×
10.06.2013
216.012.472b

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА ПАРОВОЙ КОНВЕРСИИ МЕТАНСОДЕРЖАЩИХ УГЛЕВОДОРОДОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу получения катализатора. Описан способ получения катализатора паровой конверсии метансодержащих углеводородов, содержащего оксидный носитель в виде сложной шпинели типа Mg[Al,Fe]O и активный компонент - никель, включающий прокаливание модифицированного носителя, характеризующийся тем, что на поверхность оксидного носителя сначала наносят путем пропитки раствором соли церия или лантана или их смесь, взятые в количестве, обеспечивающем их содержание, равное 5,0-10% мас. в расчете на оксидный носитель, а затем наносят никель и прокаливают при температуре 500°С с получением катализатора, содержащего 10,0% мас. никеля, причем оксидный носитель перед пропиткой подвергают гидротермальной обработке при парциальном давлении водяного пара, равном 1,8-2,0 МПа, и постепенном повышении температуры в зоне реакции до 800-900°С со скоростью нагрева 10 град/мин. Технический результат - повышение устойчивости катализатора к коксообразованию, увеличение его механической прочности. 4 пр., 2 табл.
Основные результаты: Способ получения катализатора паровой конверсии метансодержащих углеводородов, содержащего оксидный носитель в виде сложной шпинели типа Mg[Al,Fe]O и активный компонент - никель, включающий прокаливание модифицированного носителя, отличающийся тем, что на поверхность оксидного носителя сначала наносят путем пропитки раствором соли церия или лантана или их смесь, взятые в количестве, обеспечивающем их содержание, равное 5,0-10 мас.% в расчете на оксидный носитель, а затем наносят никель и прокаливают при температуре 500°С с получением катализатора, содержащего 10,0 мас.% никеля, причем оксидный носитель перед пропиткой подвергают гидротермальной обработке при парциальном давлении водяного пара, равном 1,8-2,0 МПа, и постепенном повышении температуры в зоне реакции до 800-900°С со скоростью нагрева 10 град./мин.

Изобретение относится к способу получения катализатора, применяемого для процессов конверсии углеводородного сырья в водород и водородсодержащие газы.

В настоящее время большая часть крупномасштабного производства водорода и водородсодержащих газов основана на конверсии углеводородов и прежде всего природного газа. При этом основным технологическим процессом является каталитическая паровая конверсия. Технологически метод хорошо разработан и позволяет проводить процесс при высоких давлениях и температурах.

Дальнейшее повышение экономической эффективности агрегатов получения водорода возможно по двум основным направлениям: увеличение производительности катализатора и снижение отношения пар/углерод. Работа в таких режимах требует применения катализаторов, сочетающих высокую активность и стойкость к зауглероживанию.

Учитывая эти требования, продолжаются поиски каталитических композиций, различающихся структурообразующими добавками, промоторами в активном компоненте и природой самого активного компонента.

В [1] (SU №743716, 06.03.1980) описан способ приготовления катализатора путем пропитки оксида алюминия растворами азотнокислых солей с последующей сушкой и прокалкой при 900-1000°С катализаторной массы. С целью повышения активности и устойчивости к зауглероживанию катализатор дополнительно пропитывают 5-10% раствором гидроксида калия.

Введение щелочных металлов в состав катализатора позволяет сдерживать реакции образования углерода, но вследствие их летучести в условиях парового риформинга это положительное воздействие падает со временем, а также может неблагоприятно отразиться на течении процесса.

Известен катализатор паровой конверсии метана [2] (US №7.767.619, 03.08.2010), носителем которого является алюминат кальция, на который наносится до 30% активного компонента (Ni, Co, Pt и др.) и до 35% промотора (La, Ce, Y и др.).

Приготавливают катализатор смешением гидроксида алюминия с цементом, водой и графитом. Приготовленную смесь таблетируют, автоклавируют в течение 10 часов и затем прокаливают 8 часов при температуре 400°С. Далее носитель пропитывают раствором La(NO3)3 или Се(NO3)3 и прокаливают в течение 5 часов при температуре 1250-1350°С.

