×
10.06.2013
216.012.4755

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНОГО ПОРОШКА КОБАЛЬТА

Вид РИД

Изобретение

Аннотация: Изобретение относится к порошковой металлургии. Предложен способ получения наноразмерного порошка кобальта, включающий термическое разложение кобальтсодержащего прекурсора в углеводородном масле, получение осадка, его отделение и промывку гексаном. В качестве кобальтсодержащего прекурсора используют α-модификацию гидроксида кобальта, интеркалированную додецилсульфатом натрия. Процесс разложения проводят от 10 до 30 ч. при температуре 400°С с получением продукта, стабилизированного углеродной пленкой, который сушат при температуре 80°С. Изобретение позволяет получить наноразмерный порошок кобальта без применения агрессивных сред, инертной атмосферы и дорогостоящих реагентов. 6 ил., 4 пр.
Основные результаты: Способ получения наноразмерного порошка кобальта, включающий термическое разложение кобальтсодержащего прекурсора в углеводородном масле, получение осадка, его отделение и промывку гексаном, отличающийся тем, что в качестве кобальтсодержащего прекурсора используют α-модификацию гидроксида кобальта, интеркалированную додецилсульфатом натрия, процесс разложения проводят от 10 до 30 ч при температуре 400°С с получением продукта, стабилизированного углеродной пленкой, который сушат при температуре 80°С.

Изобретение относится к порошковой металлургии, в частности к получению порошков металлического кобальта, имеющих широкий спектр областей применения в качестве катализаторов, композитов, компонентов магнитных материалов, носителей биопрепаратов.

Известен способ получения дисперсного металлического порошка кобальта [патент РФ №2030972, B22F 9/22, опубл. 20.03.1995 г.], заключающийся в том, что сначала готовят раствор щелочи, затем в него порциями вводят раствор соли кобальта при комнатной температуре при перемешивании. Полученный гидроксид металла подвергают фильтрации и промыванию, в процессе которых осуществляют его измельчение. Затем полученный продукт после сушки на воздухе восстанавливают до металла, с помощью пропускаемого через него водорода, при нагревании до температуры выше порога восстановления гидроксида металла.

К недостаткам способа можно отнести расход большого количества воды. Кроме того, рекомендуемые температурно-временные параметры восстановления гидроксида металла при температуре выше порога восстановления не позволяют получать ультрадисперсный порошок, так как незначительное повышение температуры выше порога температуры восстановления приводит к одновременному интенсивному протеканию процесса спекания образовавшихся энергонасыщенных ультрадисперсных частиц металла.

Известен способ получения агломератов металлического кобальта [патент РФ №2158657, МПК B22F 1/00, С22В 23/00, опубл. 10.11.2000 г.], заключающийся в том, что соль кобальта (хлорид, нитрат, или сульфат) взаимодействует с водным раствором карбоната щелочного металла при температуре 40-100°C с образованием основного карбоната кобальта, который выделяют и промывают для отделения нейтральных солей, затем обрабатывают водным раствором щелочи. Полученный продукт восстанавливают с применением газообразного восстановителя до агломерата металлического кобальта при температуре 650-800°C.

Недостатком способа является его многостадийность и высокая температура синтеза (650-800°C).

Известен способ получения наночастиц кобальта [Simeonidis, К.Shape and composition oriented synthesis of cobalt nanoparticles. / K.Simeonidis, S.Mourdikoudis // Physics of Advanced Materials. - 2008. - P.1-8], который заключается в следующем: прекурсор, содержащий Со2(СО)8, смешивают с дифенилэфиром, содержащем олеиновую кислоту и олеиламин. Процесс проводят в атмосфере аргона при температуре 260°C в течение 3 часов. Полученный осадок центрифугируют и промывают этанолом для удаления избытка растворителя. Конечный продукт представляет собой смесь наночастиц металлического кобальта и оксида кобальта (II, III). Выход металлического кобальта, стабилизированного органической оболочкой, составляет 9%.

