×
20.06.2013
216.012.4c19

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ МНОГОФУНКЦИОНАЛЬНОГО ПОКРЫТИЯ НА ОРГАНИЧЕСКОМ СТЕКЛЕ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области изготовления оптически прозрачных тонкопленочных покрытий из жидкой фазы на поверхности прозрачных материалов, например изделий из органических стекол, использующихся в остеклении авиационной техники. Способ получения многофункционального покрытия на органическом стекле включает поочередное нанесение пленкообразующих полимерных растворов с наноразмерными неорганическими наполнителями и последующей термообработкой. В качестве полимерных растворов используют тетрагидрофурановые растворы полимерного связующего на основе метилметакрилата и наноразмерного неорганического наполнителя. При этом вначале наносят слой раствора полимерного связующего с наполнителем в виде раствора оксидов индия и олова, затем слой раствора полимерного связующего с наполнителем в виде раствора коллоидного золота или коллоидной меди, затем еще слой полимерного связующего с наполнителем в виде раствора оксидов индия и олова. Концентрация наполнителя в виде раствора оксидов индия и олова, взятых в соотношении 9:1 по массе, составляет 1,0-2,0% от массы всего раствора покрытия, концентрация наполнителя в виде раствора коллоидного золота составляет 0,1-0,2% от массы всего раствора покрытия, а концентрация наполнителя в виде раствора коллоидной меди составляет 0,2-0,5% от массы всего раствора покрытия. Технический результат - ослабление прохождения ультрафиолетового и инфракрасного излучений, тепла солнечной радиации, а также снижение радиолокационной незаметности. 2 ил., 1 пр.
Основные результаты: Способ получения многофункционального покрытия на органическом стекле, включающий нанесение пленкообразующих полимерных растворов с последующей термообработкой, отличающийся тем, что в качестве полимерных растворов используют тетрагидрофурановые растворы полимерного связующего на основе метилметакрилата и наноразмерного неорганического наполнителя в виде растворов оксидов индия и олова, коллоидного золота или коллоидной меди, которые поочередно наносят на органическое стекло, при этом вначале наносят слой раствора полимерного связующего с наполнителем в виде раствора оксидов индия и олова, затем слой раствора полимерного связующего с наполнителем в виде раствора коллоидного золота или коллоидной меди, затем еще слой полимерного связующего с наполнителем в виде раствора оксидов индия и олова, причем концентрация наполнителя в виде раствора оксидов индия и олова, взятых в соотношении 9:1 по массе, составляет 1,0-2,0% от массы всего раствора покрытия, концентрация наполнителя в виде раствора коллоидного золота составляет 0,1-0,2% от массы всего раствора покрытия, а концентрация наполнителя в виде раствора коллоидной меди составляет 0,2-0,5% от массы всего раствора покрытия.

Изобретение относится к области изготовления оптически прозрачных тонкопленочных покрытий из жидкой фазы на поверхности прозрачных материалов, например изделий из органических стекол, использующихся в остеклении авиационной техники.

Эффективность функционирования и летно-технические характеристики самолетов и вертолетов в достаточной мере зависят от технического уровня применяемого в них остекления, которое на сегодняшний день не в полной мере отвечает необходимым требованиям.

Так, ввиду технических особенностей работы радиолокационного и навигационного оборудования самолета летный персонал подвергается мощному воздействию электромагнитного излучения (ЭМИ), превышающему допустимые санитарные нормы.

Кроме того, остекление не обеспечивает защиту от проникновения тепловой составляющей солнечной радиации. Проблема ослабления теплового излучения особенно актуальна при эксплуатации техники в условиях тропического или жаркого сухого климата. Летный персонал самолета испытывает мощные тепловые нагрузки, приводящие к замедлению реакции летчиков и их восприимчивости к окружающей обстановке.

Пропускание остеклением ультрафиолетовых лучей (УФ) приводит в процессе длительной эксплуатации объекта к деструкции внутрикабинного снаряжения, например фиксирующих ремней кресел пилотов, и, как следствие, потере механической прочности.

