×
20.06.2013
216.012.4b4e

Результат интеллектуальной деятельности: СПОСОБ ПОВЫШЕНИЯ КОНЦЕНТРАЦИИ МОЛЕКУЛЯРНОГО КИСЛОРОДА В ДЕРМЕ КОЖНОЙ ТКАНИ

Вид РИД

Изобретение

Аннотация: Способ относится к медицине и может быть использован при лечении патологий приповерхностных участков кожи и, в частности, при низкоинтенсивной лазерной и фотодинамической терапии. Облучают поверхность кожи световым пучком на длине волны 575 нм при полуширине спектра не более 5 нм. Способ позволяет повысить концентрацию молекулярного кислорода в слое дермы за счет фотодиссоциации оксигемоглобина крови под действием света заданного спектрального состава. 2 ил.
Основные результаты: Способ повышения концентрации молекулярного кислорода в дерме кожной ткани, основанный на фотодиссоциации оксигемоглобина крови посредством облучения поверхности кожи световым пучком, отличающийся тем, что облучение световым пучком осуществляют на длине волны 575 нм при полуширине спектра не более 5 нм.

Изобретение относится к неинвазивному получению кислорода в слое дермы путем фотодиссоциации оксигемоглобина крови под действием света заданного спектрального состава. Он может быть использован при лечении патологий приповерхностных участков кожи и, в частности, при низкоинтенсивной лазерной и фотодинамической терапии.

Известно [1], что при облучении кожной ткани светом с частотой ν (или длиной волны λ=c/ν, где с - скорость света в среде) происходит фотодиссоциация оксигемоглобина HbO2, который распадается на деоксигемоглобин Hb и молекулярный кислород O2

Этот механизм используют для повышения уровня О2 в кожных тканях с целью устранению гипоксии (недостатка кислорода), стимулирования аэробного (связанного с потреблением кислорода) обмена веществ в клетках и достижения соответствующих терапевтических эффектов.

Известен способ повышения концентрации молекулярного кислорода (оксигенации) в биоткани, заключающийся в том, что одновременно проводят гипербарическую оксигенацию (ГБО) и низкоинтенсивное лазерное облучение на длине волны от 600 до 1000 нм и тем самым неинвазивно воздействуют через кожу на зону, в которой необходимо повысить концентрацию кислорода [2].

Недостатком этого способа является сложность из-за необходимости сочетать ГБО и облучение, а также невозможность повысить концентрацию кислорода в заданном месте биоткани, где имеется патологический участок, т.к. процесс ГБО включает оксигенации всего организма в целом. Для реализации метода ГБО требуется громоздкое стационарное оборудование. Кроме того, он обуславливает высокий риск кислородной токсемии (отравление крови токсинами бактерий) как результат длительного воздействия О2 на организм при повышенном давлении.

Наиболее близким к предлагаемому способу является способ [3] неинвазивной генерации молекулярного кислорода в толще дермы, заключающийся в облучении поверхности кожи светом с λ=632.8 нм и одновременном локальном (в месте облучения) повышении температуры ткани примерно до 42°С. Недостатком данного способа является малое число образующихся молекул O2 из-за использования света с λ=632.8 нм.

Задачей настоящего изобретения является увеличение числа образуемых молекул кислорода в толще дермы кожной ткани.

Решение поставленной задачи достигается тем, что в способе неинвазивной генерации молекулярного кислорода в дерме кожной ткани, основанном на фотодиссоциации оксигемоглобина крови при облучении поверхности кожи световым пучком, облучение световым пучком осуществляют на длине волны 575±5 нм.

Сущность предлагаемого изобретения поясняется чертежами, где:

на фиг.1 изображено отношение R интегральных эффективностей фогодиссоциации (ИЭФ) при монохроматическом облучении поверхности кожи на длинах волн 575 и 632.8 нм при CV=0.04 (сплошная кривая) и CV=0.08 (штриховая) в зависимости от объемной концентрации меланина fm в эпидермисе. Символы соответствуют аналогичному отношению R* при облучении в спектральных интервалах 575±5 нм и 632.8±5 нм при CV=0.04.

На фиг.2 показаны значения R при монохроматическом облучении поверхности кожи на длинах волн 575 и 418 нм (кривые 1), 575 и 585 нм (2) при CV=0.04 (сплошные кривые) и CV=0.08 (штриховые) в зависимости от объемной концентрации меланина. Символы соответствуют аналогичному отношению R* при облучении в спектральном интервале 575±5 нм, 418±5 нм и 585±5 нм при CV=0.04.