К недостаткам способа можно отнести использование дорогостоящих реагентов, необходимость проведения процесса в инертной атмосфере, низкий выход продукта.

Наиболее близким техническим результатом, выбранным в качестве прототипа, является способ получения наночастиц кобальта и его оксидов [Запорожец М.А, Баранов Д.А., Катаева Н.А. Синтез кобальтсодержащих наночастиц термолизом формиата кобальта в углеводородном масле без стабилизирующих лигандов. // Журнал неорганической химии. 2009. Т.54, №4. - С.570-574]. Способ заключается в следующем: к 50-100 мл предварительно очищенного углеводородного масла ВМ-6 по каплям добавляют определенное количество раствора формиата кобальта Co(НСОО)2·2Н2О, смесь нагревают в токе аргона при интенсивном перемешивании в течение 1 ч при 300°C. Затем полученный осадок отделяют центрифугированием и промывают гексаном от избытка масла. Конечный продукт представляет собой магнитный порошок черного цвета, содержащий, по данным РФА, CoO (основной продукт), Co3O4 и очень небольшое количество металлического Co.

К недостаткам данного технического решения можно отнести использование инертной атмосферы.

Технический результат заявляемого изобретения состоит в разработке нового способа получения наноразмерного порошка кобальта, не предполагающего применения агрессивных сред, инертной атмосферы и дорогостоящих реагентов.

Технический результат достигается тем, что в способе получения наноразмерного порошка кобальта, включающем термическое разложение кобальтсодержащего прекурсора в углеводородном масле, получение осадка, его отделение и промывку гексаном, новым является то, что в качестве кобальтсодержащего прекурсора используют α-модификацию гидроксида кобальта, интеркалированную додецилсульфатом натрия, процесс проводят от 10 до 30 ч при температуре 400°C, и полученный продукт, стабилизированный углеродной пленкой, сушат при температуре 80°C.

Изобретение поясняется чертежами. На фиг.1 представлен ИК-спектр прекурсора. На фиг.2 представлена рентгенограмма прекурсора и ее часть в малоугловой области. На фиг.3 показана рентгенограмма наночастиц кобальта. На фиг.4 приведена микрофотография наночастиц кобальта. На фиг.5 спектр рентгеновской фотоэлектронной спектроскопии РФЭС. На фиг.6 представлены зависимости магнитного кругового дихроизма наночастиц кобальта при Т=300 K.

Сопоставительный анализ с прототипом показал, что заявляемый способ отличается тем, что вместо формиата кобальта вводят α-модификацию гидроксида кобальта, интеркалированную додецилсульфатом натрия, процесс проводят от 10 до 30 часов при температуре 400°C, а также тем, что конечным продуктом являются наночастицы металлического кобальта, стабилизированные углеродной пленкой.

Эти отличия позволяют сделать вывод о соответствии заявляемого технического решения критерию «новизна». Признаки, отличающие заявляемый способ от прототипа, не выявлены в других технических решениях при изучении данной и смежных областей химии и, следовательно, обеспечивают заявляемому решению соответствие критерию «изобретательный уровень».

Необходимость создания настоящего изобретения обусловлена тем, что наночастицы кобальта пирофорны и самопроизвольно возгораются на воздухе при комнатной температуре, поэтому их надо стабилизировать, например, оболочкой оксидов металлов, кварца, титана, полимеров или углерода. Кроме того, стабилизация наночастиц углеродом обеспечивает их хорошую биосовместимость в сочетании с высокой поверхностной активностью. Данные наночастицы находят применение в качестве сред для записи информации, как магнитные тонеры в ксерографии, магнитные чернила, контрастные агенты для магниторезонансных изображений, биомедицине, а также для приготовления высокоэнергетических постоянных магнитов.

