×
27.05.2013
216.012.4494

Результат интеллектуальной деятельности: ПРОТЕКТОРНЫЙ СПЛАВ НА АЛЮМИНИЕВОЙ ОСНОВЕ

Вид РИД

Изобретение

Аннотация: Изобретение относится к металлургии, в частности к протекторным сплавам на основе алюминия, и может быть использовано при производстве протекторов для защиты от коррозии морских сооружений и судов из алюминиевых сплавов. Предложенный сплав содержит, мас.%: цинк - 4-5, индий - 0,01-0,06, олово - 0,01-0,1, цирконий - 0,01-0,1, титан - 0,02-0,1, алюминий и примеси - остальное. Содержание примесей в сплаве железа, кремния и меди не должно превышать 0,1, 0,1 и 0,01 соответственно, а содержание водорода в сплаве не должно превышать 0,20 см/100 г Me. Технический результат - повышение величины фактической токоотдачи сплава и соответственно коэффициента полезного использования и стабильности электрохимических характеристик. 1 з.п. ф-лы, 3 табл.

Изобретение относится к металлургии протекторных сплавов на основе алюминия и может быть использовано при производстве протекторов для защиты от коррозии морских сооружений и судов из алюминиевых сплавов.

Известны протекторные сплавы на основе алюминия, применяемые для защиты от коррозии различных металлических конструкций (см. сплавы марок АП1; АП2; АП3, АП4 по ГОСТ 26251-84 и АП4Н по ТУ 5.394-11785-2001).

Известно, что при плавлении алюминиевых сплавов в их состав попадает водород, особенно если этот процесс протекает в присутствии влаги. По разным источникам его содержание может достигать 2-3 см3/100 г Me. Влияние водорода проявляется, прежде всего, в образовании газовой пористости сплава, которая оказывает существенное влияние на механические, пластические и, что особенно важно для протекторов, на электрохимические характеристики протекторного сплава. Образование пор обусловлено резким уменьшением растворимости водорода в процессе затвердевания сплава и выделением вследствие этого молекулярного водорода.

В таблице 1 приведены данные по влиянию водорода на механические свойства алюминиевого сплава марки А14.

Таблица 1
Условия плавки Плотность, г/см3 Прочность, σв, кг/мм2
В вакууме 2,7 24,4
На воздухе 2,65 23
В атмосфере 2,57 15
На воздухе;
затвердевание в атмосфере пара
2,5 9,7

При исследовании электрохимических характеристик алюминиевых протекторных сплавов было установлено, что с ростом содержания в них водорода от 0,18 до 0,8 см3/100 г Me токоотдача снижается от 2400 до 2100 А×ч/кг. Одновременно с уменьшением токоотдачи наблюдается неравномерный точечно-язвенный характер растворения протекторов из этого сплава, а следовательно, снижение величины токоотдачи и срока службы изделий из этих сплавов.

Проведенный анализ отечественной и зарубежной литературы показал, что наиболее близким по технической сущности и составу компонентов к заявляемой композиции является алюминиевый протекторный сплав марки АП4Н (патент №2263154), содержащий, мас.%:

Цинк 4,0-5,0

Олово - 0,01-0,1

Индий - 0,01-0,06

Цирконий - 0,01-0,1

Железо - 0,10

Медь - 0,01

Кремний - 0,10

Алюминий - остальное

Данный сплав рекомендуется для изготовления протекторов с повышенной анодной активностью (отрицательный защитный потенциал до минус 800 мВ), предназначенных для защиты от коррозии конструкций из алюминиевых сплавов, эксплуатирующихся в морских и других водах с высокой электропроводностью, а также стальных конструкций, эксплуатирующихся в водах с низкой электропроводностью. Недостатком прототипа является относительно высокая пористость сплава, что приводит к снижению электрохимических характеристик - величины токоотдачи, недостаточного коэффициента полезного использования (КПП), определяющего срок службы изделий из этого сплава.

До настоящего времени при производстве алюминиевых протекторов содержание водорода в сплавах не регламентировалось. Известен ряд материалов, которые при их введении в расплав за счет способности к абсорбции и высокой растворимости в них водорода существенно снижают содержание водорода в расплаве. К ним относятся титан, лантан, церий и некоторые другие.

Техническим результатом настоящего изобретения является создание нового алюминиевого менее пористого протекторного сплава с однородной структурой и более высокой плотностью, высокими электрохимическими характеристиками (токоотдача, КПИ), определяющими срок службы.