Введем понятие интегральной эффективности фотодиссоциации ИЭФ, под которой понимается количество молекул кислорода N, образующихся в единицу времени во всей толще дермы единичной площади, при падении единичной плотности мощности монохроматического света на поверхность

Здесь

µа(λ) - спектральная зависимость показателя поглощения оксигемоглобина (1/см);

H - гематокрит (объемная концентрация эритроцитов в крови);

ƒ - объемная доля гемоглобина в эритроцитах;

S - степень оксигенации крови (отношение количества оксигемоглобина к полному гемоглобину);

q - квантовый выход фотодиссоциации (при освещении в видимом диапазоне спектра (λ≅300-650 нм), он примерно постоянен и составляет 3-5% в зависимости от температуры и других факторов [4]);

z0 - координата верхней границы дермы;

Cv - объемная концентрация капилляров крови (доля единичного объема ткани, занятая капиллярами);

z - глубина в дерме, отсчитываемая от поверхности кожи;

E(z, λ) плотность излучения в биоткани, (Вт/см2), где I(λ,z,Ω) - интенсивность света как функция угловых координат ϑ и ϕ, dΩ=sin(ϑ)dϑdφ - элементарный телесный угол;

h=6.63·10-34 Дж с - постоянная Планка;

с=3·1010 см/с - скорость света.

Величина N(λ) имеет размерность см-2 c-1. Верхний предел интегрирования в (1) положен равным ∞ для наглядности, т.к. плотность излучения в глубоких слоях дермы пренебрежимо мала.

В формуле (1) учтено, что в общем случае объемная концентрация капилляров Cv может зависеть от глубины z [5]. Для конкретности полагаем, что Н=0.4, ƒ=0.25 согласно модели [5].

Введем отношение

показывающее, во сколько раз ИЭФ при облучении поверхности кожи на длине волны λ1 больше (или меньше) соответствующей величины при облучении на длине волны λ.

Формулы (1) и (2) соответствуют монохроматическому освещению поверхности кожи на длине волны λ. Если для генерации кислорода используется световой пучок в спектральном интервале Δλ, то формула (2) принимает вид

Для конкретности Δλ=±5 нм относительно длины волны λ.

Ниже будет показано, что нами найдена длина волн λ1 (или интервал длин волн λ1±Δλ1), при которой значения ИЭФ для всей толщи дермы максимальны, или, иными словами, когда R(λ1,λ)>1 и R*(λ1,λ)>1 (λ1≠λ).

Величины, определенные формулами (1)-(3), зависят, через плотность излучения E(z,λ), от структурных, биофизических и оптических характеристик всех слоев кожи - рогового, эпидермиса и дермы. В расчетах зависимостей E(z,λ) использована модель [6] кожного покрова человека. Биофизические параметры кожи ƒm и Cv, варьировались в пределах, типичных для светлой кожи. На фиг.1 и 2 сплошные кривые и символы соответствуют объемной концентрации капилляров Cv=0.04, штриховые - 0.08. Степень оксигенации крови S=0.75, толщины рогового слоя ds=100 мкм и эпидермиса de=100 мкм.

На фиг.1 сопоставлены значения R и R* для λ1=575 нм и λ=632.8 нм (прототип). Как видно, облучение на длине волны λ1=575 нм обеспечивает более эффективную интегральную генерацию молекулярного кислорода (примерно в 20-25 раз) во всей толще дермы по сравнению с прототипом.

Нами было обнаружено, что облучение поверхности кожи на длине волны 575 нм обеспечивает максимальные значения ИЭФ по сравнению с другими λ в ближней УФ - видимой области спектра, отличающимися от 632.8 нм, предложенной в прототипе. Чтобы проиллюстрировать это, на фиг.2 сопоставлены значения R и R* для λ1=575 нм и λ=418 (кривые 1), λ1=575 нм и 585 нм (2). Длина волны 418 нм соответствует наибольшему поглощению крови и оксигемоглобина µa(λ) [6] в ближней УФ, видимой и ближней ИК областях спектра. Длина волны 585 нм была рекомендована в работе [3] в качестве обеспечивающей во всей толще дермы максимальный эффективный показатель поглощения HbO2, пропорциональный произведению µа(λ)E(z,λ). Из данных фиг.2 можно сделать вывод, что рост ИЭФ при облучении на длине волны 575 нм составляет примерно 1.1-2.5 раза по сравнению с λ=418 и 585 нм. Отметим, что небольшие значения R(λ) (порядка 1.1-1.2) при λ=418 нм имеют место при низких концентрациях меланина ƒm≤0.02, характерных для патологии кожи - витилиго [6], и поэтому они не очень типичны.