При создании заявленного изобретения были использованы гелевые и пористые, слабоосновные и сильноосновные аниониты в ОН-форме. Полученные данные свидетельствуют, что использование пористых (слабоосновных и сильноосновных), а также гелевых слабоосновных анионитов нецелесообразно, так как значительная доля осадка (более 50%) удерживается анионитом вследствие его осаждения в виде гидроксида кобальта (II) в порах сорбента или комплексообразования ионов кобальта (II) с азотом функциональных групп. Поэтому выбор сильноосновного анионита АВ-17-8, содержащего в качестве функциональных групп остатки четвертичных аммониевых оснований, является предпочтительным.

Способ получения наноразмерного порошка кобальта состоит из двух стадий: синтеза прекурсора и его сольвотермического разложения.

I стадия: синтез прекурсора - α-модификации гидроксида кобальта, интеркалированного додецилсульфатом натрия. Для этого переводят анионит АВ-17-8 (сильноосновной анионит с полистирольной матрицей, содержащий остатки четвертичных аммониевых оснований - N+(СН3)3 (ГОСТ 20301-74)) в ОН-форму. Осуществляют контакт анионита с раствором солей кобальта (II) и додецилсульфата натрия, отделение и промывку осадка, регенерацию анионита.

Перевод анионита в ОН-форму проводят, заливая исходный АВ-17-8 в хлоридной форме 1М раствором NaOH (т:ж=1:3), затем 2М раствором NaOH 5-6 раз, выдерживая каждую порцию в течение часа (последнюю порцию в течение суток). После чего анионит промывают дистиллированной водой до отрицательной реакции на хлорид-ион. Полученный анионит высушивают при температуре около 60°C.

Массу анионита, необходимую для синтеза, рассчитывают по формуле:

где CCoAn - концентрация исходного раствора кобальта, М; VCoAn - объем раствора кобальта, мл; СО - статическая обменная емкость анионита в ОН-форме, ммоль-экв·г-1.

Рассчитанное количество анионита приводят в контакт с раствором, содержащим 25 мл 0,25 М соли кобальта (II) (нитрат, или хлорид, или сульфат) и 25 мл 0,25 М додецилсульфата натрия, при комнатной температуре и перемешивают на шейкере (120 мин-1) в течение 3 часов. После чего анионит отделяют, пропуская смесь через сито с диаметром отверстий 0,25 мм. Для отделения осадка используют центрифугирование. Осадок, после промывания водой, сушат при температуре 110°C (прекурсор).

На фиг.1 представлен ИК-спектр прекурсора. В ИК-спектрах прекурсора наблюдается широкая полоса поглощения при 3497 см-1, соответствующая валентным колебаниям ОН-групп, связанных водородной связью. Полосы поглощения при 2853-2955 см-1 можно отнести к валентным колебаниям С-Н групп в алкильной цепи аниона додецилсульфата. Полоса поглощения при 1241 см-1 принадлежит валентным колебаниям S=O-групп. Все это четко показывает, что анионы додецилсульфата внедрились в межслоевое пространство гидроксида кобальта (II). Согласно анализу малоугловой области дифрактограммы фиг.2б, интеркаляция прекурсора додецилсульфатом натрия привела к увеличению межплоскостного расстояния до 44 , что также свидетельствует о внедрении додецилсульфат иона.

И стадия: сольвотермическое разложение - включает кипячение прекурсора в вакуумном или индустриальном маслах в течение 10-30 часов при температуре 400°C, отделение и промывку продукта гексаном, а также его сушку при температуре 80°C.

Пример 1. Получение наночастиц металлического кобальта в вакуумном масле в течение 10 часов. К 25 мл 0,25М раствора нитрата кобальта и 25 мл 0,25М додецилсульфата натрия добавляют 12 г анионита АВ-17-8 в ОН-форме. Систему перемешивают в течение 3 ч на шейкере при температуре (20±0,2)°C. Затем фазы разделяют, пропуская смесь через сито с диаметром отверстий 0,25 мм. Для отделения осадка используют центрифугирование. Осадок, после промывания водой, сушат при температуре 110°C.

На фиг.1 представлен ИК-спектр прекурсора. На фиг.2 представлена рентгенограмма прекурсора и ее часть в малоугловой области.