Испытания катализатора при низкой температуре (538°С) показали высокую сопротивляемость его отложениям углерода.

К недостаткам способа можно отнести многостадийность приготовления и высокую температуру прокалки готового катализатора. Использование различных алюминатов кальция повышает устойчивость катализаторов к образованию никелевой шпинели, накопление и кристаллизация которой являются одной из основных причин дезактивации катализаторов. Недостатком является снижение термостойкости по мере увеличения концентрации алюминатов кальция в носителе.

Достаточно большую группу составляют катализаторы, в которых в качестве активного компонента используют благородные металлы (Ag, Pt, Pd, Au).

Так в [3] (US №4.060.498, 29.11.1977) описан способ приготовления катализатора, согласно которому для подавления отложения углерода на нем при работе с низкими отношениями Н2O/С в качестве активного компонента используют серебро.

В [4] (US №6.958.310, 25.10.2005) и в [5] (WO 02066371, 29.08.2002) описан способ получения катализатора, где для тех же целей используют в качестве активного элемента платину, палладий, иридий.

В [6] (US №5.997.835, 07.12.1999) описан процесс каталитического парового риформинга без образования углерода на Ni-содержащем катализаторе, включающем в качестве промотора 0,01-10,0% золота. Катализатор готовят пропиткой носителя растворами нитрата никеля и тетрааминонитрата золота. После сушки частиц катализатора его загружают в реактор и активируют при 350-400°С в среде водорода.

К недостаткам этих катализаторов можно отнести их высокую стоимость.

Известен способ [7] (US №5.679.614, 21.10.1997), согласно которому приготовление катализатора состоит из следующих ступеней:

а) приготовление носителя катализатора смешением оксидов 65% γ-Al2O3, 5% La2O3 и 10% MgO с последующей прокалкой при 700-800°С в течение 6 часов;

б) пропитка носителя растворами азотнокислых солей Cr и Ni;

в) добавление в смесь 1 N раствора азотной кислоты, формовка гранул катализатора и прокалка последнего при температуре 800°С в течение 6 часов.

Конечный состав полученного катализатора - 15% Ni, 10% MgO, 5% Cr, 5% La, 65% Al2O3.

Катализатор, по оценке авторов, имеет высокую активность и механическую прочность в условиях паровой конверсии парафиновых углеводородов и высокую сопротивляемость отложениям углерода.

К недостаткам способа можно отнести его многостадийность и высокую температуру прокалки полученных гранул катализатора.

В [8] (US №5.268.346, 07.12.1993) носитель для катализатора готовят смешением водных растворов Ce(NO3)3 и Al(NO3)3 с 2 N раствором NH4OH. Отфильтрованный осадок сушат при 120°С в течение 24 часов и затем прокаливают при температуре 800°С в течение 3 часов.

Полученный носитель пропитывают водным раствором хлорида рутения, сушат и восстанавливают водородом при температуре 700°С в течение 3 часов. Катализатор показал хорошую сопротивляемость отложению углерода при проведении парового риформинга при температуре 600°С.

Наиболее близким техническим решением к предлагаемому являются способ получения катализатора паровой конверсии метансодержащих углеводородов, описанный в [9] RU №2375114, 10.12.2009, согласно которому разработан способ приготовления катализатора на основе смешанного оксида со структурой шпинели, полученной из вермикулитовой руды. Носитель получают путем травления вермикулита разбавленной соляной кислотой (5-7%-ный раствор) при 50-70°С с последующим отделением раствора травления и обработки его 2 N раствором NaOH. При травлении вермикулита в кислотный раствор переходит до 60% мас. (в расчете на исходный вермикулит) неэмпирических включений ионов алюминия, магния и железа. При обработке щелочью эти ионы выделяются в виде осадка, который формуют в гранулы и затем прокаливают их при температуре 850°С в течение 2 часов. Никель в количестве 10% мас. вводят в катализатор методом пропитки с использованием Ni(NO3)2·6H2O.

Получают катализатор, содержащий носитель в виде сложной шпинели типа Mg[Al,Fe]2O4 при массовом соотношении оксидов магния, железа и алюминия, равном 1:0,6:1, и никель.