Источники информации

1. Q.И.Gibson, S.Ainsworth. Photosensitivity of heme compounds // Nature. 1957. V.180. No.4599. P.1416-1417.

2. М.М.Асимов, Р.М.Асимов, А.Н.Рубинов. Способ повышения локальной концентрации кислорода в биологических тканях пациента. Патент BY №9855 C1. 30.10.2007.

3. М.М.Асимов, А.Н. Королевич, Е.Э. Константинова. Кинетика оксигенации кожной ткани под воздействием низкоинтенсивного лазерного излучения // Журн. прикл. спектроск. 2007. Т.74. №1. С.120-125.

4. С.В.Лепешкевич, Н.В.Коновалова, Б.М.Джагаров. Исследование методом лазерной кинетической спектроскопии бимолекулярных стадий реакции оксигенации α- и β-субъединиц гемоглобина человека в R-состоянии // Биохимия. 2003. Т.68. №5. С.676-685.

5. И.В.Меглинский. Моделирование методом Монте Карло спектров отражения случайных многослойных сильно рассеивающих и поглощающих свет сред // Квантовая электроника 2001. Т.31. №12. С.1101-1107.

6. В.В.Барун, А.П.Иванов, А.В.Волотовская, В.С.Улащик. Спектры поглощения и глубина проникновения света в нормальную и патологически измененную кожу человека // Журнал прикладной спектроскопии. 2007. Т.74. №3. С.387-394.

Способ повышения концентрации молекулярного кислорода в дерме кожной ткани, основанный на фотодиссоциации оксигемоглобина крови посредством облучения поверхности кожи световым пучком, отличающийся тем, что облучение световым пучком осуществляют на длине волны 575 нм при полуширине спектра не более 5 нм.
СПОСОБ ПОВЫШЕНИЯ КОНЦЕНТРАЦИИ МОЛЕКУЛЯРНОГО КИСЛОРОДА В ДЕРМЕ КОЖНОЙ ТКАНИ
СПОСОБ ПОВЫШЕНИЯ КОНЦЕНТРАЦИИ МОЛЕКУЛЯРНОГО КИСЛОРОДА В ДЕРМЕ КОЖНОЙ ТКАНИ
Источник поступления информации: Роспатент

Showing 11-12 of 12 items.
20.01.2018
№218.016.0eee

Биосенсор для неинвазивного оптического мониторинга патологии биологических тканей

Изобретение относится к медицине, а именно к эндокринологии, и может быть использовано для неинвазивного оптического мониторинга патологии биологических тканей, связанных с развитием сахарного диабета. Биосенсор содержит: источник и приемник излучения; аппликатор, изготовленный в виде сосуда с...
Тип: Изобретение
Номер охранного документа: 0002633494
Дата охранного документа: 12.10.2017
20.01.2018
№218.016.10f7

Способ трансдермальной доставки биологически активных веществ

Изобретение относится к медицине и может быть использовано для трансдермальной доставки биологически активных веществ (БАВ). Для этого осуществляют аппликацию контейнеров с иммобилизованным БАВ на поверхность кожи с последующей транспортировкой через придатки кожи. В качестве контейнеров...
Тип: Изобретение
Номер охранного документа: 0002633928
Дата охранного документа: 19.10.2017
Showing 21-30 of 79 items.
10.01.2014
№216.012.93aa

Гранулированный модифицированный наноструктурированный сорбент, способ его получения и состав для его получения

Группа изобретений относится к сорбентам, используемым при очистке водных сред от техногенных загрязнителей. Состав для приготовления гранулированного наноструктурированного сорбента включает, мас.%: глауконит - 20-50, интеркалированный графит, представляющий собой бисульфат графита, - 1-5,...
Тип: Изобретение
Номер охранного документа: 0002503496
Дата охранного документа: 10.01.2014
27.01.2014
№216.012.9cdf

Способ моделирования развития мелкоочаговых мозговых геморрагий в коре головного мозга у новорожденных крыс