Навеску полученного прекурсора помещают в термостойкую колбу и заливают маслом из расчета 15 мл масла на 0,5 г прекурсора. Содержимое колбы нагревают при температуре 400°C с обратным холодильником в течение 10 часов. Далее смесь охлаждают до комнатной температуры, осадок отделяют от масла методом декантации, промывают (с последующим центрифугированием) небольшими порциями гексана (не менее 10-15 раз) и высушивают при температуре 80°C.

На фиг.3а показана рентгенограмма наночастиц кобальта, из которой видно, что кроме фазы металлического кобальта, присутствует аморфная фаза неразложившегося СоОН2.

На фиг.4а, б представлены электронные микрофотографии полученного продукта, из которых следует, что в вакуумном масле образуются наночастицы кобальта сферической формы размером 120-125 нм, однородные по размерам и форме. Данные частицы покрыты оболочкой углерода, что помогает избежать окисления металлического кобальта. Из данных РФЭС, представленных на фиг.5а, следует, что полученные частицы покрыты оболочкой углерода толщиной около 5 нм.

Пример 2. Получение наночастиц металлического кобальта в вакуумном масле в течение 15 часов. К 25 мл 0,25 М раствора нитрата кобальта и 25 мл 0,25 М додецилсульфата натрия добавляют 12 г анионита АВ-17-8 в ОН-форме. Систему перемешивают в течение 3 ч на шейкере при температуре (20±0,2)°C. Затем фазы разделяют, пропуская смесь через сито с диаметром отверстий 0,25 мм. Для отделения осадка используют центрифугирование. Осадок, после промывания водой, сушат при температуре 110°C.

На фиг.1 представлен ИК-спектр прекурсора. На фиг.2 представлена рентгенограмма прекурсора и ее часть в малоугловой области.

Навеску полученного прекурсора помещают в термостойкую колбу и заливают маслом, из расчета 15 мл масла на 0,5 г прекурсора. Содержимое колбы нагревают при температуре 400°C с обратным холодильником в течение 10 часов. Далее смесь охлаждают до комнатной температуры, осадок отделяют от масла методом декантации, промывают (с последующим центрифугированием) небольшими порциями гексана (не менее 10-15 раз) и высушивают при температуре 80°C.

Результаты РФЭС, рентгенофазового и электронно-микроскопического анализа аналогичны результатам, представленным в примере 1.

Пример 3. Получение наночастиц металлического кобальта в вакуумном масле в течение 30 часов. К 25 мл 0,25М раствора нитрата кобальта и 25 мл 0,25М додецилсульфата натрия добавляют 12 г анионита АВ-17-8 в ОН-форме. Систему перемешивают в течение 3 ч на шейкере при температуре (20±0,2)°C. Затем фазы разделяют, пропуская смесь через сито с диаметром отверстий 0,25 мм. Для отделения осадка используют центрифугирование. Осадок после промывания водой сушат при температуре 110°C.

На фиг.1 представлен ИК-спектр прекурсора. На фиг.2 представлена рентгенограмма прекурсора и ее часть в малоугловой области.

Навеску полученного прекурсора помещают в термостойкую колбу и заливают маслом из расчета 15 мл масла на 0,5 г прекурсора. Содержимое колбы нагревают при температуре 400°C с обратным холодильником в течение 30 часов. Далее смесь охлаждают до комнатной температуры, осадок отделяют от масла методом декантации, промывают (с последующим центрифугированием) небольшими порциями гексана (не менее 10-15 раз) и высушивают при температуре 80°C.

На фиг.3в показана рентгенограмма наночастиц кобальта, из которой видно, что присутствует только одна фаза металлического кобальта. Результаты электронно-микроскопического анализа аналогичны результатам, представленным в примере 1. Из данных РФЭС, представленных на фиг.5б, следует, что полученные частицы покрыты оболочкой углерода толщиной 10 нм. На фиг.6а представлен спектр магнитного кругового дихроизма (МКД) наночастиц кобальта, из которого следует, что они обладают суперпарамагнитными свойствами.