В присутствии полученного таким образом катализатора конверсия метана достигает равновесного значения в первые два часа работы при температуре процесса 800°С. Однако при 600°С содержание углеродистых отложений в течение испытания составило 1,6%, что при увеличении длительности процесса может привести к существенному снижению активности катализатора.

К недостаткам описанного способа можно отнести низкую устойчивость катализатора к коксообразованию и невысокую механическую прочность последнего.

Задача предлагаемого изобретения заключается в повышении устойчивости катализатора к коксообразованию и увеличении его механической прочности.

Решение поставленной задачи достигается тем, что в способе получения катализатора паровой конверсии метансодержащих углеводородов, содержащего оксидный носитель в виде сложной шпинели типа Mg[Al,Fe]2O4 и активный компонент - никель, включающем прокаливание модифицированного носителя, на поверхность оксидного носителя сначала наносят путем пропитки раствором соли церий или лантан или их смесь, взятые в количестве, обеспечивающем их содержание, равное 5,0-10,0% мас. в расчете на оксидный носитель, а затем наносят никель и прокаливают при температуре 500°С с получением катализатора, содержащего 10,0% мас. никеля. Для повышения механической прочности оксидного носителя последний перед пропиткой подвергают гидротермальной обработке при парциальном давлении водяного пара, равном 1,8-2,0 МПа, и постепенном повышении температуры в зоне реакции до 800-900°С со скоростью нагрева 10 град/мин.

С целью повышения устойчивости катализатора к коксообразованию перед стадией нанесения никельсодержащего активного компонента на поверхность оксидного носителя наносят 5,0% церия или лантана или их смеси при суммарном количестве модифицирующих компонентов 5,0-10%.

Изобретение иллюстрируется следующими примерами.

Пример 1

Оксидный носитель в виде сложной шпинели типа Mg[Al,Fe]2O4 при массовом соотношении оксидов магния, железа и алюминия, равном 1:0,6:1, получают по методике, описанной в RU №2393016, 27.06.2010.

В качестве исходного сырья используют вермикулит Ковдорского месторождения фракции 0,5 мм марки «150».

Травление проводят в одну стадию с использованием 7%-ной и 3,5%-ной соляной кислоты. Обработку исходного вермикулита кислотами проводят при температуре 50-60°С в течение 6 часов при постоянном перемешивании. Объемное соотношение вермикулит:кислота составляет 1:3 в случае образцов 1н, 2н и 1:4 в случае образца 3н.

Растворы, содержащие ионы железа, магния, алюминия, используют для приготовления носителя катализатора методом соосаждения гидроксидов металлов 2 N раствором щелочи NaOH при комнатной температуре и переменном рН 9,50.

Полученный осадок гидроксидов металлов отделяют от маточного раствора отжатием на воронке Бюхнера с использованием ткани «Диагональ» и промывают дистиллированной водой, подогретой до 40-50°С, до отрицательной реакции промывных вод на ионы хлора (тест с азотнокислым серебром).

Приготовленные осадки гидроксидов формуют в виде шариков диаметром 3-4 мм, сушат сначала на воздухе в течение 48 часов, затем в сушильном шкафу при температуре 120°С в течение 6 часов.

Далее образцы носителя подвергают гидротермальной обработке (ГТО) при парциальном давлении водяного пара 1,8-2,0МПа и постепенном повышении температуры в зоне реакции до 800-900°С со скоростью нагрева 10 град/мин. Механическую прочность носителя до и после ГТО определяют по методике согласно ГОСТ 21560.2-82.

Данные по изменению прочности до и после ГТО приведены в таблице 1.

Таблица 1
T, °C Парциальное давление H2O, МПа Парциальное давление N2, МПа Прочность, МПа
до ГТО после ГТО
800 1,8 0,2 0,20 0,92
800 1,9 0,1 0,21 1,00
800 2,0 - 0,20 0,90
900 1,8 0,2 0,20 0,98
900 1,9 0,1 0,21 1,10
900 2,0 - 0,18 0,95

Пример 2

Приготовление Ni-La-содержащего катализатора проводят методом пропитки. В качестве источников лантана используют уксуснокислую соль - La(OAc)3·1,5H2O. Приготовление катализатора проводят в две ступени.