Изобретение относится к экспериментальной медицине и касается моделирования мелкоочаговых мозговых геморрагий у новорожденных крыс. Для этого новорожденных крыс в возрасте 3-х дней помещают в камеру и подвергают воздействию звука силой 70 дБ, частотой 110 Гц, на протяжении 60 минут. Способ...
Тип: Изобретение
Номер охранного документа: 0002505865
Дата охранного документа: 27.01.2014
20.02.2014
№216.012.a32c

Способ определения амплитуды нановибраций по сигналу лазерного автодина

Изобретение относится к измерительной технике и предназначено для измерений вибраций. Способ измерения амплитуды нановибраций ξ заключается в том, что освещают объект лазерным излучением, преобразуют отраженное от него излучение в электрический (автодинный) сигнал, раскладывают сигнал в...
Тип: Изобретение
Номер охранного документа: 0002507487
Дата охранного документа: 20.02.2014
10.03.2014
№216.012.aabc

Способ скрытой передачи информации

Изобретение относится к радиотехнике и передаче информации и может найти применение в системах связи для помехоустойчивой передачи цифровой информации, в том числе с высокой степенью конфиденциальности. Задачей настоящего изобретения является усовершенствование способа скрытой передачи...
Тип: Изобретение
Номер охранного документа: 0002509423
Дата охранного документа: 10.03.2014
10.04.2014
№216.012.b086

Способ оценки фото-, кино- и видеоматериалов, содержащих нежелательное изображение (варианты)

Изобретение относится к средствам анализа содержимого изображений. Техническим результатом является повышение эффективности оценки содержимого изображений. В способе просматривают объект оценки и выявляют признаки нежелательного изображения первой группы - динамические признаки и второй группы...
Тип: Изобретение
Номер охранного документа: 0002510905
Дата охранного документа: 10.04.2014
20.05.2014
№216.012.c2c2

Способ идентификации аденомы гипофиза

Изобретение относится к биомедицинской оптике и касается проблемы идентификации аденомы гипофиза после или во время хирургического вмешательства. Регистрируют кинетику затухания аутофлуоресценции в диапазоне 450-600 нм, а также спектры диффузно рассеянного света опухолевой ткани. Определяют...
Тип: Изобретение
Номер охранного документа: 0002515617
Дата охранного документа: 20.05.2014
20.05.2014
№216.012.c52f

Способ определения электропроводности и энергии активации примесных центров полупроводниковых слоев

Изобретение относится к измерительной технике, а именно к способу определения электропроводности и толщины слоя полупроводника на поверхности диэлектрика, и может найти применение в различных отраслях промышленности при контроле свойств полупроводниковых слоев. Предложенный способ включает...
Тип: Изобретение
Номер охранного документа: 0002516238
Дата охранного документа: 20.05.2014
20.05.2014
№216.012.c694

Устройство для ориентации приемника солнечной энергии

Изобретение относится к гелиотехнике и может быть использовано в качестве устройства поворота приемников солнечной энергии (следящей системы) в установках, преобразующих энергию излучения Солнца в другие виды энергии. Устройство для ориентации приемника солнечной энергии содержит механизм...
Тип: Изобретение
Номер охранного документа: 0002516595
Дата охранного документа: 20.05.2014
27.05.2014
№216.012.c8ea

Способ определения электропроводности и толщины полупроводниковых пластин или нанометровых полупроводниковых слоев в структурах "полупроводниковый слой - полупроводниковая подложка"

Изобретение относится к контрольно-измерительной технике. Технический результат - расширение функциональных возможностей одновременного определения электропроводности и толщины полупроводниковых пластин и электропроводности и толщины тонких полупроводниковых эпитаксиальных слоев в структурах...
Тип: Изобретение
Номер охранного документа: 0002517200
Дата охранного документа: 27.05.2014
10.06.2014
№216.012.cdec

Способ формирования свинцово-кислотных аккумуляторных батарей импульсным асимметричным током

Изобретение относится к области электротехники, в частности, к технологии производства свинцово-кислотных аккумуляторов и аккумуляторных батарей, а также к обслуживанию аккумуляторных батарей в процессе их эксплуатации. Задачей изобретения является повышение эффективности формирования...
Тип: Изобретение
Номер охранного документа: 0002518487
Дата охранного документа: 10.06.2014
+ добавить свой РИД