Поставленный технический результат достигается тем, что в протекторный сплав на алюминиевой основе, содержащий цинк, индий, олово, цирконий, дополнительно введен титан при следующем содержании компонентов в мас.%:

Цинк - 4,0-5,0

Индий - 0,01-0,06

Олово - 0,01-0,1

Цирконий - 0,01 -0,1

Титан - 0,02-0,1

Алюминий и примеси - остальное

При этом содержание примесей в сплаве железа, кремния и меди не должно превышать 0,1; 0,1 и 0.01 соответственно, а содержание водорода в сплаве не должно превышать 0,20 см3/100 г Me.

Соотношение легирующих элементов в заявляемом составе выбрано таким образом, чтобы структура и основные электрохимические свойства алюминиевого протекторного сплава обеспечивали требуемый комплекс технологических и эксплуатационных характеристик.

Содержание титана в сплаве не должно превышать 0,1 мас.%, так как при большем содержании он образует с алюминием отдельную катодную фазу состава AlnTim, которая выделяется из твердого раствора и снижает электрохимические характеристики сплава. При меньшем содержании титана (0,02-0,1 мас.%) он не выделяется в отдельную фазу и находится в твердом растворе алюминия и не влияет на электрохимические характеристики, но является достаточным для снижения содержания водорода в алюминиевом сплаве за счет абсорбционных свойств титана к водороду. При содержании титана меньше 0,02 мас.% очистка алюминиевого сплава от водорода недостаточна.

Таким образом, введение в заявляемый алюминиевый протекторный сплав добавки титана в указанном соотношении с другими элементами снижает пористость сплава за счет снижения содержания водорода вследствие высокой абсорбционной способности титана к водороду и тем самым улучшает его структуру. Регламентируемое содержание титана не образует с алюминием катодных фазовых структур, которые бы отрицательно сказались на электрохимических характеристиках заявляемого алюминиевого сплава, и тем самым обеспечивается более высокий и стабильный коэффициент полезного использований и, в конечном счете, повышается срок его службы. Результаты состава заявляемого алюминиевого протекторного сплава представлены в таблице 2.

Проведенные металлографические исследования показали, что заявленный сплав имеет гомогенный однофазный состав. Структура сплава мелкозернистая, плотная. Все это подтверждает высокие электрохимические и эксплуатационные свойства заявленного сплава.

В ЦНИИ КМ "Прометей" в соответствии с планом научно-исследовательских работ выполнен комплекс опытно-промышленных работ по выплавке протекторов из осваиваемой марки сплава. Металл выплавлялся в индукционных печах с графитошамотным тиглем из чистых шихтовых материалов. Результаты определения необходимых электрохимических и эксплуатационных свойств представлены в таблице 3.

Таким образом, создан новый протекторный сплав на основе алюминия с повышенной анодной активностью со стабильными во времени электрохимическими и эксплуатационными характеристиками.

Ожидаемый технико-экономический эффект использования нового технического решения выразится в повышении срока службы алюминиевого протекторного сплава и обеспечении эксплуатационной надежности и ресурса судов с корпусами из алюминиевых сплавов типа АМг. Кроме того, протекторы из предлагаемого нового сплава найдут широкое применение в системах электрохимической протекторной защиты судов и различных объектов морской техники, эксплуатирующихся в опресненных морских бассейнах, также в холодных арктических морях, где из-за пониженной температуры удельная электропроводность морской воды не превышает 3 См/м.

Источник поступления информации: Роспатент

Showing 31-40 of 41 items.
29.03.2019
№219.016.f193

Препрег герметичного органопластика и изделие, выполненное из него

Изобретение относится к области создания конструкционных полимерных композиционных материалов на основе волокнистых наполнителей из арамидных нитей и полимерных связующих, которые могут использоваться в качестве герметичных обшивок сотовых панелей, а также монолитных деталей в машино-,...
Тип: Изобретение
Номер охранного документа: 0002395535
Дата охранного документа: 27.07.2010
29.03.2019
№219.016.f646

Состав для защитного покрытия

Изобретение относится к полимерным составам для получения защитных покрытий на основе эпоксидных связующих, для защиты конструкций из различных металлов и полимерных композиционных материалов. Состав включает: эпоксидную диановая смолу, полиамидный отвердитель, наполнители - мелкодисперсный...
Тип: Изобретение
Номер охранного документа: 0002402585
Дата охранного документа: 27.10.2010
29.03.2019
№219.016.f64b