Пример 4. Получение наночастиц металлического кобальта в индустриальном масле в течение 10 часов. К 25 мл 0,25М раствора нитрата кобальта и 25 мл 0,25М додецилсульфата натрия добавляют 12 г анионита АВ-17-8 в ОН-форме. Систему перемешивают в течение 3 ч на шейкере при температуре (20±0,2)°C. Затем фазы разделяют, пропуская смесь через сито с диаметром отверстий 0,25 мм. Для отделения осадка используют центрифугирование. Осадок после промывания водой сушат при температуре 110°C.

Затем навеску полученного прекурсора помещают в термостойкую колбу и заливают маслом из расчета 15 мл масла на 0,5 г прекурсора. Содержимое колбы нагревают при температуре 400°C с обратным холодильником в течение 10 часов. Далее смесь охлаждают до комнатной температуры, осадок отделяют от масла методом декантации, промывают (с последующим центрифугированием) небольшими порциями гексана (не менее 10-15 раз) и высушивают при температуре 80°C.

На фиг.3б показана рентгенограмма наночастиц кобальта, из которой видно, что кроме фазы металлического кобальта присутствует аморфная фаза, неразложившегося СоОН2.

На фиг.4в, г представлена электронная микрофотография полученного продукта, из которой следует, что в индустриальном масле образуются наночастицы кобальта в форме иголочек. Данные частицы покрыты оболочкой углерода, что помогает избежать окисления металлического кобальта.

На фиг 6б представлен спектр магнитного кругового дихроизма (МКД) наночастиц кобальта, из которого следует, что они обладают ферромагнитными свойствами.

Преимущества предлагаемого способа заключаются в том, что полученный данным способом продукт стабилизирован углеродной пленкой, и процесс не предполагает применения агрессивных сред, высоких температур, инертной атмосферы и дорогостоящих реагентов.

Способ получения наноразмерного порошка кобальта, включающий термическое разложение кобальтсодержащего прекурсора в углеводородном масле, получение осадка, его отделение и промывку гексаном, отличающийся тем, что в качестве кобальтсодержащего прекурсора используют α-модификацию гидроксида кобальта, интеркалированную додецилсульфатом натрия, процесс разложения проводят от 10 до 30 ч при температуре 400°С с получением продукта, стабилизированного углеродной пленкой, который сушат при температуре 80°С.
СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНОГО ПОРОШКА КОБАЛЬТА
СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНОГО ПОРОШКА КОБАЛЬТА
СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНОГО ПОРОШКА КОБАЛЬТА
СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНОГО ПОРОШКА КОБАЛЬТА
СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНОГО ПОРОШКА КОБАЛЬТА
СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНОГО ПОРОШКА КОБАЛЬТА
Источник поступления информации: Роспатент

Showing 81-90 of 237 items.
27.01.2014
№216.012.9a41

Рыбные рубленые изделия повышенной пищевой ценности

Изобретение относится к пищевой промышленности. Рыбные рубленые изделия включают в определенных соотношениях фарш рыбный, добавку и соль пищевую. В качестве добавки используют гидратированную муку топинамбура, полученную путем разведения муки топинамбура в воде при соотношении 1:2-1:6 и...
Тип: Изобретение
Номер охранного документа: 0002505195
Дата охранного документа: 27.01.2014
10.02.2014
№216.012.9edb

Полносборное здание замкнутого типа

Изобретение относится к строительству, в частности к строительству зданий на вечномерзлых, слабых и пучинистых грунтах, а также в сейсмических зонах. Технический результат заключается в повышении огнестойкости и коррозионной стойкости, в повышении транспортабельности и в расширении области...
Тип: Изобретение
Номер охранного документа: 0002506375
Дата охранного документа: 10.02.2014
20.02.2014
№216.012.a1cb