Для военной авиации актуальной задачей является также, кроме всех перечисленных выше, снижение радиолокационной незаметности самолета, в частности его внутрикабинного оборудования, расположенного за остеклением.

Защита от электромагнитного излучения актуальна также для радио- и телетрансляционных помещений, помещений мобильной связи и др.

Решение этих проблем лежит в создании эффективного покрытия на поверхности стекла, обеспечивающего функции максимального ослабления потоков электромагнитного и ультрафиолетового излучения, солнечного тепла, снижающего радиолокационную незаметность кабины летательного аппарата, при одновременном сохранении высокого светопропускания в видимом диапазоне спектра. При этом покрытие должно иметь хорошую адгезию к стеклу и высокую устойчивость к воздействию внешних факторов (абразив, влага).

Известен способ получения тонирующих покрытий на закаленном стекле (Патент РФ №2231501, кл.7 C03C 17/25, 17/28) путем нанесения пленкообразующего вещества на закаленное стекло с последующей его термообработкой. Нанесение пленкообразующего вещества осуществляют из растворов на основе металлосодержащих соединений, содержащих абсолютный спирт и алкоксиды алюминия и кобальта.

Недостатком данного способа является то, что покрытие, получаемое по нему, не является многофункциональным. Оно выполняет лишь декоративные и в некоторой степени теплоотражающие функции. Кроме того, данный способ предусматривает нанесение покрытия на «горячую» подложку, то есть на стекло, предварительно разогретое до температуры 300-400°C.

Наиболее близким по технической сущности к предлагаемому изобретению является способ получения металлооксидных покрытий (Патент РФ №2118402, кл. C03C 20/08, 17/25), который осуществляется путем нанесения пленкообразующего покрытия из раствора, содержащего алкоксид металла и другие соединения, с последующей термообработкой. При этом раствор может содержать алкоксид металлов - Ti, Zr, Sn, V, алкилы C2-C4, уксусную или пропионовую кислоту при молярном соотношении алкоксид - кислота 1:1 и хлорид аммония в количестве 0,1-0,5 мас.% от общей массы алкоксида.

По второму варианту раствор содержит указанный алкоксид металла, хлорид аммония и ацетат или пропинат металла I VIII групп при молярном соотношении алкоксид:карбосилат 1:1.

По третьему варианту раствор содержит те же компоненты, что и в первом варианте, и дополнительно хлорид или нитрат металла I-VIII групп при молярном соотношении алкоксид:соль:кислота 1:1:2.

Недостатком данного способа является то, что растворы алкоксидов металлов Al, Co, Ti, Zr, Sn, V и карбоновой кислоты могут использоваться при получении покрытий (пленок) из соответствующих оксидов, способных поглощать УФ- или ИК-излучение только в том случае, если на поверхности они формируют наноразмерные кристаллические структуры, способные образовываться только при высокотемпературной (350-400°C) обработке раствора и подложки. Вместе с тем органические стекла не выдержат такой процедуры, так как температура их размягчения составляет 80-120°C.

Данные пленкообразующие растворы содержат в своем составе кислоты, которые взаимодействуют с органическим стеклом, что приводит к потере оптических свойств изделия. Данные варианты растворов имеют низкую адгезию к органическому стеклу из-за отсутствия в их составе компонентов, однородных с подложкой.

Кроме того, наличие в растворах хлоридов аммония и металлов в процессе нанесения вызывает образование большого количества воздуха, загрязненного вредными примесями.

Целью настоящего изобретения является получение многофункционального покрытия на органическое стекло, обеспечивающее ослабление прохождения ультрафиолетового и инфракрасного излучений, тепла солнечной радиации, а также снижение радиолокационной незаметности.