На первой ступени проводят нанесение 5,1% мас. La от массы носителя. Исходя из значений влагоемкости и требуемого количества вводимого лантана рассчитывают концентрацию водного раствора уксуснокислого лантана. Навеску гранулированного носителя помещают в кристаллизатор, заливают избытком раствора соли лантана, выдерживают в течение двух часов. Затем отделяют пропитанные гранулы от избытка раствора, сушат их на воздухе, в сушильном шкафу при 120°С в течение 6 часов и прокаливают в муфельной печи при температуре 500°С в течение 6 часов.

На второй ступени проводят нанесение 10,0% Ni (от массы катализатора). По окончании нанесения никеля и сушки образцов на воздухе и в сушильном шкафу проводят прокалку в муфельной печи при температуре 500°С в течение 5 часов.

Готовый катализатор содержит: никель 10,0% мас.; лантан 4,4% мас.; носитель - остальное.

Пример 3

Готовят носитель, как в примере 1, на который наносят церий в количестве 5,1% мас. от массы носителя. В качестве источника церия используют уксуснокислую соль Се(ОАс)3·1,5H2O. Пропитку проводят способом, описанным в примере 2, с последующим нанесением 10,0% Ni (от массы катализатора).

Готовый катализатор содержит: никель 10,0% мас.; церий 4,4% мас.; носитель - остальное.

Пример 4

Приготовление Ni-Ce-La-содержащего катализатора

Готовят носитель, как в примере 1, на который наносят последовательно церий в количестве 5,4% мас. от массы носителя, затем лантан в количестве 5,4% мас. от массы носителя. В качестве источника церия используют уксуснокислую соль Се(ОАс)3.1,5H2O, в качестве источника лантана - La(OAc)3.1,5H2O. Пропитку проводят способом, описанным в примере 2, с последующим нанесением 10% мас. Ni (от массы катализатора).

Готовый катализатор содержит: никель 10,0% мас.; церий 4,4% мас.; лантан 4,4% мас.; носитель - остальное.

Испытание образцов катализаторов в процессе паровой конверсии метана

Предлагаемые катализаторы были испытаны в процессе паровой конверсии метана. Опыты проводили в реакторе, изготовленном из жаропрочной стали с внутренним диаметром 30 мм. Во всех экспериментах в реактор загружали 20 см3 испытуемых катализаторов.

В качестве катализатора сравнения использовали катализатор согласно способу [9], содержащий 10% мac. Ni.

Катализаторы, приготовленные способом, описанным в примерах 2, 3 и 4, и катализатор сравнения были испытаны в процессе паровой конверсии метана под давлением 2,0 МПа, температуре 720 и 600°С, соотношении пар/углерод=2:1 и 1:1 по объему и объемной скорости 6000 ч-1.

Активность катализатора определяли как отношение наблюдаемой степени превращения метана (X) к равновесной (Хр) при конверсии метана с водяным паром.

В выгруженных образцах определяли количество отложившегося углерода по методике согласно ГОСТ 2408.1-95.

Результаты испытаний приведены в таблице 2.