Устройство для транспортирования высоковязкой нефти

Изобретение относится к нефтяной промышленности, а именно к трубопроводному транспорту высоковязкой нефти. Технический результат заключается в повышении эффективности транспортирования парафинистой нефти за счет обеспечения устройством кавитационного воздействия и упрощения возможности...
Тип: Изобретение
Номер охранного документа: 0002507134
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a261

Способ модифицирования сплавов на основе золота

Изобретение относится к области металлургии, а именно к модифицированию сплавов на основе золота, предназначенных для изготовления ювелирных изделий. Для повышения измельчения структуры сплавов золота при их модифицировании вводят рутений в расплав перед кристаллизацией сплава в виде лигатуры...
Тип: Изобретение
Номер охранного документа: 0002507284
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a2d2

Способ отвалообразования на наклонное основание

Изобретение относится к горному делу и может быть использовано при открытой разработке месторождений полезных ископаемых. Техническим результатом является возможность складирования пастообразных хвостов после обогатительного передела руды на наклонное основание с сохранением устойчивости...
Тип: Изобретение
Номер охранного документа: 0002507397
Дата охранного документа: 20.02.2014
20.03.2014
№216.012.ab86

Способ получения наноразмерного порошка железоиттриевого граната

Изобретение относится к получению порошков для микроволновой техники и магнитооптики. Способ получения наноразмерного порошка железо-иттриевого граната включает приготовление водного раствора солей иттрия (III) и водного раствора солей железа (III). Сначала реагент-осадитель, в качестве...
Тип: Изобретение
Номер охранного документа: 0002509625
Дата охранного документа: 20.03.2014
20.03.2014
№216.012.ac90

Способ отвалообразования при открытой разработке месторождений полезных ископаемых

Изобретение относится к горной промышленности и может быть использовано для отвалообразования при открытой разработке месторождений полезных ископаемых. Техническим результатом является повышение устойчивости и высоты отвального яруса при смешанной отсыпке пород вскрыши и пастообразных хвостов...
Тип: Изобретение
Номер охранного документа: 0002509891
Дата охранного документа: 20.03.2014
10.04.2014
№216.012.b4fa

Комплексная система сейсмозащиты здания или сооружения

Изобретение относится к области строительства сейсмостойких сооружений. Технический результат: обеспечение оперативного управления сейсмозащитой здания или сооружения и повышение сейсмостойкости объекта в аварийной ситуации. Комплексная система сейсмозащиты здания или сооружения включает...
Тип: Изобретение
Номер охранного документа: 0002512054
Дата охранного документа: 10.04.2014
10.04.2014
№216.012.b545

Устройство для очистки верхней кромки полувагонов

Изобретение относится к устройствам для очистки транспортных средств. Устройство для очистки верхней кромки полувагонов содержит портал, цилиндрическую щетку (7), установленную с возможностью перемещения приводом подъема и опускания щетки, блок управления (10). Стойки портала снабжены...
Тип: Изобретение
Номер охранного документа: 0002512129
Дата охранного документа: 10.04.2014
20.04.2014
№216.012.b939

Способ охлаждения циркуляционной воды в водоеме-охладителе

Изобретение относится к области энергетики и может быть использовано в оборотных системах водоснабжения тепловых электростанций с водоемом-охладителем. Способ включает сброс теплой воды в водоем-охладитель, ее охлаждение и забор охлажденной воды. Для снижения температуры забираемой воды на дно...
Тип: Изобретение
Номер охранного документа: 0002513145
Дата охранного документа: 20.04.2014
Showing 81-90 of 222 items.
20.01.2014
№216.012.97eb

Способ переработки окисленных руд с получением штейна

Изобретение относится к цветной металлургии, в частности к способу переработки окисленных руд с получением штейна. Способ включает плавку в печи ПЖВ шихты, содержащей сульфат кальция, углеродистый восстановитель и флюсы, и сульфидирование во вращающейся печи, соединенной с печью ПЖВ, при этом...
Тип: Изобретение
Номер охранного документа: 0002504590
Дата охранного документа: 20.01.2014
20.01.2014
№216.012.97f7