Указанная цель достигается тем, что предложен способ получения многофункционального покрытия на органическом стекле, включающий нанесение пленкообразующих полимерных растворов с последующей термообработкой, отличающийся тем, что в качестве полимерных растворов используют тетрагидрофурановые растворы полимерного связующего и наноразмерного неорганического наполнителя в виде растворов оксидов индия и олова, коллоидного золота или коллоидной меди, которые поочередно наносят на органическое стекло, при этом вначале наносят слой раствора полимерного связующего с наполнителем в виде раствора оксидов индия и олова, затем слой раствора полимерного связующего с наполнителем в виде раствора коллоидного золота или коллоидной меди, затем еще слой полимерного связующего с наполнителем в виде раствора оксидов индия и олова, причем концентрация наполнителя в виде раствора оксидов индия и олова, взятых в соотношении 9:1 по массе, составляет 1,0-2,0% от массы всего раствора покрытия, концентрация наполнителя в виде раствора коллоидного золота составляет 0,1-0,2% от массы всего раствора покрытия, а концентрация наполнителя в виде раствора коллоидной меди составляет 0,2-0,5% от массы всего раствора покрытия.

Данное покрытие обеспечивает все вышеупомянутые требования (функции), имеет хорошую адгезию к органическому стеклу и высокие абразивные характеристики.

Эксплуатационные свойства покрытий (пленок) на органическом стекле, в частности полиметилметакрилата, во многом зависят от их адгезии к подложке. Взаимодействие поверхности полиметилметакрилата с растворителем пленкообразующей композиции и с ее компонентами не должно приводить к изменению структуры поверхности, появлению эффектов серебрения и мутности. Кроме того, не должна нарушаться оптическая прозрачность пленки в видимой области спектра, ее физико-механические свойства. С другой стороны, пленкообразующая композиция должна иметь надежную химическую связь с поверхностью наночастиц наполнителей, вводимых в систему в качестве оптически активных компонентов.

Исходя из химической природы органического стекла, в качестве полимерного связующего, обеспечивающего контакт со стеклом, было выбрано мономерное звено полиметилметакрилата - метилметакрилат (ММкр), а в качестве сополимера к нему взяли 3-меркаптопропилтриметоксисилан (МПС)-HS-(CH2)3-Si(OCH3)3. Кроме того, это вещество известно как надежный стабилизатор наночастиц коллоидного золота и коллоидной меди, которые согласно предлагаемому способу используются в качестве наноразмерных неорганических наполнителей.

Само по себе полимерное связующее не обеспечивает функций и целей, стоящих в данном изобретении. Физический принцип защиты от электромагнитного излучения заключается в экранировании защищаемого объекта металлическими элементами, при этом электромагнитная волна «гасится» в токопроводящем материале. В качестве токопроводящих материалов для покрытий различного назначения используется целая гамма металлов и оксидов металлов. Однако необходимо было выбрать именно те материалы, которые в отдельности или в совокупности в виде растворов обеспечивали необходимые требования.

В этой связи наиболее целесообразным является введение в полимерное связующее наноразмерных наполнителей в виде токопроводящих растворов оксидов индия и олова, а также коллоидного золота или меди.

Выбор в качестве наполнителя оксидов индия и олова (ITO) обусловлен тем, что данный материал хорошо растворяется в полимерном связующем и позволяет получать оптическую тонкую пленку, имеющую высокую адгезию к органическому стеклу. Это обуславливает использование пленки на основе оксидов индия и олова в качестве первого слоя многофункционального покрытия. Важным моментом является тот факт, что пленки на основе оксидов индия и олова обладают свойством существенно ослаблять электромагнитное и ультрафиолетовое излучения, имеют низкий коэффициент отражения, что важно для авиационного остекления. Подбирая количество слоев ITO, можно строить необходимую оптическую конструкцию и получать, помимо требуемых электрических свойств еще и оптические.