Таблица 2
Результаты опытов по конверсии метана
Время, час T, °C пар/С по объему Состав сухого газа, % об. X* Х/Хр** Содерж. углерода, % мас. Р в системе, МПа
H2 СО CO2 СН4
Катализатор 10,0% Ni - 4,4% Се
10 721 2 55,8 6,9 9,6 27,7 0,38 0,86 2,0
20 723 2 56,1 8,1 9,4 26,4 0,40 0,91 2,0
30 724 2 56,4 9,1 8,3 26,1 0,40 0,91 2,0
40 722 2 57,7 7,4 9,2 25,7 0,39 0,90 2,0
50 606 1 34,0 1,2 6,6 58,4 0,11 0,71 2,0
60 610 1 31,3 1,0 5,9 61,8 0,10 0,65 2,0
70 600 1 30,1 1,2 7,1 61,6 0,11 0,71 0,26 2,0
Катализатор 10,0% Ni - 4,4% La
10 721 2 56,3 5,3 8,9 29,5 0,32 0,73 2,0
20 723 2 57,7 7,1 9,2 26,0 0,38 0,86 2,0
30 720 2 59,6 7,4 9,1 23,9 0,41 0,93 2,0
40 724 2 58,9 7,2 9,4 24,5 0,41 0,93 2,0
50 606 1 30,2 1,2 7,1 61,5 0,12 0,77 2,0
60 596 1 31,1 1,3 5,3 62,3 0,09 0,60 2,0
70 600 1 30,0 1,2 7,2 61,6 0,11 0,73 0,18 2,0
Катализатор 10,0% Ni - 4,4% La - 4,4% Се
10 720 2 59,3 5,7 9,1 25,8 0,36 0,85 2,0
20 723 2 58,9 7,2 9,2 24,7 0,40 0,92 2,0
30 722 2 56,4 9,2 8,3 26,1 0,40 0,92 2,0
40 720 2 59,5 7,3 9,2 24,0 0,41 0,93 2,0
50 595 1 31,0 1,4 5,2 62,4 0,09 0,60 2,0
60 600 1 30,2 1,3 6,4 62,1 0,11 0,73 2,0
70 585 1 30,0 1,2 7,4 61,4 0,12 0,76 0,20 2,0
Катализатор 10,0% Ni [сравнительный по прототипу]
10 730 2 59,4 5,7 9,0 25,9 0,36 0,82 2,0
20 723 2 57,9 7,5 8,2 26,4 0,37 0,84 2,0
30 724 2 58,7 7,4 9,2 24,7 0,41 0,94 2,0
40 730 2 60,5 6,2 9,8 23,5 0,40 0,91 2,0
50 596 1 21,0 1,2 6,6 58,4 0,07 0,55 2,0
60 587 1 19,1 1,0 5,9 61,8 0,06 0,51 2,0
70 583 1 19,3 0,4 4,6 75,7 0,06 0,51 1,75 2,0
* наблюдаемая степень превращения метана(Х);
** отношение наблюдаемой степени превращения метана (X) к равновесной (Хр)

Как видно из результатов эксперимента, катализатор проявляет достаточно высокую активность при температуре 720°С и соотношении H2O:СН4=2:1. Концентрация продуктов реакции быстро достигает значений, близких к равновесию, и остается стабильной на протяжении времени работы.

Снижение температуры реакции до 600°С и уменьшение соотношения Н2О:С=1:1 с целью определения устойчивости катализаторов к коксообразованию показало, что устойчивость катализаторов к коксообразованию при пониженной температуре располагается в ряду Ni-La/носитель>Ni-Се/носитель>Ni/носитель.

Использованные источники

1. SU №743716, 06.03.1980.

2. US №7.767.619, 03.08.2010.

3. US №4.060.498, 29.11.1977.

4. US №6.958.310, 25.10.2005.

5. WO 02066371, 29.08.2002.

6. US №5.997.835, 07.12.1999.

7. US №5.679.614, 21.10.1997.

8. US №5.268.346, 07.12.1993.

9. RU №2393016, 27.06.2010.

Способ получения катализатора паровой конверсии метансодержащих углеводородов, содержащего оксидный носитель в виде сложной шпинели типа Mg[Al,Fe]O и активный компонент - никель, включающий прокаливание модифицированного носителя, отличающийся тем, что на поверхность оксидного носителя сначала наносят путем пропитки раствором соли церия или лантана или их смесь, взятые в количестве, обеспечивающем их содержание, равное 5,0-10 мас.% в расчете на оксидный носитель, а затем наносят никель и прокаливают при температуре 500°С с получением катализатора, содержащего 10,0 мас.% никеля, причем оксидный носитель перед пропиткой подвергают гидротермальной обработке при парциальном давлении водяного пара, равном 1,8-2,0 МПа, и постепенном повышении температуры в зоне реакции до 800-900°С со скоростью нагрева 10 град./мин.
Источник поступления информации: Роспатент