Препрег антифрикционного органопластика и изделие, выполненное из него

Изобретение относится к области производства металлополимерных антифрикционных материалов и изделий и может быть использовано при изготовлении высоконагруженных подшипников скольжения в машино- и судостроении, авиационной промышленности и других областях техники. Препрег антифрикционного...
Тип: Изобретение
Номер охранного документа: 0002404202
Дата охранного документа: 20.11.2010
19.04.2019
№219.017.2e20

Керамический композиционный материал

Изобретение относится к керамическим композиционным материалам и может быть использовано в авиационной технике и машиностроении при изготовлении теплонагруженных деталей газотурбинных установок и двигателей газо-, нефтеперекачивающих, энергетических и транспортных систем и др., эксплуатируемых...
Тип: Изобретение
Номер охранного документа: 0002397969
Дата охранного документа: 27.08.2010
19.04.2019
№219.017.3102

Стеклокерамический композиционный материал

Изобретение относится к стеклокерамическим композиционным материалам на основе наноструктурированных стеклокерамических матриц, армированных углеродными наполнителями, для изготовления кольцевых элементов и деталей перспективной авиационно-космической техники с рабочей температурой до 1300°С,...
Тип: Изобретение
Номер охранного документа: 0002412135
Дата охранного документа: 20.02.2011
19.04.2019
№219.017.3395

Высокопрочная немагнитная сталь

Изобретение относится к области металлургии, в частности к легированным высокопрочным, немагнитным, коррозионно-стойким сталям, используемым в качестве конструкционных материалов в судостроении, энергетике, машиностроении и др. отраслях промышленности. Сталь содержит углерод, кремний, марганец,...
Тип: Изобретение
Номер охранного документа: 0002447186
Дата охранного документа: 10.04.2012
19.04.2019
№219.017.339f

Теплостойкая подшипниковая сталь

Изобретение относится к области металлургии, а именно к созданию теплостойких сталей для подшипников, работающих при температуре до 500°С и используемых, например, для авиационных газотурбинных двигателей (ГТД) и редукторов вертолетов. Сталь содержит углерод, марганец, кремний, хром, вольфрам,...
Тип: Изобретение
Номер охранного документа: 0002447183
Дата охранного документа: 10.04.2012
09.06.2019
№219.017.7cba

Радиопоглощающий материал

Изобретение относится к области получения радиопоглощающих материалов (РПМ), обеспечивающих снижение уровня вторичного излучения, электромагнитную совместимость бортовой аппаратуры, коррекцию диаграмм направленности бортовых антенных систем при длительной эксплуатации и воздействии агрессивных...
Тип: Изобретение
Номер охранного документа: 0002410777
Дата охранного документа: 27.01.2011
09.06.2019
№219.017.7dba

Способ защиты деталей газовых турбин из никелевых сплавов

Изобретение относится к области металлургии и машиностроения и может быть использовано в авиационном и энергетическом турбостроении для защиты деталей от высокотемпературного окисления, в том числе рабочих и сопловых лопаток газовых турбин из никелевых сплавов. Предложен способ защиты деталей...
Тип: Изобретение
Номер охранного документа: 0002452793
Дата охранного документа: 10.06.2012
09.06.2019
№219.017.7fde

Способ получения листовых изделий из никелевых жаропрочных сплавов

Изобретение относится к области металлургии, а именно к получению изделий из жаропрочных гетерофазных деформируемых никелевых сплавов, работающих в интервале температур 20-1000°С и предназначенных для изготовления корпусов, кожухов, экранов и других листовых изделий. Предложен способ получения...
Тип: Изобретение
Номер охранного документа: 0002460824
Дата охранного документа: 10.09.2012
Showing 21-22 of 22 items.
17.02.2018
№218.016.2ae5

Способ измерения скорости движения подводного объекта

Изобретение относится к измерительной технике, в частности может быть использовано при аттестации бассейнов переменных давлений в качестве испытательного оборудования, опытной отработке в них пусковых устройств необитаемых малогабаритных подводных аппаратов, проведения гидродинамических...
Тип: Изобретение
Номер охранного документа: 0002642945
Дата охранного документа: 29.01.2018
17.02.2018
№218.016.2c07

Стенд для испытания конструкции летательного аппарата на механическую прочность под действием изгибающего момента

Изобретение относится к конструкции стенда, который обеспечивает возможность проведения испытаний на механическую прочность конструкции летательного аппарата. Устройство содержит оснастку для фиксации испытываемой конструкции и систему нагружения. Система нагружения размещена под зоной...
Тип: Изобретение
Номер охранного документа: 0002643234
Дата охранного документа: 31.01.2018
+ добавить свой РИД