Проведенные экспериментальные работы по получению оптимального соотношения компонентов раствора для многофункционального покрытия на органическое стекло показали, что оптимальное соотношение индия в сплаве с оловом составляет 9:1. При этом концентрация наполнителя в виде раствора оксидов индия и олова должна составлять 1-2% от массы всего раствора покрытия.

Как показали эксперименты, концентрация наполнителя в виде раствора оксидов индия и олова ниже 1% не позволяют ослабить поток электромагнитного излучения до необходимого уровня (18 Дб), а превышение концентрации более 2% уменьшает интегральное светопропускание стекла до 65% и ниже, что недопустимо по требованиям к авиационному остеклению.

Важным параметром многофункционального покрытия являются его солнцезащитные свойства, то есть ослабление спектрального пропускания в области длин волн 900-2500 нм. Создание солнцезащитных покрытий на авиационном остеклении - комплексная задача, то есть покрытие должно быть прозрачным в видимом диапазоне длин волн и не прозрачным для ИК-излучения. Пленка на основе оксидов индия и олова существенно ослабляет потоки электромагнитного и ультрафиолетового излучений, в то же время она практически не ослабляет потоки солнечной радиации.

Для получения солнцезащитных характеристик покрытия использовались наноразмерные наполнители в виде раствора коллоидного золота или меди, так как пленки на основе золота и меди хорошо ослабляют потоки солнечной радиации. Поэтому вторым слоем покрытия являлся раствор полимерного связующего с наполнителем в виде раствора коллоидного золота или коллоидной меди. Наноразмерность наполнителей (до 10 нм) обусловлена сохранением оптических свойств остекления.

В процессе приготовления раствора коллоидного золота или меди необходимо, чтобы формировались устойчивые коллоиды золота или меди, не склонные к агломерации и изменению окраски во времени. Эмпирическим путем было установлено, что оптимальная концентрация наполнителя в виде раствора коллоидного золота составляет 0.1-0.2% от массы всего раствора покрытия, а меди 0,2-0,5%. Это обусловлено тем, что при восстановлении, например, золотохлористоводородной кислоты в тетрагидрофуране с концентрацией в расчете на золото от 0.1 до 0.2% размеры полученных частиц лежат в диапазоне от 3 до 10 нм и суспензии стабильны во времени. При больших концентрациях (более 0,2%) суспензии нестабильны, идет агломерация и рост частиц, суспензии становятся коричневыми и мутными от смешения крупных и мелких частиц. При меньших концентрациях (менее 0,1%) эффект ослабления потока солнечной радиации незначителен.

Содержание наполнителя в виде раствора коллоидной меди (0.2-0.5%) так же подбиралось эмпирическим путем с учетом тех же требований, что и для золота.

Необходимо отметить, что нанесение металлооптических покрытий, к которым относятся пленки коллоидного золота и меди, на поверхность стекла сильно меняет коэффициент отражения от его поверхности (до 18% вместо 4%). Это на практике может создать ситуацию, когда такого рода покрытие делает остекление не пригодным для использования на летательных аппаратах в виду большого ослепляющего эффекта от бликов остекления в видимой области излучения.

Как указывалось выше, пленки на основе оксидов индия и олова обладают не только защитными от электромагнитного и ультрафиолетового излучений свойствами, но также и антибликовыми свойствами, так как имеют коэффициент отражения до 4%.

В этой связи сверху двух слоев вышеописанных пленок наносился третий слой раствора полимерного связующего с наполнителем в виде раствора оксидов индия и олова, аналогичный первому слою покрытия. Нанесенный третий слой пленки позволяет не только снизить коэффициент отражения покрытия до требуемой величины, но и усилить ослабление электромагнитного и ультрафиолетового потоков.

Пример

Готовят полимерное связующее путем реакции радикальной полимеризации 0,08М раствора метилметакрилата в тетрагидрофуране и 0,02М раствора 3-триметоксисилилпропилметакрилата в тетрагидрофуране (мольное соотношение ММА:МСМА=8:2) при 65°C в течение 4,5 часов в присутствии активатора полимеризации - динитрила азоизомасляной кислоты с концентрацией 0,016 моль/л. Полученный сополимер ММА-МСМА очищают тройным переосаждением из раствора ТГФ в гексан, затем сушат под вакуумом при 60°C в течение 12 часов. Из полученного раствора готовят 3% раствор в тетрагидрофуране.

