиенов в среде...
Тип: Изобретение
Номер охранного документа: 0002524692
Дата охранного документа: 10.08.2014
27.09.2014
№216.012.f968

Керамическая суспензия для создания защитных высокотемпературных антиокислительных покрытий на углеродных материалах

Изобретение относится к области химической промышленности, авиационной и космической техники, в частности к получению защитных высокотемпературных антиокислительных покрытий на основе керамических суспензий органоиттрийоксаналюмоксансилоксанов для создания состава YO-AlO-SiO на керамоматричных...
Тип: Изобретение
Номер охранного документа: 0002529685
Дата охранного документа: 27.09.2014
10.10.2014
№216.012.faee

Способ получения графеновых структур

Изобретение относится к нанотехнологии. Графеновые структуры в виде плоских углеродных частиц с поверхностью до 5 мм получают путем сжигания в атмосфере воздуха или инертного газа композитного пресс-материала, полученного из микро- и нанодисперсных порошков активных металлов, таких как...
Тип: Изобретение
Номер охранного документа: 0002530084
Дата охранного документа: 10.10.2014
27.10.2014
№216.013.02da

Способ получения о-люминолятов щелочных металлов

Изобретение относится к способу получения О-люминолятов щелочных металлов. Способ включает взаимодействие 3-нитрофталевой кислоты с гидразингидратом с образованием 5-нитро-2,3-дигидро-1,4-фталазиндиона, последующее восстановление нитрогруппы и получение солей щелочных металлов. При этом реакцию...
Тип: Изобретение
Номер охранного документа: 0002532128
Дата охранного документа: 27.10.2014
20.11.2014
№216.013.082a

Способ получения хемосорбента для очистки инертных газов и газов-восстановителей от примесей

Изобретение относится к способу получения сорбентов для очистки газов. Инертную неорганическую подложку пропитывают раствором литий алюминий гидрида в диэтиловом эфире. Удаляют эфир вакуумированием и осуществляют пиролиз литий алюминий гидрида, нанесенного на подложку, при температуре 100-500°C...
Тип: Изобретение
Номер охранного документа: 0002533491
Дата охранного документа: 20.11.2014
10.12.2014
№216.013.0ed9

Способ твердофазной нейтрализации жидких и твердых отходов синтеза хлорсиланов и алкилхлорсиланов

Изобретение относится к способам переработки отходов процесса синтеза хлорсиланов и алкилхлорсиланов. Предложен способ твердофазной нейтрализации жидких и твердых отходов синтеза хлорсиланов и алкилхлорсиланов, заключающийся в том, что жидкие и твердые отходы любого состава и в любом...
Тип: Изобретение
Номер охранного документа: 0002535218
Дата охранного документа: 10.12.2014
20.12.2014
№216.013.1013

Стеклокерамическое покрытие на основе органоиттрийоксаналюмоксансилоксанов и способ его получения

Изобретение относится к способу получения защитных высокотемпературных антиокислительных покрытий состава YO-AlO-SiO на карбидокремниевых волокнах. Технический результат изобретения заключается в снижении вязкости покрытия. Стеклокерамическое покрытие выполнено на основе...
Тип: Изобретение
Номер охранного документа: 0002535537
Дата охранного документа: 20.12.2014
Showing 21-30 of 126 items.
27.07.2014
№216.012.e4b8

Способ получения поли(органо)(алкокси)(гидрокси)силоксанов с заданной степенью поликонденсации

Изобретение относится к химии и технологии получения поли(органо)(алкокси)(гидрокси)силоксанов с заданными степенями поликонденсации (n1). Предложен способ получения поли(органо)(алкокси)(гидрокси)силоксанов с заданными степенями поликонденсации (n1) ацидогидролитической поликонденсацией...
Тип: Изобретение
Номер охранного документа: 0002524342
Дата охранного документа: 27.07.2014
10.08.2014
№216.012.e613

Способ получения гетероаннулярных 1,1'-бис-(диметилалкоксисилил)ферроценов

Изобретение относится к способам получения симметричных дизамещенных 1,1′-бис-(триорганосилил)ферроценов. Предложен способ получения гетероаннулярных 1,1′-бис-(диметилалкоксисилил)-ферроценов взаимодействием безводного хлористого железа и диметилалкоксисилилциклопентадиенов в среде...
Тип: Изобретение
Номер охранного документа: 0002524692
Дата охранного документа: 10.08.2014
27.09.2014
№216.012.f968