Showing 151-160 of 161 items.
09.05.2019
№219.017.4f4a

Вертикальный кожухотрубчатый испаритель с перегревателем

Изобретение относится к области анаэробной энергетики, а более конкретно к воздухонезависимым энергоустановкам (ЭУ) на основе тепловых двигателей или электрохимических генераторов, работающих на углеводородном горючем и кислороде. В вертикальном кожухотрубчатом испарителе с перегревателем,...
Тип: Изобретение
Номер охранного документа: 0002451888
Дата охранного документа: 27.05.2012
18.05.2019
№219.017.5b80

Безреберный обтекатель антенны гидроакустической станции

Изобретение относится к судостроению, а именно к обтекателям гидроакустических станций, и касается вопроса конструирования обтекателя антенны гидроакустической станции. Технический результат заключается в повышении прочности, сопротивляемости местным динамическим нагрузкам и повышении...
Тип: Изобретение
Номер охранного документа: 0002461925
Дата охранного документа: 20.09.2012
20.05.2019
№219.017.5d64

Система эрозионно-коррозионной защиты морской стационарной платформы в ледовых условиях

Изобретение относится к области предотвращения коррозии металлов путем анодной и катодной защиты от эрозионного и коррозионного разрушения подводной поверхности морских сооружений освоения шельфа замерзающих морей, например морских стационарных платформ, и может быть использовано в другой...
Тип: Изобретение
Номер охранного документа: 0002459889
Дата охранного документа: 27.08.2012
29.05.2019
№219.017.6827

Воздушный движительный комплекс судна

Изобретение относится к области судостроения. Воздушный движительный комплекс судна включает направляющую насадку, лопастное рабочее колесо, круговую решетку. Колесо расположено соосно на приводном валу внутри насадки. Решетка размещена во входном участке направляющей насадки. Решетка состоит...
Тип: Изобретение
Номер охранного документа: 0002454351
Дата охранного документа: 27.06.2012
29.05.2019
№219.017.68e1

Моделирующий комплекс для проверки системы управления беспилотного летательного аппарата

Изобретение относится к средствам моделирования систем управления беспилотных летательных аппаратов. Техническим результатом является повышение точности испытаний устройства при выработке сигналов управления. Моделирующий комплекс содержит устройства моделирования бокового и продольного...
Тип: Изобретение
Номер охранного документа: 0002432592
Дата охранного документа: 27.10.2011
19.06.2019
№219.017.8953

Водометный движитель

Изобретение относится к области судостроения, касается вопросов создания водометных движителей всех типов судов и кораблей. Водометный движитель содержит размещенное в водоводе (1) и установленное на валу рабочее колесо (2), имеющее ступицу (3) с закрепленными на ней лопастями (4). В теле...
Тип: Изобретение
Номер охранного документа: 0002427498
Дата охранного документа: 27.08.2011
19.06.2019
№219.017.8aa2

Система для оценки помехоустойчивости телекоммуникационного комплекса

Изобретение относится к измерительной технике. В системе для оценки помехоустойчивости телекоммуникационного комплекса содержится снабженный запоминающим устройством и модулем дискретного преобразования Фурье регистратор, подключенный к измерителю параметров электромагнитного поля,...
Тип: Изобретение
Номер охранного документа: 0002436110
Дата охранного документа: 10.12.2011
19.06.2019
№219.017.8b01

Двойной борт судна

Изобретение относится к области судостроения и касается конструкции корпусов танкеров, химовозов, плавучих нефте- и газохранилищ, а также других судов и морских сооружений, предназначенных для транспортировки и хранения экологически опасных веществ и решает задачу по повышению экологической...
Тип: Изобретение
Номер охранного документа: 0002448014
Дата охранного документа: 20.04.2012
19.07.2019
№219.017.b602

Способ и аппарат для очистки кремнийорганических соединений от летучих компонентов

Изобретение относится к способам очистки кремнийорганических соединений и устройствам для их реализации. Предложен способ очистки кремнийорганических соединений от летучих компонентов, при котором нагретый поток очищаемого кремнийорганического соединения подается в виде пучка множественных...
Тип: Изобретение
Номер охранного документа: 0002694845
Дата охранного документа: 17.07.2019
27.07.2019
№219.017.b9eb