Приготовление полимерного связующего и наноразмерного неорганического наполнителя в виде растворов оксидов индия и олова осуществляют следующим образом. Наночастицы оксида индия с оксидом олова в соотношении компонентов 9:1 по массе готовят совместным гидролизом InCl3 и SnCl4 в спиртовой среде. Полученную суспензию порошка ITO вводят в тетрагидрофурановый раствор полимерного связующего в количестве 1-2% от массы всего композита и тщательно перемешивают.

Приготовление полимерного связующего с наполнителем в виде коллоидного золота осуществляют следующим образом. В раствор полимерного связующего добавляют раствор золотохлористоводородной кислоты (HAuCl4) в тетрагидрофуране в количестве 0,1-0,2% от массы всего композита. Полученный прозрачный раствор светло-желтого цвета перемешивают в течение одного часа до приобретения им фиолетово-красного цвета. Появление интенсивного окрашивания раствора свидетельствует об образовании наноразмерных частиц коллоидного золота.

Раствор полимерного связующего с наполнителем в виде коллоидной меди приготавливают по следующей методике. Готовят раствор нитрата меди Cu(NO3)2 в тетрагидрофуране. Полученный раствор нитрата меди в количестве 0,2-0,5% от массы всего композита вводят в тетрагидрофурановый раствор полимерного связующего и интенсивно перемешивают при комнатной температуре. При перемешивании добавляют в него раствор гидридтетрагидробората лития LiB(C2H5)3H в тетрагидрофуране. Голубая окраска раствора нитрата меди резко меняется на темную - цвет хаки, так как идет восстановление иона Cu2+ до свободной меди. Раствор продолжают мешать до приобретения им устойчивого красно-коричневого (бурого) окрашивания, характерной окраски коллоидной меди в растворе.

Полученные растворы наносят послойно на стеклянную подложку в последовательности: раствор полимерного связующего и наноразмерного неорганического наполнителя в виде раствора оксидов индия и олова, раствор полимерного связующего и коллоидного золота или коллоидной меди, опять раствор полимерного связующего с наполнителем в виде раствора оксидов индия и олова.

После нанесения каждого слоя пленки покрытие подсушивают в течение 2-3 часов при температуре 70°C. Образцы были исследованы на поглощение ИК- и УФ-излучений на спектрофотометре СФ256 БИК. Результаты представлены на рисунках 1 и 2.

На рисунке 1 представлена зависимость коэффициента пропускания ИК-излучения от длины волны многослойных покрытий, где: 1 - органическое стекло без покрытия, 2 - органическое стекло с покрытием ITO/Au/ITO (концентрация в исходном растворе ITO - 1,0-2,0%, Au - 0,1-0,2%), 3 - органическое стекло с покрытием ITO/Cu/ITO (концентрация в исходном растворе ITO - 1,0-2,0%, Cu - 0,2-0,5%).

На рисунке 2 представлены спектры коэффициента пропускания оргстекла с покрытиями в УФ-диапазоне, где: 4 - органическое стекло без покрытия, 5 - органическое стекло с покрытием ITO/Cu/ITO (концентрация в исходном растворе ITO - 1,0-2,0%, Cu - 0,2-0,5%), 6 - органическое стекло с покрытием ITO/Au/ITO (концентрация в исходном растворе ITO - 1,0-2,0%, Au - 0,1-0,2%).

Таким образом, в предлагаемом способе нанесения многофункционального покрытия на органическое стекло удалось оптимизировать материалы покрытия, их концентрацию и последовательность нанесения таким образом, что при достаточном пропускании в видимом диапазоне покрытие позволяет получить высокие защитные свойства от электромагнитного и ультрафиолетового излучений, солнечного тепла, существенно снизить отражение и заметность на радарах.