Керамическая суспензия для создания защитных высокотемпературных антиокислительных покрытий на углеродных материалах

Изобретение относится к области химической промышленности, авиационной и космической техники, в частности к получению защитных высокотемпературных антиокислительных покрытий на основе керамических суспензий органоиттрийоксаналюмоксансилоксанов для создания состава YO-AlO-SiO на керамоматричных...
Тип: Изобретение
Номер охранного документа: 0002529685
Дата охранного документа: 27.09.2014
10.10.2014
№216.012.faee

Способ получения графеновых структур

Изобретение относится к нанотехнологии. Графеновые структуры в виде плоских углеродных частиц с поверхностью до 5 мм получают путем сжигания в атмосфере воздуха или инертного газа композитного пресс-материала, полученного из микро- и нанодисперсных порошков активных металлов, таких как...
Тип: Изобретение
Номер охранного документа: 0002530084
Дата охранного документа: 10.10.2014
27.10.2014
№216.013.02da

Способ получения о-люминолятов щелочных металлов

Изобретение относится к способу получения О-люминолятов щелочных металлов. Способ включает взаимодействие 3-нитрофталевой кислоты с гидразингидратом с образованием 5-нитро-2,3-дигидро-1,4-фталазиндиона, последующее восстановление нитрогруппы и получение солей щелочных металлов. При этом реакцию...
Тип: Изобретение
Номер охранного документа: 0002532128
Дата охранного документа: 27.10.2014
20.11.2014
№216.013.082a

Способ получения хемосорбента для очистки инертных газов и газов-восстановителей от примесей

Изобретение относится к способу получения сорбентов для очистки газов. Инертную неорганическую подложку пропитывают раствором литий алюминий гидрида в диэтиловом эфире. Удаляют эфир вакуумированием и осуществляют пиролиз литий алюминий гидрида, нанесенного на подложку, при температуре 100-500°C...
Тип: Изобретение
Номер охранного документа: 0002533491
Дата охранного документа: 20.11.2014
10.12.2014
№216.013.0ed9

Способ твердофазной нейтрализации жидких и твердых отходов синтеза хлорсиланов и алкилхлорсиланов

Изобретение относится к способам переработки отходов процесса синтеза хлорсиланов и алкилхлорсиланов. Предложен способ твердофазной нейтрализации жидких и твердых отходов синтеза хлорсиланов и алкилхлорсиланов, заключающийся в том, что жидкие и твердые отходы любого состава и в любом...
Тип: Изобретение
Номер охранного документа: 0002535218
Дата охранного документа: 10.12.2014
20.12.2014
№216.013.1013

Стеклокерамическое покрытие на основе органоиттрийоксаналюмоксансилоксанов и способ его получения

Изобретение относится к способу получения защитных высокотемпературных антиокислительных покрытий состава YO-AlO-SiO на карбидокремниевых волокнах. Технический результат изобретения заключается в снижении вязкости покрытия. Стеклокерамическое покрытие выполнено на основе...
Тип: Изобретение
Номер охранного документа: 0002535537
Дата охранного документа: 20.12.2014
20.12.2014
№216.013.109e

Способ региоселективного синтеза моногалогенпроизводных 1,2-,1,7-,1,12-дикарба-клозо-додекаборанов(12) с использованием комплексной активации

Изобретение относится к способу получения моногалогенпроизводных 1,2-,1,7-,1,12-дикарба-клозо-додекаборанов(12). Способ включает взаимодействие о(м,п)-карборанов с галогенирующими агентами, в качестве которых используют N-галогенимиды(амиды): N-галоген-сукцинимиды,...
Тип: Изобретение
Номер охранного документа: 0002535677
Дата охранного документа: 20.12.2014
27.12.2014
№216.013.148e

Способ региоселективного синтеза моногалогенпроизводных 1,2-,1,7-,1,12-дикарба-клозо-додекаборанов(12) с использованием ультразвуковой активации

Изобретение относится к способу получения моногалогенпроизводных 1,2-, 1,7-, 1,12-дикарба-клозо-додекаборанов(12). Способ включает взаимодействие о(м,п)-карборанов с галогенирующими агентами, в качестве которых используют N-галогенимиды(амиды): N-галоген-сукцинимиды,...
Тип: Изобретение
Номер охранного документа: 0002536686
Дата охранного документа: 27.12.2014
+ добавить свой РИД