Способ управления газовым двигателем внутреннего сгорания

Изобретение относится к машиностроению, а именно к двигателестроению, и может использоваться в системе управления газовым двигателем для устранения детонационных явлений в двигателе. Техническим результатом является уход от детонационных явлений путем изменения состава топливовоздушной смеси...
Тип: Изобретение
Номер охранного документа: 0002695583
Дата охранного документа: 25.07.2019
Showing 131-137 of 137 items.
20.01.2018
№218.016.171b

Интегрированный мембранно-каталитический реактор и способ совместного получения синтез-газа и ультрачистого водорода

Изобретение относится к области получения синтез-газа и ультрачистого водорода путем конверсии различного органического сырья и интегрированному мембранно-каталитическому реактору для осуществления способа и может быть использовано в получении топливных элементов, полупроводников, химическом...
Тип: Изобретение
Номер охранного документа: 0002635609
Дата охранного документа: 14.11.2017
18.05.2018
№218.016.5095

Катализатор и способ получения фракции ароматических и алифатических углеводородов из растительного масла

Изобретение относится к области гетерогенно-каталитических превращений органических соединений, а именно к каталитическому превращению возобновляемого сырья - растительных масел в алкан-ароматическую фракцию углеводородов С-С, которая может быть использована для получения компонентов моторных...
Тип: Изобретение
Номер охранного документа: 0002652986
Дата охранного документа: 04.05.2018
18.05.2019
№219.017.5b71

Способ получения алкан-ароматической фракции

Изобретение относится к способу получения алкан-ароматической фракции. Способ характеризуется тем, что этанол и/или диэтиловый эфир пропускают через слой предварительно восстановленного катализатора, представляющего собой цеолит ЦВМ, содержащий 0,4-1 мас.% Pd и 0,5-1 мас.% Zn при температуре...
Тип: Изобретение
Номер охранного документа: 0002466976
Дата охранного документа: 20.11.2012
10.07.2019
№219.017.ac73

Способ получения катализатора для процесса дегидрирования этилбензола в стирол

Изобретение относится к технологии получения катализаторов, применяемых для процессов дегидрирования этилбензола в стирол. Описан способ получения катализатора для процесса дегидрирования этилбензола в стирол на основе смеси оксидов металлов, получаемой осаждением неорганических компонентов из...
Тип: Изобретение
Номер охранного документа: 0002393016
Дата охранного документа: 27.06.2010
10.07.2019
№219.017.ada2

Способ получения катализатора для паровой конверсии метансодержащих углеводородов

Изобретение относится к способу получения катализатора, применяемого для процессов конверсии углеводородного сырья в водород и водородсодержащие газы. Описан способ получения катализатора паровой конверсии метансодержащих углеводородов на основе шпинельсодержащего носителя, отличающийся тем,...
Тип: Изобретение
Номер охранного документа: 0002375114
Дата охранного документа: 10.12.2009
10.07.2019
№219.017.af3a

Катализатор и способ глубокой очистки газовых смесей от сероводорода в его присутствии

Изобретение относится к каталитическим способам газовых смесей от сероводорода. Описан катализатор глубокой очистки газовых смесей от сероводорода, содержащий активированную матрицу кремнезема, полученную кислотным травлением природного вермикулита, и наноразмерные частицы оксида железа или...
Тип: Изобретение
Номер охранного документа: 0002414298
Дата охранного документа: 20.03.2011
24.06.2020
№220.018.29d1

Способ получения углеродсодержащего адсорбента для удаления ароматических соединений (варианты)

Варианты изобретения относятся к способу получения углеродсодержащего адсорбента на основе углеродных остатков риформинга лигнина. Адсорбент предложен для адсорбции ароматических соединений из сточных вод. Углеродсодержащий адсорбент получают из остатка углекислотного риформинга лигнина в...
Тип: Изобретение
Номер охранного документа: 0002724252
Дата охранного документа: 22.06.2020
+ добавить свой РИД