Проведенные исследовательские испытания полученных образцов показали эффективность защиты от ЭМИ и УФ в трехсантиметровом диапазоне радиоизлучения - степень ослабления ЭМИ составила не менее 20 Дб, ослабление УФ-излучения в 2 раза, ослабление потока солнечной радиации составляло 40-50%, радиолокационная незаметность снизилась на 30-40%, интегральное отражение в видимом диапазоне 4-6%.

Источники информации

1. Патент РФ №2231501, кл.7 C03C 17/25, 17/28. «Способ получения тонирующих покрытий на закаленном стекле».

2. Патент РФ №2118402, кл. C03C 20/08, 17/25. «Способ получения металлооксидных покрытий».

Способ получения многофункционального покрытия на органическом стекле, включающий нанесение пленкообразующих полимерных растворов с последующей термообработкой, отличающийся тем, что в качестве полимерных растворов используют тетрагидрофурановые растворы полимерного связующего на основе метилметакрилата и наноразмерного неорганического наполнителя в виде растворов оксидов индия и олова, коллоидного золота или коллоидной меди, которые поочередно наносят на органическое стекло, при этом вначале наносят слой раствора полимерного связующего с наполнителем в виде раствора оксидов индия и олова, затем слой раствора полимерного связующего с наполнителем в виде раствора коллоидного золота или коллоидной меди, затем еще слой полимерного связующего с наполнителем в виде раствора оксидов индия и олова, причем концентрация наполнителя в виде раствора оксидов индия и олова, взятых в соотношении 9:1 по массе, составляет 1,0-2,0% от массы всего раствора покрытия, концентрация наполнителя в виде раствора коллоидного золота составляет 0,1-0,2% от массы всего раствора покрытия, а концентрация наполнителя в виде раствора коллоидной меди составляет 0,2-0,5% от массы всего раствора покрытия.
СПОСОБ ПОЛУЧЕНИЯ МНОГОФУНКЦИОНАЛЬНОГО ПОКРЫТИЯ НА ОРГАНИЧЕСКОМ СТЕКЛЕ
СПОСОБ ПОЛУЧЕНИЯ МНОГОФУНКЦИОНАЛЬНОГО ПОКРЫТИЯ НА ОРГАНИЧЕСКОМ СТЕКЛЕ
Источник поступления информации: Роспатент

Showing 211-220 of 324 items.
10.04.2016
№216.015.2c3d

Способ повышения чувствительности электромагнитных датчиков пульсаций скорости преобразователей гидрофизических полей

Изобретение относится к измерительной технике и предназначено для измерения скорости потока электропроводящей жидкости, например морской воды. Способ повышения чувствительности электромагнитных датчиков пульсаций скорости преобразователей гидрофизических полей согласно изобретению включает...
Тип: Изобретение
Номер охранного документа: 0002579805
Дата охранного документа: 10.04.2016
27.04.2016
№216.015.38e7

Пьезоакселерометр

Изобретение относится к области измерительной техники и может быть использовано для измерения параметров ускорения в виброметрии, сейсмологии и акустики. Техническим результатом, получаемым от внедрения изобретения, является измерение трех компонент вектора ускорения с помощью...
Тип: Изобретение
Номер охранного документа: 0002582910
Дата охранного документа: 27.04.2016
10.05.2016
№216.015.3c71

Распылитель форсунки

Изобретение относится к двигателестроению, в частности к распылителям топливных форсунок двигателей внутреннего сгорания с воспламенением от сжатия. Предложен распылитель топливной форсунки, содержащий корпус 1 с топливоподающими каналами 2, кольцевой полостью 3 высокого давления, отверстиями...
Тип: Изобретение
Номер охранного документа: 0002583199
Дата охранного документа: 10.05.2016
20.05.2016
№216.015.41b3