Способ изготовления кварцевых контейнеров

Изобретение относится к способам изготовления кварцевых контейнеров с защитным углеродным покрытием для синтеза и кристаллизации расплавов полупроводниковых материалов, а также для получения особо чистых металлов и полиметаллических сплавов. Способ изготовления кварцевых контейнеров с защитным...
Тип: Изобретение
Номер охранного документа: 0002504602
Дата охранного документа: 20.01.2014
20.01.2014
№216.012.982c

Устройство для зачистки отбитой руды с лежачего бока отработанного блока

Изобретение относится к горной промышленности, а именно к устройствам для зачистки отбитой руды. Устройство включает подвешенную на направляющие с возможностью перемещения по ним каркасную тележку, водораспределительную трубу, оборудованную водоструйными насадками и водоподающим шлангом....
Тип: Изобретение
Номер охранного документа: 0002504655
Дата охранного документа: 20.01.2014
20.01.2014
№216.012.982e

Способ разработки обводненных месторождений полезных ископаемых

Изобретение относится к горной промышленности и может быть использовано при разработке обводненных месторождений полезных ископаемых. Техническим результатом является повышение эффективности разработки обводненных месторождений. Согласно способу карьерное поле вскрывают котлованом, карьер...
Тип: Изобретение
Номер охранного документа: 0002504657
Дата охранного документа: 20.01.2014
27.01.2014
№216.012.9a41

Рыбные рубленые изделия повышенной пищевой ценности

Изобретение относится к пищевой промышленности. Рыбные рубленые изделия включают в определенных соотношениях фарш рыбный, добавку и соль пищевую. В качестве добавки используют гидратированную муку топинамбура, полученную путем разведения муки топинамбура в воде при соотношении 1:2-1:6 и...
Тип: Изобретение
Номер охранного документа: 0002505195
Дата охранного документа: 27.01.2014
10.02.2014
№216.012.9edb

Полносборное здание замкнутого типа

Изобретение относится к строительству, в частности к строительству зданий на вечномерзлых, слабых и пучинистых грунтах, а также в сейсмических зонах. Технический результат заключается в повышении огнестойкости и коррозионной стойкости, в повышении транспортабельности и в расширении области...
Тип: Изобретение
Номер охранного документа: 0002506375
Дата охранного документа: 10.02.2014
20.02.2014
№216.012.a1cb

Устройство для транспортирования высоковязкой нефти

Изобретение относится к нефтяной промышленности, а именно к трубопроводному транспорту высоковязкой нефти. Технический результат заключается в повышении эффективности транспортирования парафинистой нефти за счет обеспечения устройством кавитационного воздействия и упрощения возможности...
Тип: Изобретение
Номер охранного документа: 0002507134
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a261

Способ модифицирования сплавов на основе золота

Изобретение относится к области металлургии, а именно к модифицированию сплавов на основе золота, предназначенных для изготовления ювелирных изделий. Для повышения измельчения структуры сплавов золота при их модифицировании вводят рутений в расплав перед кристаллизацией сплава в виде лигатуры...
Тип: Изобретение
Номер охранного документа: 0002507284
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a2d2

Способ отвалообразования на наклонное основание

Изобретение относится к горному делу и может быть использовано при открытой разработке месторождений полезных ископаемых. Техническим результатом является возможность складирования пастообразных хвостов после обогатительного передела руды на наклонное основание с сохранением устойчивости...
Тип: Изобретение
Номер охранного документа: 0002507397
Дата охранного документа: 20.02.2014
20.03.2014
№216.012.ab86

Способ получения наноразмерного порошка железоиттриевого граната

Изобретение относится к получению порошков для микроволновой техники и магнитооптики. Способ получения наноразмерного порошка железо-иттриевого граната включает приготовление водного раствора солей иттрия (III) и водного раствора солей железа (III). Сначала реагент-осадитель, в качестве...
Тип: Изобретение
Номер охранного документа: 0002509625
Дата охранного документа: 20.03.2014
+ добавить свой РИД