Электроизоляционный эпоксидный лак

Изобретение относится к эпоксидным электроизоляционным составам, в частности составам на основе эпоксидных или полиэфирных смол в органическом растворителе, и может быть использовано в производстве изделий радиотехники и электроники, к которым предъявляются высокие требования по электрической...
Тип: Изобретение
Номер охранного документа: 0002584734
Дата охранного документа: 20.05.2016
10.08.2016
№216.015.523d

Универсальный стенд для определения характеристик электроприводов и движителей действующих моделей бпла

Изобретение относится к области авиации, в частности к средствам для проведения испытаний приводов и движителей летательных аппаратов. Стенд для определения характеристик электроприводов и движителей беспилотных летательных аппаратов содержит корпус стенда, основание с кронштейнами крепления...
Тип: Изобретение
Номер охранного документа: 0002594048
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.55e1

Устройство для определения спектральной излучательной способности теплозащитных материалов при высоких температурах

Изобретение относится к области измерительной техники и касается устройства для измерения излучательной способности материалов. Устройство содержит вакуумную камеру, исследуемый образец, механизм вращения образца, омический нагреватель, спектрометр, компьютер и модель черного тела. При этом в...
Тип: Изобретение
Номер охранного документа: 0002593445
Дата охранного документа: 10.08.2016
10.07.2016
№216.015.569f

Способ изготовления аэродинамических поверхностей лопаток роторов газотурбинных двигателей на станках с чпу

Изобретение относится к машиностроению и может быть использовано при обработке профиля пера рабочих лопаток газотурбинных двигателей на станках с ЧПУ. Способ включает обработку концевой торовой фрезой, которую перемещают эквидистантно обрабатываемой поверхности. Выбирают оптимальную частоту...
Тип: Изобретение
Номер охранного документа: 0002588757
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.5cb6

Способ получения на летательном аппарате (ла) улучшенного изображения подстилающей поверхности

Изобретение относится к способам моделирования, анализа и обработки изображений и может быть использовано в системах повышения ситуационной осведомленности пилотов летательных аппаратов (ЛА), а также в системах внешнего ориентирования и распознавания по видеоинформации в мобильных роботах и в...
Тип: Изобретение
Номер охранного документа: 0002591029
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.729e

Устройство для формования ударопрочных прозрачных полимерных материалов

Изобретение относится к технике переработки листовых заготовок и может быть использовано в любой отрасли машиностроения, в частности для получения изделий остекления самолетов, вертолетов и других средств с одинарной кривизной поверхности. Техническим результатом изобретения является улучшение...
Тип: Изобретение
Номер охранного документа: 0002598092
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.73b7

Способ формования ударостойких прозрачных поликарбонатных листов

Изобретение относится к технике переработки листовых заготовок из прозрачных термопластов, а именно к способам формования прозрачных листов из поликарбоната, и может быть использовано в любой отрасли машиностроения, в частности, для получения изделий остекления самолетов, вертолетов и других...
Тип: Изобретение
Номер охранного документа: 0002597927
Дата охранного документа: 20.09.2016
Showing 211-220 of 267 items.
20.12.2015
№216.013.9cc4

Композиционный порошок на основе нитрида кремния

Изобретение относится к области получения тугоплавких неорганических соединений, в частности к получению композиционных порошков на основе нитрида кремния, которые могут быть использованы в качестве исходного сырья для получения конструкционной и функциональной керамики, в автомобильной и...
Тип: Изобретение
Номер охранного документа: 0002571757
Дата охранного документа: 20.12.2015
10.01.2016
№216.013.9eaa

Бесплотинная русловая микрогидроэлектростанция

Изобретение относится к гидроэнергетике и предназначено для обеспечения электрической энергией небольших населенных пунктов, лагерей геологов, охотников, рыбаков, леспромхозов преобразованием энергии русловых потоков реки в электрическую. Бесплотинная русловая микрогидроэлектростанция...
Тип: Изобретение
Номер охранного документа: 0002572255
Дата охранного документа: 10.01.2016
10.01.2016
№216.013.9f95

Картофелеуборочная машина

Изобретение относится к сельскохозяйственной технике. Машина содержит раму, несущую лемех, а также вал с дисками и пружинными пальцами, и транспортер. Транспортер состоит из прутков и чередующихся с ними прутковых петель, приводимых во вращение. На концах прутковых петель установлены звездочки,...
Тип: Изобретение
Номер охранного документа: 0002572490
Дата охранного документа: 10.01.2016
20.01.2016
№216.013.a2c3

Способ получения композиционного армированного порошкового материала

Изобретение относится к получению композиционного армированного порошкового материала для нанесения покрытий холодным сверхзвуковым газодинамическим напылением. Смешивают матричный порошок металлов или их сплавов и армирующий нанопорошок с размером частиц от 1 нм до 100 нм, в полученную смесь...
Тип: Изобретение
Номер охранного документа: 0002573309
Дата охранного документа: 20.01.2016
10.03.2016
№216.014.bde5

Антифрикционный композиционный материал на основе порошковой меди

Изобретение относится к антифрикционным композиционным материалам, получаемым методами порошковой металлургии, которые могут быть использованы при изготовлении тяжелонагруженных подшипников скольжения коленчатых валов двигателей внутреннего сгорания, преимущественно дизельных двигателей....
Тип: Изобретение
Номер охранного документа: 0002576740
Дата охранного документа: 10.03.2016
27.02.2016
№216.014.bf1e

Способ получения полидисперсного порошка карбида бора

Изобретение относится к производству неорганических соединений, конкретно к карботермическому способу получения полидисперсных порошков карбида бора, предназначенных для получения на их основе абразивных порошков для шлифования и ударопрочной керамики. Способ включает смешивание борной кислоты...
Тип: Изобретение
Номер охранного документа: 0002576041
Дата охранного документа: 27.02.2016
27.02.2016
№216.014.c12c

Способ термической обработки изделий из высокопрочных алюминиевых сплавов

Изобретение относится к области металлургии, в частности к технологии термической обработки изделий из высокопрочных алюминиевых сплавов для использования в судостроении и конструкциях, эксплуатирующихся в морских условиях, авиакосмической технике, транспортном машиностроении. Способ...
Тип: Изобретение
Номер охранного документа: 0002576283
Дата охранного документа: 27.02.2016
10.02.2016
№216.014.c22f

Аппарат на воздушной подушке

Изобретение относится к авиации и касается аппаратов на воздушной подушке (АВП) с системами демпфирования колебаний по высоте и автоматического управления по углам крена и тангажа. АВП содержит ограждение ВП, снабженное воздуховодом, расположенным вдоль периметра корпуса и разделенным на две...
Тип: Изобретение
Номер охранного документа: 0002574649
Дата охранного документа: 10.02.2016
10.02.2016
№216.014.c32e

Способ увеличения подъемной силы самолета и устройство для его реализации

Способ и устройство увеличения аэродинамической подъемной силы самолета с силовой установкой, имеющей сопло, расположенное у задней кромки крыла. Для увеличения подъемной силы самолета с силовой установкой, имеющей сопло в области задней кромки крыла, используют нижнюю внешнюю поверхность...
Тип: Изобретение
Номер охранного документа: 0002574676
Дата охранного документа: 10.02.2016
20.06.2016
№217.015.044a

Состав эпоксибисмалеимидной смолы и способ ее получения

Изобретение относится к области получения полимерных композиционных материалов, применяемых в авиакосмической технике, в частности к составу эпоксибисмалеимидной смолы и способу получения состава. Состав эпоксибисмалеимидной смолы содержит в мас.%: 29,2-47,6...
Тип: Изобретение
Номер охранного документа: 0002587169
Дата охранного документа: 20.06.2016
+ добавить свой РИД